VISHAY IRFP9140PBF Power Mosfet User Guide
- June 1, 2024
- VISHAY
Table of Contents
VISHAY IRFP9140PBF Power Mosfet
Specifications
- Brand: Vishay Siliconix
- Product Name: IRFP9140
- Type: Power MOSFET
- Package: TO-247AC
- Configuration: Single P-Channel MOSFET
- Drain-Source Voltage (VDS): -100V
- Gate-Source Voltage (VGS): -10V
- Maximum On-State Resistance (RDS(on)): 14Ω
- Total Gate Charge (Qg): 29nC (max.)
- Gate-Source Charge (Qgs): 0.20nC
- Gate-Drain Charge (Qgd): 61nC
Product Usage Instructions
1. Installation:
- Identify the Drain (D), Gate (G), and Source (S) terminals on the MOSFET.
- Connect the MOSFET to your circuit board, ensuring proper orientation.
2. Operating Conditions:
- Ensure that the Drain-Source Voltage (VDS) does not exceed -100V.
- Apply a Gate-Source Voltage (VGS) of -10V for proper functioning.
3. Thermal Management:
- Maintain proper thermal resistance by using appropriate heat sinks or cooling solutions.
- Refer to the Thermal Resistance Ratings for maximum operating temperatures.
4. Handling and Soldering:
- Follow recommended soldering guidelines provided in the datasheet.
- Use a mounting torque of 6-32 or M3 screw for secure installation.
Frequently Asked Questions
- Q: Is the IRFP9140 RoHS-compliant?
- A: The datasheet provides information on RoHS-compliance status, with details on lead (Pb) terminations.
- Q: What is the maximum Drain-Source breakdown voltage?
- A: The maximum Drain-Source breakdown voltage is -100V.
Product 0verview
PRODUCT SUMMARY
VDS (V)| -100
RDS(on) (W)| VGS = -10 V| 0.20
Qg (max.) (nC)| 61
Qgs (nC)| 14
Qgd (nC)| 29
Configuration| Single
FEATURES
- Dynamic dV/dt rating
- Repetitive avalanche rated
- P-channel
- Isolated central mounting hole
- 175 °C operating temperature
- Fast switching
- Ease of paralleling
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
Note
- This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-247AC package is preferred for commercial- industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mouting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications
ORDERING INFORMATION
Package| TO-247AC
Lead (Pb)-free| IRFP9140PbF
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER| SYMBOL| LIMIT| UNIT
Drain-source voltage| VDS| -100| V
Gate-source voltage| VGS| ± 20
Continuous drain current| VGS at – 10 V| TC = 25 °C| ID| -21|
A
TC = 100 °C| -15
Pulsed drain current a| IDM| -84
Linear derating factor| | 1.2| W/°C
Single pulse avalanche energy b| EAS| 960| mJ
Repetitive avalanche current a| IAR| -21| A
Repetitive avalanche energy a| EAR| 18| mJ
Maximum power dissipation| TC = 25 °C| PD| 180| W
Peak diode recovery dV/dt c| dV/dt| -5.5| V/ns
Operating junction and storage temperature range| TJ, Tstg| -5 to +175| °C
Soldering recommendations (peak temperature)| for 10 s| | 300 d
Mounting Torque| 6-32 or M3 screw| | 10| lbf · in
1.1| N · m
Notes
- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. VDD = – 25 V, starting TJ = 25 °C, L = 3.3 mH, Rg = 25 Ω, IAS = – 21 A (see fig. 12)
- c. ISD ≤ – 21 A, dI/dt ≤ 200 A/μs, VDD ≤ VDS, TJ ≤ 175 °C
- d. 1.6 mm from case
THERMAL RESISTANCE RATINGS
PARAMETER| SYMBOL| TYP.| MAX.| UNIT
Maximum junction-to-ambient| RthJA| –| 40|
°C/W
Case-to-sink, flat, greased surface| RthCS| 0.24| –
Maximum junction-to-case (drain)| RthJC| –| 0.83
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)|
---|---
PARAMETER| SYMBOL| TEST CONDITIONS| MIN.| TYP.|
MAX.| UNIT|
Static|
Drain-source breakdown voltage| VDS| VGS = 0 V, ID = -250 μA| -100| –| –| V|
VDS temperature coefficient| DVDS/TJ| Reference to 25 °C, ID = -1 mA| –|
-0.087| –| V/°C|
Gate-source threshold voltage| VGS(th)| VDS = VGS, ID = -250 μA| -2.0| –|
-4.0| V|
Gate-source leakage| IGSS| VGS = ± 20 V| –| –| ± 100| nA|
Zero gate voltage drain current| IDSS| VDS = -100 V, VGS = 0 V| –| –| -100|
μA|
VDS = -80 V, VGS = 0 V, TJ = 150 °C| –| –| -500|
Drain-source on-state resistance| RDS(on)| VGS = -10 V| ID = – 13 Ab| –| –|
0.20| W|
Forward transconductance| gfs| VDS = -50 V, ID = – 13 Ab| 6.2| –| –| S|
Dynamic|
Input capacitance| Ciss| VGS = 0 V, VDS = – 25 V,
f = 1.0 MHz, see fig. 5
| –| 1400| –|
pF
|
Output capacitance| Coss| –| 590| –|
Reverse transfer capacitance| Crss| –| 140| –|
Total gate charge| Qg|
VGS = -10 V
|
ID = – 19 A, VDS = -80 V,
see fig. 6 and 13 b
| –| –| 61|
nC
|
Gate-source charge| Qgs| –| –| 14|
Gate-drain charge| Qgd| –| –| 29|
Turn-on delay time| td(on)|
VDD = – 50 V, ID = -19 A,
Rg = 9.1 W, RD = 2.4 W, see fig. 10 b
| –| 16| –|
ns
|
Rise time| tr| –| 73| –|
Turn-off delay time| td(off)| –| 34| –|
Fall time| tf| –| 57| –|
Internal drain inductance| LD| Between lead,| |
D
S
| | –| 5.0| –| |
6 mm (0.25″) from package and center of die contact|
G
| nH|
Internal source inductance
|
LS
|
–
|
13
|
–
|
Drain-Source Body Diode Characteristics|
Continuous source-drain diode current| IS| MOSFET symbol| | |
D
S
| –| –| – 21| |
showing the integral reverse
p – n junction diode
|
G
| A|
Pulsed diode forward current a
|
ISM
|
–
|
–
|
– 84
|
Body diode voltage| VSD| TJ = 25 °C, IS = – 21 A, VGS = 0 V b| –| –| – 5.0| V|
Body diode reverse recovery time| trr| TJ = 25 °C, IF = – 19 A, dI/dt = 100
A/μs b| –| 130| 260| ns|
Body diode reverse recovery charge| Qrr| –| 0.35| 0.70| μC|
Forward turn-on time| ton| Intrinsic turn-on time is negligible (turn-on is
dominated by LS and LD)|
Notes
- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.
TYPICAL CHARACTERISTICS
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91238.
TO-247AC (High Voltage)
VERSION 1: FACILITY CODE = 9
| MILLIMETERS|
---|---|---
DIM.| MIN.| NOM.| MAX.| NOTES
A| 4.83| 5.02| 5.21|
A1| 2.29| 2.41| 2.55|
A2| 1.17| 1.27| 1.37|
b| 1.12| 1.20| 1.33|
b1| 1.12| 1.20| 1.28|
b2| 1.91| 2.00| 2.39| 6
b3| 1.91| 2.00| 2.34|
b4| 2.87| 3.00| 3.22| 6, 8
b5| 2.87| 3.00| 3.18|
c| 0.40| 0.50| 0.60| 6
c1| 0.40| 0.50| 0.56|
D| 20.40| 20.55| 20.70| 4
| MILLIMETERS|
---|---|---
DIM.| MIN.| NOM.| MAX.| NOTES
D1| 16.46| 16.76| 17.06| 5
D2| 0.56| 0.66| 0.76|
E| 15.50| 15.70| 15.87| 4
E1| 13.46| 14.02| 14.16| 5
E2| 4.52| 4.91| 5.49| 3
e| 5.46 BSC|
L| 14.90| 15.15| 15.40|
L1| 3.96| 4.06| 4.16| 6
Ø P| 3.56| 3.61| 3.65| 7
Ø P1| 7.19 ref.|
Q| 5.31| 5.50| 5.69|
S| 5.51 BSC|
Notes
- Package reference: JEDEC® TO247, variation AC
- All dimensions are in mm
- Slot required, notch may be rounded
- Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- Thermal pad contour optional with dimensions D1 and E1
- Lead finish uncontrolled in L1
- Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition
VERSION 2: FACILITY CODE = Y
| MILLIMETERS|
---|---|---
DIM.| MIN.| MAX.| NOTES
A| 4.58| 5.31|
A1| 2.21| 2.59|
A2| 1.17| 2.49|
b| 0.99| 1.40|
b1| 0.99| 1.35|
b2| 1.53| 2.39|
b3| 1.65| 2.37|
b4| 2.42| 3.43|
b5| 2.59| 3.38|
c| 0.38| 0.86|
c1| 0.38| 0.76|
D| 19.71| 20.82|
D1| 13.08| –|
| MILLIMETERS|
---|---|---
DIM.| MIN.| MAX.| NOTES
D2| 0.51| 1.30|
E| 15.29| 15.87|
E1| 13.72| –|
e| 5.46 BSC|
Ø k| 0.254|
L| 14.20| 16.25|
L1| 3.71| 4.29|
Ø P| 3.51| 3.66|
Ø P1| –| 7.39|
Q| 5.31| 5.69|
R| 4.52| 5.49|
S| 5.51 BSC|
| |
Notes
- Dimensioning and tolerancing per ASME Y14.5M-1994
- Contour of slot optional
- Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005″) per side. These dimensions are measured at the outermost extremes of the plastic body
- Thermal pad contour optional with dimensions D1 and E1
- Lead finish uncontrolled in L1
- Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154″)
- Outline conforms to JEDEC outline TO-247 with exception of dimension c
VERSION 3: FACILITY CODE = N
| MILLIMETERS| | | MILLIMETERS
---|---|---|---|---
DIM.| MIN.| MAX.| DIM.| MIN.| MAX.
A| 4.65| 5.31| D2| 0.51| 1.35
A1| 2.21| 2.59| E| 15.29| 15.87
A2| 1.17| 1.37| E1| 13.46| –
b| 0.99| 1.40| e| 5.46 BSC
b1| 0.99| 1.35| k| 0.254
b2| 1.65| 2.39| L| 14.20| 16.10
b3| 1.65| 2.34| L1| 3.71| 4.29
b4| 2.59| 3.43| N| 7.62 BSC
b5| 2.59| 3.38| P| 3.56| 3.66
c| 0.38| 0.89| P1| –| 7.39
c1| 0.38| 0.84| Q| 5.31| 5.69
D| 19.71| 20.70| R| 4.52| 5.49
D1| 13.08| –| S| 5.51 BSC
ECN: E22-0452-Rev. G, 31-Oct-2022 DWG: 5971
Notes
- Dimensioning and tolerancing per ASME Y14.5M-1994
- Contour of slot optional
- Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005″) per side. These dimensions are measured at the outermost extremes of the plastic body
- Thermal pad contour optional with dimensions D1 and E1
- Lead finish uncontrolled in L1
- Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154″)
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT
NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all
persons acting on its or their behalf (collectively, “Vishay”), disclaim any
and all liability for any errors, inaccuracies or incompleteness contained in
any datasheet or in any other disclosure relating to any product. Vishay makes
no warranty, representation or guarantee regarding the suitability of the
products for any particular purpose or the continuing production of any
product. To the maximum extent permitted by applicable law, Vishay disclaims
(i) any and all liability arising out of the application or use of any
product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties,
including warranties of fitness for particular purpose, non-infringement and
merchantability. Statements regarding the suitability of products for certain
types of applications are based on Vishay’s knowledge of typical requirements
that are often placed on Vishay products in generic applications. Such
statements are not binding statements about the suitability of products for a
particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification
is suitable for use in a particular application. Parameters provided in
datasheets and / or specifications may vary in different applications and
performance may vary over time. All operating parameters, including typical
parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify
Vishay’s terms and conditions of purchase, including but not limited to the
warranty expressed therein. Hyperlinks included in this datasheet may direct
users to third-party websites. These links are provided as a convenience and
for informational purposes only. Inclusion of these hyperlinks does not
constitute an endorsement or an approval by Vishay of any of the products,
services or opinions of the corporation, organization or individual associated
with the third-party website. Vishay disclaims any and all liability and bears
no responsibility for the accuracy, legality or content of the third-party
website or for that of subsequent links. Except as expressly indicated in
writing, Vishay products are not designed for use in medical, life-saving, or
life-sustaining applications or for any other application in which the failure
of the Vishay product could result in personal injury or death. Customers
using or selling Vishay products not expressly indicated for use in such
applications do so at their own risk. Please contact authorized Vishay
personnel to obtain written terms and conditions regarding products designed
for such applications. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document or
by any conduct of Vishay. Product names and markings noted herein may be
trademarks of their respective owners.
For technical questions, contact: THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Downloaded from Arrow.com.
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED
HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
References
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>