onsemi FDD10AN06A0 N Channel Powertrench Mosfet Owner’s Manual
- June 15, 2024
- onsemi
Table of Contents
- onsemi FDD10AN06A0 N Channel Powertrench Mosfet
- Product Information
- Product Usage Instructions
- FAQ
- Features
- Applications
- MOSFET MAXIMUM RATINGS (TC = 25°C, unless otherwise noted)
- PRODUCT OVERVIEW
- MARKING DIAGRAM
- THERMAL CHARACTERISTICS (TC = 25°C, unless otherwise noted)
- ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
- TYPICAL CHARACTERISTICS (TC = 25°C, unless otherwise noted)
- TEST CIRCUITS AND WAVEFORMS
- THERMAL RESISTANCE VS. MOUNTING PAD AREA
- PSPICE ELECTRICAL MODEL
- SABER ELECTRICAL MODEL
- SPICE ELECTRICAL MODEL
- SABER ELECTRICAL MODEL
- ORDERING INFORMATION
- PACKAGE DIMENSIONS
- TRADEMARKS
- ADDITIONAL INFORMATION
- Read User Manual Online (PDF format)
- Download This Manual (PDF format)
onsemi FDD10AN06A0 N Channel Powertrench Mosfet
Product Information
Specifications:
- VDSS (Drain to Source Voltage): 60 V
- VGS (Gate to Source Voltage): 50 A
- Power Dissipation: 10.5 mW
- Thermal Resistance Junction to Case: 1.11 °C/W
- Thermal Resistance Junction to Ambient: 100 °C/W
Product Usage Instructions
Features:
The product is an N-Channel MOSFET with a Drain to Source Voltage of 60V
and a Gate to Source Voltage of 50A. It has a power dissipation of 10.5mW.
Applications:
The product is suitable for various applications where N-Channel MOSFETs
are required for switching purposes.
Symbol and Parameter Ratings:
The key symbols and parameters include VDSS (Drain to Source Voltage), VGS
(Gate to Source Voltage), EAS (Single Pulse Avalanche Energy), PD (Power
Dissipation), and thermal resistance values.
Ordering Information:
The specific device code for ordering is FDD10AN06A0. Detailed ordering and
shipping information can be found on page 12 of the data sheet.
FAQ
-
What are the key electrical characteristics of the product?
The product features a Drain to Source Breakdown Voltage of 60V, Zero Gate Voltage Drain Current, Gate to Source Leakage Current, Gate to Source Threshold Voltage, Drain to Source On Resistance, Input/Output/Reverse Transfer Capacitance, Total/Gate/Gate to Source Gate Charge, Turn-On/Turn-Off Time, Source to Drain Diode Voltage, Reverse Recovery Time, and Reverse Recovered Charge. -
What are the thermal characteristics of the product?
The product has Thermal Resistance values for Junction to Case, Junction to Ambient, and Junction to Ambient with 1 in2 Copper Pad Area specified. The values are provided in the specifications section above.
Features
- RDS(on) = 9.4 mΩ (Typ.), VGS = 10 V, ID = 50 A
- Qg(tot) = 28 nC (Typ.), VGS = 10 V
- Low Miller Charge
- Low Qrr Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- This Device is Pb−Free, Halide Free and is RoHS Compliant
Applications
- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection Systems
- DC−DC Converters and Off−line UPS
- Distributed Power Architectures and VRMs
- Primary Switch for 12 V and 24 V Systems
MOSFET MAXIMUM RATINGS (TC = 25°C, unless otherwise noted)
Symbol | Parameter | Ratings | Unit |
---|---|---|---|
VDSS | Drain to Source Voltage | 60 | V |
VGS | Gate to Source Voltage | ±20 | V |
ID | Drain Current |
Continuous (TC < 115°C, VGS = 10 V) Continuous (Tamb = 25°C, VGS = 10 V,
R JA = 52°C/W)
Pulsed
|
50
11
Figure 4
| A
EAS| Single Pulse Avalanche Energy (Note 1)| 429| mJ
PD| Power Dissipation| 135| W
Derate above 25°C| 0.9| W/°C
TJ, TSTG| Operating and Storage Temperature| −55 to 175| °C
PRODUCT OVERVIEW
MARKING DIAGRAM
- & Z = Assembly Plant Code
- & 3 = 3−Digit Date Code
- & K = 2−Digits Lot Run Traceability Code
- FDD10AN06A0 = Specific Device Code
THERMAL CHARACTERISTICS (TC = 25°C, unless otherwise noted)
Symbol | Parameter | Ratings | Unit |
---|---|---|---|
R JC | Thermal Resistance Junction to Case, TO−252 | 1.11 | ° C/W |
R JA | Thermal Resistance Junction to Ambient, TO−252 | 100 | |
R JA | Thermal Resistance Junction to Ambient, TO−252, 1 in2 Copper Pad Area | ||
52 | ° C/W |
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
OFF CHARACTERISTICS
Symbol| Parameter| Test Condition| Min| Typ|
Max| Unit
---|---|---|---|---|---|---
BVDSS| Drain to Source Breakdown Voltage| ID = 250 µA, VGS = 0 V| 60| −| −| V
---|---|---|---|---|---|---
IDSS| Zero Gate Voltage Drain Current| VDS = 50 V, VGS = 0 V| −| −| 1| µA
VDS = 50 V, VGS = 0 V, TC = 150°C| −| −| 250
IGSS| Gate to Source Leakage Current| VGS = ±20 V| −| −| ±100| nA
ON CHARACTERISTICS
Symbol| Parameter| Test Condition| Min| Typ|
Max| Unit
---|---|---|---|---|---|---
VGS(TH)| Gate to Source Threshold Voltage| VGS = VDS, ID = 250 µA| 2| −| 4| V
---|---|---|---|---|---|---
RDS(on)| Drain to Source On Resistance| ID = 50 A, VGS = 10 V| −| 0.0094|
0.0105| Q
ID = 50 A, VGS = 10 V, TJ = 175°C| −| 0.020| 0.023
DYNAMIC CHARACTERISTICS
Symbol| Parameter| Test Condition| Min| Typ|
Max| Unit
---|---|---|---|---|---|---
CISS| Input Capacitance| VDS = 25 V, VGS = 0 V, f = 1 MHz| −| 1840| −| pF
---|---|---|---|---|---|---
COSS| Output Capacitance| −| 340| −| pF
CRSS| Reverse Transfer Capacitance| −| 110| −| pF
Qg(TOT)| Total Gate Charge at 10 V| VGS = 0 V to 10 V, VDD = 30 V, ID = 50 A,
Ig = 1.0 mA| −| 28| 37| nC
Qg(TH)| Threshold Gate Charge| VGS = 0 V to 2 V, VDD = 30 V, ID = 50 A, Ig =
1.0 mA| −| 3.5| 4.6| nC
Qgs| Gate to Source Gate Charge| VDD = 30 V, ID = 50 A, Ig = 1.0 mA| −| 9.8|
−| nC
Qgs2| Gate Charge Threshold to Plateau| −| 6.4| −| nC
Qgd| Gate to Drain “Miller” Charge| −| 7.8| −| nC
SWITCHING CHARACTERISTICS (VGS = 10 V)
Symbol| Parameter| Test Condition| Min| Typ|
Max| Unit
---|---|---|---|---|---|---
tON| Turn−On Time| VDD = 30 V, ID = 50 A VGS = 10 V, RGS = 10 Q| −| −| 131| ns
---|---|---|---|---|---|---
td(ON)| Turn−On Delay Time| −| 8| −| ns
tr| Rise Time| −| 79| −| ns
td(OFF)| Turn−Off Delay Time| −| 32| −| ns
tf| Fall Time| −| 32| −| ns
tOFF| Turn−Off Time| −| −| 97| ns
DRAIN−SOURCE DIODE CHARACTERISTICS
Symbol| Parameter| Test Condition| Min| Typ|
Max| Unit
---|---|---|---|---|---|---
VSD| Source to Drain Diode Voltage| ISD = 50 A| −| −| 1.25| V
---|---|---|---|---|---|---
ISD = 25 A| −| −| 1.0| V
trr| Reverse Recovery Time| ISD = 50 A, dISD/dt = 100 A/µs| −| −| 27| ns
QRR| Reverse Recovered Charge| ISD = 50 A, dISD/dt = 100 A/µs| −| −| 23| nC
TYPICAL CHARACTERISTICS (TC = 25°C, unless otherwise noted)
TEST CIRCUITS AND WAVEFORMS
THERMAL RESISTANCE VS. MOUNTING PAD AREA
-
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (°C), and thermal resistance RJA (°C/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
-
In using surface mount devices such as the TO−252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors:
- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- The use of external heat sinks.
- The use of thermal vias.
- Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. onsemi provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR−4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the onsemi device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.
-
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and Equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
PSPICE ELECTRICAL MODEL
- Ca 12 8 7e−10
- Cb 15 14 7e−10
- Cin 6 8 1.8e−9
- Dbody 7 5 DbodyMOD
- Dbreak 5 11 DbreakMOD
- Dplcap 10 5 DplcapMOD
- Ebreak 11 7 17 18 67.2
- Eds 14 8 5 8 1
- Egs 13 8 6 8 1
- Esg 6 10 6 8 1
- Evthres 6 21 19 8 1
- Evtemp 20 6 18 22 1
- It 8 17 1
- Lgate 1 9 3.2e−9
- Ldrain 2 5 1.0e−9
- Lsource 3 7 1.2e−9
- RLgate 1 9 32
- RLdrain 2 5 10
- RLsource 3 7 12
- Mmed 16 6 8 8 MmedMOD
- Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8
- MweakMOD Rbreak 17 18 RbreakMOD 1
- Rdrain 50 16 RdrainMOD 1.35e−3
- Rgate 9 20 3.6
- RSLC1 5 51 RSLCMOD 1e−6
- RSLC2 5 50 1e3
- Rsource 8 7 RsourceMOD 6e−3
- Rvthres 22 8 RvthresMOD 1
- Rvtemp 18 19 RvtempMOD 1
- S1a 6 12 13 8 S1AMOD
- S1b 13 12 13 8 S1BMOD
- S2a 6 15 14 13 S2AMOD
- S2b 13 15 14 13 S2BMOD
- Vbat 22 19 DC 1
- ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))(PWR(V(5,51)/(1e−6250),7))}
- .MODEL DbodyMOD D (IS=2E−11 N=1.06 RS=3.3e−3 TRS1=2.4e−3 TRS2=1.1e−6
- + CJO=1.25e−9 M=5.3e−1 TT=4.2e−8 XTI=3.9)
- .MODEL DbreakMOD D (RS=2.7e−1 TRS1=1e−3 TRS2=−8.9e−6)
- .MODEL DplcapMOD D (CJO=4.7e−10 IS=1e−30 N=10 M=0.44)
- .MODEL MmedMOD NMOS (VTO=3.5 KP=5.5 IS=1e−30 N=10 TOX=1 L=1u W=1u RG=3.6)
- .MODEL MstroMOD NMOS (VTO=4.25 KP=80 IS=1e−30 N=10 TOX=1 L=1u W=1u)
- .MODEL MweakMOD NMOS (VTO=2.92 KP=0.03 IS=1e−30 N=10 TOX=1 L=1u W=1u RG=36 RS=0.1)
- .MODEL RbreakMOD RES (TC1=9e−4 TC2=5e−7)
- .MODEL RdrainMOD RES (TC1=2.5e−2 TC2=7.8e−5)
- .MODEL RSLCMOD RES (TC1=1e−3 TC2=3.5e−5)
- .MODEL RsourceMOD RES (TC1=1e−3 TC2=1e−6)
- .MODEL RvthresMOD RES (TC1=−5.3e−3 TC2=−1.3e−5)
- .MODEL RvtempMOD RES (TC1=−2.6e−3 TC2=1.3e−6)
- .MODEL S1AMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−8 VOFF=−5)
- .MODEL S1BMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−5 VOFF=−8)
- .MODEL S2AMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−2 VOFF=−1.5)
- .MODEL S2BMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−1.5 VOFF=−2)
- .ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub−Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
SABER ELECTRICAL MODEL
- template FDD10AN06A0 n2,n1,n3
- electrical n2,n1,n3
- var i iscl
- dp..model dbodymod = (isl=2e−11,nl=1.06,rs=3.3e−3,trs1=2.4e−3,trs2=1.1e−6,cjo=1.25e−9,m=5.3e−1,tt=4.2e−8,xti=3.9)
- dp..model dbreakmod = (rs=2.7e−1,trs1=1e−3,trs2=−8.9e−6)
- dp..model dplcapmod = (cjo=4.7e−10,isl=10e−30,nl=10,m=0.44)
- m..model mmedmod = (type=_n,vto=3.5,kp=5.5,is=1e−30, tox=1)
- m..model mstrongmod = (type=_n,vto=4.25,kp=80,is=1e−30, tox=1)
- m..model mweakmod = (type=_n,vto=2.92,kp=0.03,is=1e−30, tox=1,rs=0.1) sw_vcsp..model s1amod =
- (ron=1e−5,roff=0.1,von=−8,voff=−5)
- sw_vcsp..model s1bmod = (ron=1e−5,roff=0.1,von=−5,voff=−8)
- sw_vcsp..model s2amod = (ron=1e−5,roff=0.1,von=−2,voff=−1.5)
- sw_vcsp..model s2bmod = (ron=1e−5,roff=0.1,von=−1.5,voff=−2)
- c.ca n12 n8 = 7e−10
- c.cb n15 n14 = 7e−10
- c.cin n6 n8 = 1.8e−9
- dp.dbody n7 n5 = model=dbodymod
- dp.dbreak n5 n11 = model=dbreakmod
- dp.dplcap n10 n5 = model=dplcapmod
- spe.ebreak n11 n7 n17 n18 = 67.2
- spe.eds n14 n8 n5 n8 = 1
- spe.egs n13 n8 n6 n8 = 1
- spe.esg n6 n10 n6 n8 = 1
- spe.evthres n6 n21 n19 n8 = 1
- spe.evtemp n20 n6 n18 n22 = 1
- i.it n8 n17 = 1
- l.lgate n1 n9 = 3.2e−9
- l.ldrain n2 n5 = 1.0e−9
- l.lsource n3 n7 = 1.2e−9
- res.rlgate n1 n9 = 32
- res.rldrain n2 n5 = 10
- res.rlsource n3 n7 = 12
- m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
- m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
- m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
- res.rbreak n17 n18 = 1, tc1=9e−4,tc2=5e−7
- res.rdrain n50 n16 = 1.35e−3, tc1=2.5e−2,tc2=7.8e−5
- res.rgate n9 n20 = 3.6
- res.rslc1 n5 n51 = 1e−6, tc1=1e−3,tc2=3.5e−5
- res.rslc2 n5 n50 = 1e3
- res.rsource n8 n7 = 6e−3, tc1=1e−3,tc2=1e−6
- res.rvthres n22 n8 = 1, tc1=−5.3e−3,tc2=−1.3e−5
- res.rvtemp n18 n19 = 1, tc1=−2.6e−3,tc2=1.3e−6
- sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
- sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
- sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
- sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
- v.vbat n22 n19 = dc=1
- equations {
- i (n51−>n50) +=iscl
- iscl: v(n51,n50) = ((v(n5,n51)/(1e−9+abs(v(n5,n51))))((abs(v(n5,n51)1e6/250))** 7))
SPICE ELECTRICAL MODEL
- REV 23 July 2002
- FDD10AN06A0T
- CTHERM1 TH 6 3.2e−3
- CTHERM2 6 5 3.3e−3
- CTHERM3 5 4 3.4e−3
- CTHERM4 4 3 3.5e−3
- CTHERM5 3 2 6.4e−3
- CTHERM6 2 TL 1.9e−2
- RTHERM1 TH 6 5.5e−4
- RTHERM2 6 5 5.0e−3
- RTHERM3 5 4 4.5e−2
- RTHERM4 4 3 1.5e−1
- RTHERM5 3 2 3.37e−1
- RTHERM6 2 TL 3.5e−1
SABER ELECTRICAL MODEL
- SABER thermal model FDD10AN06A0T
- template thermal_model th tl
- thermal_c th, tl
- {
- ctherm.ctherm1 th 6 =3.2e−3
- ctherm.ctherm2 6 5 =3.3e−3
- ctherm.ctherm3 5 4 =3.4e−3
- ctherm.ctherm4 4 3 =3.5e−3
- ctherm.ctherm5 3 2 =6.4e−3
- ctherm.ctherm6 2 tl =1.9e−2
- rtherm.rtherm1 th 6 =5.5e−4
- rtherm.rtherm2 6 5 =5.0e−3
- rtherm.rtherm3 5 4 =4.5e−2
- rtherm.rtherm4 4 3 =1.5e−1
- rtherm.rtherm5 3 2 =3.37e−1
- rtherm.rtherm6 2 tl =3.5e−1
- }
ORDERING INFORMATION
Device| Device Marking| Package| Reel Size| Tape
Width| Shipping †
---|---|---|---|---|---
FDD10AN06A0| FDD10AN06A0| DPAK3 (TO−252 3 LD)
(Pb−Free, Halide Free)
| 330 mm| 16 mm| 2500 / Tape & Reel
PACKAGE DIMENSIONS
TRADEMARKS
onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
ADDITIONAL INFORMATION
- TECHNICAL PUBLICATIONS:
- Technical Library: www.onsemi.com/design/resources/technical−documentation
- onsemi Website: www.onsemi.com
- ONLINE SUPPORT:
- www.onsemi.com/support
- For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>