Alpha E-Tec Hybrid Hybrid Heat Pump Package Instruction Manual

May 15, 2024
Alpha

Alpha E-Tec Hybrid Hybrid Heat Pump Package

Alpha-E-Tec-Hybrid-Hybrid-Heat-Pump-Package-image

Specifications

  • Model: E-Tec Hybrid
  • Type: Hybrid Heat Pump Package
  • Contact for Technical Help or Service: ALPHA HELPLINE Tel: 0344 871 8764
  • Website: www.alpha-innovation.co.uk
  • Address: Nepicar House, London Road, Wrotham Heath, Sevenoaks, Kent TN15 7RS
  • Part Number: 1.047201 rev. ST.006572/001 0623/D462

Product Usage Instructions

1. Introduction

The control unit is designed to manage the boiler and heat pump by optimizing the system efficiently. It includes a boiler mounted receiver and gateway unit with bus connection between the outdoor and indoor units. Additionally, a separate wireless controller with a built-in room thermostat and App connection for remote user control via a smartphone.

2. Safety Symbols

  • GENERIC HAZARD: Follow all indications to prevent hazard situations.
  • ELECTRICAL HAZARD: Strictly adhere to electrical safety instructions.
  • SHARP SURFACES: Beware of components that may cause cuts.
  • EARTH TERMINAL CONNECTION: Identify the earth terminal connection point.
  • READ AND UNDERSTAND THE INSTRUCTIONS: Familiarize yourself with the appliance’s instructions before use.
  • PERSONAL PROTECTIVE EQUIPMENT: Safety gloves and goggles are recommended.

3. Technical Data

3.1 E-TEC 33 HYBRID BOILER PERFORMANCE DATA

The boiler has a range of performance data including power output, efficiency, and operating parameters. Refer to the manual for detailed specifications.

3.2 BOILER COMBUSTION FEATURES

Detailed technical data on combustion features for both Methane (G20) and LPG (G31) fuels are provided. Ensure proper fuel type and settings for optimal performance.

Frequently Asked Questions

  • Q: Can I dispose of the appliance as municipal waste?
    • A: No, do not dispose of the appliance as municipal waste. Send it to appropriate collection centers for disposal.
  • Q: How do I connect the wireless controller for remote user control?
    • A: Follow the instructions provided in the manual to connect the wireless controller with the built-in room thermostat and App connection for smartphone control.

Installation and Commissioning Instructions
E-Tec Hybrid
Hybrid Heat Pump Package
For Technical help or for Service call … ALPHA HELPLINE Tel: 0344 871 8764
website: www.alpha-innovation.co.uk
Nepicar House, London Road, Wrotham Heath, Sevenoaks,
Kent TN15 7RS

Leave these instructions with the User

These instructions have been carefully prepared but we reserve the right to alter the specification at any time in the interest of product improvement. © Alpha Therm Limited 2023.

Part No. 1.047201 rev. ST.006572/001 0623/D462

INTRODUCTION

The Alpha E-Tec 33 Hybrid is a hybrid heat pump specifically designed to increase energy efficiency when replacing old appliances, even on traditional radiator systems. Thanks to its compact size, it represents the ideal solution to easily install a hybrid generator to replace an old gas boiler, with extremely easy installation and reduced installation time. Composed of a 4 kW single-phase air/water mono block outdoor unit (with R32 coolant) and an indoor condensing gas boiler connected hydraulically in series. A control unit is also supplied as standard, to manage both boiler and heat pump. The smart logic, integrated in the system’s electronics, is able to determine the most convenient energy source at that moment (heat pump or boiler) and therefore to choose the source to be activated. Operation in central heating takes place with the use of a heat pump and boiler, with the option of activating the two units at the same time. The complete ‘package’ consists of the following main components:
Outdoor unit with mono block heat pump, which mainly includes: Swing-type rotary compressor with liquid separator, management electronics, lamination valve, finned coil for exchange with external air (with single fan), external probe for sliding temperature operation, water/coolant gas heat exchanger, 3 bar water safety valve, water side filter (already mounted inside the system return), anti-vibration feet. The supply also includes a thermostatic antifreeze valve (which is only triggered in the absence of electricity, as the electronics include an antifreeze function with activation of the pump and of the boiler if required), isolating valves for flow and return with vacuum breaker valve. The cooling circuit is hermetically sealed (R32 coolant). Inertial buffer tank only required for systems with water content lower than 20 litres.
Wall-mounted indoor boiler unit which includes: · Total pre-mixing combustion system with steel multigas cylindrical burner, complete with ignition electrode and ionisation
control, double shutter pneumatic gas valve. · Gas/water primary heat exchanger with internal coil made of single-pipe Stainless steel, fanned for flue with electronically
variable speed. · Condensate disposal including trap and flexible drain hose. · Stainless steel water/water secondary heat exchanger for the production of domestic hot water. · Hydraulic unit consisting of a 3-way valve, a 7 m modulating pump, a 3 bar safety valve, a flow switch for detecting domestic
hot water withdrawal, an 8 litre expansion vessel with 1.0 bar pre-charge and pressure gauge. · System water flow/return and flue sensors. · Control panel including: microprocessor P.C.B. with 3 sensor continuous flame modulation (1 DHW and 2 C.H.) with P.I.D.
control, modulation range from 4.3 to 33 kW . · Electronic ignition with ionisation control, ignition delay device in central heating mode, anti-freeze protection system (standard
to -5 °C), pump anti-block device function, post-ventilation function, chimney sweep function and pump functioning mode selection. · Solar delay timing function for coupling with solar thermal systems, with the option of connecting a domestic hot water sensor · Screed heater function. · Self- diagnosis system. · IPX5D electrical insulation rating. · Sample points for combustion analysis, lower cover for connection group, gas and mains water isolation valves.
Control unit: To manage boiler and heat pump, optimising the system in the most efficient way. A boiler mounted receiver and gateway unit with bus connection via a cable between the outdoor and indoor units. Using a separate wireless controller with built in room thermostat with App connection for smart phone remote user control.

2 Alpha E-Tec Hybrid – Contents/Introduction

SAFETY SYMBOLS

GENERIC HAZARD Strictly follow all of the indications next to the symbol. Failure to follow the indications can generate hazard situations resulting in possible harm to the health of the operator and user in general. ELECTRICAL HAZARD Strictly follow all of the indications next to the symbol. The symbol indicates the appliance’s electrical components or, in this manual, identifies actions that can cause an electrical hazard.
SHARP SURFACES The symbol indicates the appliance’s components or parts that can cause cuts if touched. EARTH TERMINAL CONNECTION The symbol identifies the appliance’s earth terminal connection point.
READ AND UNDERSTAND THE INSTRUCTIONS Read and understand the appliance’s instructions before performing any operation, carefully following the indications provided.
INFORMATION Indicates useful tips or additional information.
The user must not dispose of the appliance at the end of its service life as municipal waste, but send it to appropriate collection centres.
PERSONAL PROTECTIVE EQUIPMENT SAFETY GLOVES
SAFETY GOGGLES
Alpha E-Tec Hybrid – Safety Symbols 3

TECHNICAL DATA

3.1 TECHNICAL PERFORMANCE DATA E-TEC 33 HYBRID BOILER

Domestic hot water maximum heating power Central heating maximum heat input DHW maximum useful heat output CH maximum useful heat output Minimum nominal heat input Minimum nominal heat output Efficiency at 100% Pn (80/60°C) Efficiency at 30% of the load (80/60°C) Efficiency at 100% Pn (50/30°C) Efficiency at 30% of the load (50/30°C) Efficiency at 100% Pn (40/30°C) Efficiency at 30% of the load (40/30°C) Room central heating seasonal efficiency ( s) Water heating energy efficiency ( wh) Central heating circuit Adjustable central heating temperature (min. / max) System max. working temperature System max. working pressure System expansion vessel nominal/(real) capacity System expansion vessel factory-set pressure Minimum design system flow rate Head with 1000 l/h flow rate Minimum system water content DHW circuit Hot water production useful heat output DHW adjustable temperature Domestic hot water circuit min. dynamic pressure Domestic hot water circuit / DHW Circuit max. pressure D.H.W. min. withdrawal Flow rate in continuous service (T 30°C) Gas supply Gas flow rate at METHANE burner (G20) Gas flow rate at LPG burner (G31) Electric power supply Nominal power absorption Installed electric power Power absorbed by pump max speed Power absorbed in stand-by Electric insulation rating Water content Empty condensation unit weight Effective efficiency at 100% output (Italian Lgs. D. 192/05 as amended)
4 Alpha E-Tec Hybrid – Technical Data

MIN – MAX MIN – MAX
IP

kW (kcal/h) kW (kcal/h) kW (kcal/h) kW (kcal/h) kW (kcal/h) kW (kcal/h) % % % % % % % %

28.8 (24.773) 24.6 (21.194) 28.3 (24.295) 24.1 (20.717) 4.5 (3.862) 4.3 (3.689) 97.8 102.3 106.1 108.3 108.2 108.3 93 87

°C °C bar litres bar L/h kPa (m c.a.) litres

min. 20 – 50 / max 85 90 3 8.0 / (5.8) 1.0 500 40.6 (4.1) 20

kW (kcal/h) °C bar bar litres/min litres/min

28.3 (24.295) 30 – 60 0.3 8 1.5 13.7

m3/h kg/h V/Hz A W W W
litres kg

0.48 – 2.61 (3.06 DHW) 0.35 – 1.91 (2.25 DHW) 230 – 50 0.60 80 41 2 X5D 2.2 33.6 >93+2·log Pn (Pn = 24.1 kW)

3.2 TECHNICAL PERFORMANCE DATA BOILER COMBUSTION FEATURES

Combustion efficiency 100% Pn (80/60°C) Combustion efficiency P min (80/60°C) Effective efficiency at 100% Pn (80/60°C) Effective efficiency P min (80/60°C) Effective efficiency at 100% Pn (50/30°C) Effective efficiency P min (50/30°C) Effective efficiency at 100% Pn (40/30°C) Effective efficiency P min (40/30°C) Chimney losses with burner on (100% Pn) (80/60°C) Chimney losses with burner on (P min) (80/60°C) Chimney losses with burner off Casing losses with burner on (100% Pn) (80/60°C) Casing losses with burner on (Pmin) (80/60°C) Casing losses with burner off Flue gas temperature Maximum Heat Input Flue gas temperature Minimum Heat Input Flue flow rate at Central Heating Maximum Heat Input Flue flow rate at Maximum Domestic Hot Water Heat Input Flue flow rate at Minimum Heat Input CO2 at the Maximum Central Heating Heat Input CO2 at Maximum Domestic Hot Water Heat Input CO2 at Minimum Heat Input CO at Maximum Heat Input CO at Minimum Heat Input NOx at the Maximum Heat Input NOx at Minimum Heat Input Weighted CO Weighted NOx NOx class Intake/exhaust available head (min-max flow rate)

% % % % % % % % % % % % % % °C °C kg/h kg/h kg/h % % % mg/kWh mg/kWh mg/kWh mg/kWh mg/kWh mg/kWh Pa

Methane (G20)

LPG (G31)

97.8 97.8 97.8 95.5 106.1 106.1 108.2 108.3 1.7 2.2 0.02 0.2 2.3 0.34 70 64 38 44
8 9.70 9.70 8.80 321
5 59 34 20 35 6

2 – 240

97.8 97.8 97.8 95.5 106.1 106.1 108.2 108.3 1.7 2.2 0.02 0.2 2.3 0.34 70 63 37 43
7 11.40 11.40 10.60 316
5 85 55 6

Gas flow rates refer to the NHV at the temperature of 15° C and pressure of 1013 mbar. Flue temperature values refer to an air inlet temperature of 15°C and flow/return temperature = 80/60°C.

Alpha E-Tec Hybrid – Technical Data 5

3.3 TECHNICAL PERFORMANCE DATA E-TEC EXTERNAL HEAT PUMP

Central heating circuit Nominal power in CH mode with water set at 35 °C / Air 7 °C Nominal power in CH mode with water set at 45 °C / Air 7 °C Nominal power in CH mode with water set at 55 °C / Air 7 °C Nominal power in CH mode with water set at 35 °C / Air 2 °C Nominal power in CH mode with water set at 35 °C / Air -7 °C Absorbed power in CH mode with water set at 35 °C / Air 7 °C Absorbed power in CH mode with water set at 45 °C / Air 7 °C Absorbed power in CH mode with water set at 55 °C / Air 7 °C Absorbed power in CH mode with water set at 35 °C / Air 2 °C Absorbed power in CH mode with water set at 35 °C / Air -7 °C CH mode nominal COP with water set at 35 °C / Air 7 °C CH mode nominal COP with water set at 45 °C / Air 7 °C CH mode nominal COP with water set at 55 °C / Air 7 °C CH mode nominal COP with water set at 35 °C / Air 2 °C CH mode nominal COP with water set at 35 °C / Air -7 °C CH flow temperature range Outdoor temp. limits for operation (DHW)
Heat pump general data Electric power supply Permitted voltage range Maximum absorbed power (outdoor condensing unit) Fuse required / MCB Degree of protection C.H. sound power level Type of refrigerant / (GWP) Refrigerant fluid load (R32) Weight Water content

kW kW kW kW kW kW kW kW kW kW
°C °C
V/Hz V W A IP dB(A)
kg kg l

3.98 3.80 3.32 2.97 3.53 0.87 1.15 1.33 0.79 1.31 4.55 3.30 2.50 3.78 2.70 25 ÷ 55 – 15 ÷ 25 (35)
230/50 198 ÷ 264 2600 16 X4D 59 R32 / 675 0.56 45 2.0

6 Alpha E-Tec Hybrid – Technical Data

GENERAL INFORMATION

4.1 ELECTRICAL SUPPLY
ATTENTION: The boiler supply cable must be connected to a 230 V ±10% / 50 Hz mains supply respecting L – N polarity and earth connection; , this must be connected to a fused 3 A double pole switch with class III overvoltage category (contact separation of at least 3 mm in both poles) or a fused 3 A 3-pin plug and unswitched shuttered socket outlet (both complying with BS 1363) in compliance with installation regulations. The boiler is supplied with a ‘Special X’ type electrical connection with a PVC H05VV-F 3 x 0.75 cable without a plug. If the power cable is damaged or replaced, it must be replaced with a cable supplied by Alpha or authorized After-Sale Technical Service. Replacement is recommended using a qualified company in order to prevent any risk. The outdoor heat pump supply cable (not supplied) must be suitable for outdoor installation and must have at least a flexible polychloroprene sheath (code IEC:60245 IEC 57 / CENELEC:H05RN-F). The appropriate cable section can be 2.5 – 4 mm2, to be checked depending on the specific installation conditions. The boiler and heat pump must be earthed. Wiring external to the boiler must be in accordance with the current IEE Wiring Regulations (BS 7671). If the boiler is locked out and an error code is shown on the display, the RESET button can be pressed to try and clear the fault. If the fault still occurs after pressing the RESET button, then contact an approved engineer or Alpha service support department.

Outdoor E-Tec heat pump

Nominal Values

Hz

V

50 220 – 240

Field of Tolerable Voltage

V

V

198

264

Maximum absorbed current (MAC) in normal operation
A
10.3

Supply fuse/MCB required for Control (100mA RCD)
A
16

Power supply 220-240V AC, 50Hz

Boiler power supply Max./Min.(V) ±10%

Connection cable 0,75 – 1.5 mm², 3 core

BUS Communication cable between outdoor heat pump and
Control panel
0.75 – 1.5mm², 2 core (shielded)

4.2 BOILER DIMENSIONS AND CONNECTIONS

440 220 F 220

252 135 F
25

Case top panel

687 748

FL

R

MW

DHW

G

8

11

36

30 65 70 95 95 70 45 275

120 268

W

C R FL

G DHW MW

F ……… Flue centreline C ……… Condensate drain (min. internal Ø = 13 mm) FL ……. System flow – 22mm R ……… System return – 22mm G……… Gas – 22mm MW ….. Mains inlet – 15mm DHW … DHW outlet – 15mm W …….. Wiring entry point
Fig. 4.1
Alpha E-Tec Hybrid – General Information 7

4.3 EXTERNAL HEAT PUMP DIMENSIONS AND CONNECTIONS

87

574

185

311

350

126

8

12

558 845

70 35 F
R

285

44

745

681

25
Fig. 4.2

F

R

MHT

RHT

R …. Return to heat pump = 28mm F …. Flow from heat pump = 28mm
The heat pump unit is supplied with Flow and Return isolating valves and antivibration mounts.
MHT….. Flow from heat pump RHT ….. Return to heat pump

4.3 GRUNDFOS UPM4 PUMP SETTINGS
The indoor boiler is equipped with a low power consumption pump with variable speed regulator, the pump also works for the heat pump, since the two generators are placed in series with each other. The pump speed is set using the parameters present in the Assistance Menu -> System Definition of the Control panel. For the hybrid heat pump to work properly, it is not allowed to drop below the minimum value indicated in Fig. 4.3. In domestic hot water mode, the pump always runs at full speed. The pump speed settings should not be adjusted.
NOTE: The boiler is supplied with the by-pass closed. For correct operation of the system, the boiler by-pass must be kept closed. It is essential for correct operation that a branch of the system always remains open; otherwise it will be required to install an external by-pass (especially in the case of zone valves or thermostatic valves on the radiators) the purpose is to allow the antifreeze function to be carried out (which occurs when the pump is restarted). For proper system operation, make sure that the minimum flow rate in operating conditions never drops below 500 l/h. An inline filter must be fitted in the return to the heat pump. Treating the system water allows you to prevent problems and maintain the function and efficiency of the boiler over time. Chemical treatment of the thermal system water, must be in compliance with the BS 7953. NOTE: To ensure correct operation of the heat pump a minimum water content in the system is required, which must be 20 litres for all kinds of systems. So attention must be paid to the systems spread over several zones, where the water content available to the unit changes continuously.

8 Alpha E-Tec Hybrid – General Information

4.4 AVAILABLE PUMP HEAD AND POWER CONSUMPTION Total head available to the system.
To obtain the available head for the system, subtract the head losses of the outdoor heat pump from the available head of the boiler.
Available head to boiler

8

80

Pump electrical consumption (W)

7

6

5

A

Speed 9

70
60
B
50

Head (m water)

4

40

3

30

2

20

1
0 0

Speed 5

200

400

600

800

Flow rate (l/h)
A = Head available to boiler B = Power absorbed by the pump (dotted area)

1000

1200

10
0 1400

Fig. 4.3

4.5 OUTDOOR HEAT PUMP HEAD LOSS
The resistance of the hydraulic circuit of the outdoor heat pump must be taken into account when calculating the flow rate and head values available to the system. The graph, Fig. 4.4, shows the resistance (pressure drops) of the outdoor heat pump circuit as the system flow rate varies. For the correct connection of the outdoor unit, refer to the E-Tec EHP instructions.
5.0

4.5

4.0

Head losses (m water)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

0

200

400

600

800

1000

1200

1400

1600

Flow rate (l/h)

Fig. 4.4

Alpha E-Tec Hybrid – General Information 9

4.6 SYSTEM HYDRAULIC DIAGRAM

NOTE: System minimum water content: To ensure correct operation of the heat pump it is necessary to maintain a minimum water content in the system equal to 20 litres, for any type of system, it is also necessary to have a loop that is always open on the system to allow the heat pump to perform the antifreeze function.
Maximum length of pipe between the heat pump flow and boiler return 10 m

1
3 5 G DHW MW

PWR

CLOUD BUS BLE

Alpha

RESET

G DHW MW R F

4

10

2

6

7

MHT RHT

All main pipework for flow and return between the heat pump, boiler and radiator distribution circuit must be a minimum of 22mm.

FRI 12:08

20 15°

°

.4

21.5

9

8

OD
1 ………. Alpha hybrid boiler (indoor unit) 2 ………. Alpha heat pump (external unit) 3 ………. Smartech boiler mounted receiver 4 ………. Domestic hot water inlet isolating valve 5 ………. Gas isolating valve 6 ………. Heat pump flow isolating valve with vent 7 ………. Heat pump return isolating valve with vent 8 ………. Heating system 9 ………. Smartech thermostat controller 10 …….. Magnetic system filter (not supplied)

G………. Gas supply DHW …. Domestic hot water outlet MW …… Mains water inlet C ………. Condensate drain F ………. System flow R ………. System return MHT….. Flow from heat pump RHT ….. Return to heat pump OD ……. Outdoor unit water drain

NOTE: This diagram is an example. It is also required to convey the condensate drain of the heat pump and boiler. Fig. 4.5

10 Alpha E-Tec Hybrid – General Information

4.7 ELECTRICAL CONNECTIONS
Note: This Appliance Must Be Earthed
The connection between the boiler and the external heat pump must be made as shown in Figs. 5.14 and 5.15. Specifically, a connection (2 BUS cables) must be provided between the Smartech boiler receiver unit and the external heat pump, observing the polarity. The receiver must also be connected (4 wires) to the terminal board of the boiler. The fitting and connection of the receiver (Fig.4.8) is necessary for the operation of the hybrid heat pump and for programming its settings. Note: The small resistor (R) supplied with the Smartech controller must be fitted across D+ and D- terminals on the heat pump with the BUS connection cable.

LN
230V AC 50 Hz
1

2
Br Bl

AB

561

L

N

Configurable output

Max 2A – 230 VAC

A23 …. Alpha external heat pump A30 …. Smartech boiler receiver B9 …… DHW inlet sensor (optional) R ……..120 Ohm resistor (supplied with
the Smartech controller) 1………Power supply 2………Configurable relay

2 44 41

X2 OT

DD+

X3 D-

PWR

CLOUD

BUS

BLE

X3 D+

R RESET

X2 OT X1 Bl X1 Br

A23

A30

Fig. 4.7

38 48 B9

Power pack Receiver

Fig. 4.8
Alpha E-Tec Hybrid – General Information 11

4.8 BOILER SCHEMATIC

16

17

15

18

14

19

13

20

12

21

11

22

10

23

9

24

8

7

25

6

26

5

27

4
3
2
1
Domestic hot water
outlet Gas Cold mains
water inlet Condensate discharge and expansion relief

28
29 30 31
32
Primary return connected to
E-Tec EHP flow Primary flow
to Heating system

1 Gas isolation valve 2 Cold mains isolation valve with
integrated filling valve 3 Gas valve 4 DHW flow switch 5 Gas injector 6 Flow regulator 7 DHW temperature sensor 8 Condensate trap 9 3 bar safety valve 10 Expansion vessel

11 Venturi positive pressure point (+) 12 Venturi 13 Primary flow temperature sensor 14 Ignition/sensing electrode 15 Air supply pipe 16 Flue temperature sensor 17 Flue test point (pressure point +) 18 Air test point (pressure point -) 19 Burner 20 Primary return sensor 21 Fan
Fig. 4.9

12 Alpha E-Tec Hybrid – General Information

22 Automatic air vent 23 Boiler pump 24 Primary pressure switch 25 DHW heat exchanger 26 Diverter valve 27 By-pass 28 Drain point 29 Safety valve indicator 30 Filling loop 31 Heating return isolation valve
with integrated filling valve 32 Heating flow isolation valve

4.9 HEAT PUMP SCHEMATIC
e
R1T
R2T
d
M1F

Y1E
d

(*) Shut off valves
i
h
(
)
i

(**) Shut off valves

l

i

h

(*)

l

i

Y1S

c
R3T S1PH

f M1C

d b1 c c b2

(*)

(***)

(**)

(****)

k

j

R3T t>

Shut off valves R4T

m t>

i

R

e

h

B1PR

g

()() OR ()(****)

R1T

t>

(*) OR

(**) OR

F

(***) OR

(****)

R …………..Return to heat pump F …………..Flow from heat pump b1………….Stop valve (cooling liquid) b2………….Stop valve with service opening (coolant gas) c ……………Silencer d……………Silencer with filter e……………Heat exchanger f…………….Storage tank g……………Safety valve h……………Cut-off valve i…………….Air purge j …………….Cap k……………Antifreeze protection valve l…………….Vacuum switch m…………..Filter B1PR …….Coolant pressure sensor

Shut-off valve… Standard supplied shut-off valves M1C ………Compressor motor M1F ………Fan motor R1T……….External probe R1T (t>) …Water outlet probe R2T……….Evaporator probe R3T……….Compressor outlet probe R3T (t>) …Liquid phase probe R4T (t>) …Water inlet probe S1PH …….High pressure switch Y1E……….Electronic expansion valve Y1S……….Four way solenoid
……..Screw connection ……..Flared connection ……..Quick release connector

Fig. 4.10

Alpha E-Tec Hybrid – General Information 13

4.10 BOILER MAIN COMPONENTS

AF

1

15

2 16

3
17 4
18 5
19

6

20

21

7

22

23 8

24

9 25

10

26

11 27
12

13

28

14

1 Expansion vessel 2 Burner 3 Viewing window 4 Ignition/sensing electrodes 5 Air supply pipe 6 Primary flow temperature sensor 7 Fan 8 Condensate trap 9 DHW flow switch 10 Gas injector 11 Gas valve 12 DHW heat exchanger 13 Boiler drain point 14 DHW temperature sensor

15 Test points (air A, flue F) 16 Flue temperature sensor 17 Four fixing nuts for item 18 18 Combustion chamber front assembly 19 Primary heat exchanger 20 Venturi 21 Primary return temperature sensor 22 Primary pressure switch 23 Automatic air vent 24 Boiler pump 25 3 bar safety valve 26 By-pass 27 Diverter valve 28 Safety valve operation indicator

Fig. 4.11

14 Alpha E-Tec Hybrid – General Information

INSTALLATION OF HEAT PUMP

5.1 MINIMUM INSTALLTION CLEARANCES

With two sides of the unit facing a side and rear wall

With two sides of the unit facing a side and front wall

With three sides of the unit facing a wall

b

b

b

250

250 a

250

a

250

a

250

350

350

250

b

b

a

a

350 >100

With the back side of the unit facing a wall

With the front side of the unit facing a wall
Fig. 5.1

(mm)
a – Air outlet b – Air inlet

The place of installation of the heat pump is very important and must be established by the system designer or by a specifically qualified person, and must take into account the technical requirements, standards and regulations in force. The heat pump unit must only be installed outside the building. The boiler unit must only be installed inside the building.
It is recommended to avoid: Positioning near windows. Obstacles or barriers that cause recirculation of exhaust air. Places with aggressive atmospheres. Limited spaces or places where sound levels from the unit can be enhanced through reverberations or resonance. Positioning in corners where there is an accumulation of dust, leaves and anything else that can reduce the efficiency of the heat pump. Prevent exhaust air from the unit from coming into the rooms through doors or windows.
The heat pump must: Be placed on a level surface that is able to withstand its weight. Be placed on a slab that is hard enough and which does not transfer any vibrations to the underlying or adjacent rooms. In any case, provide a space of at least 100 mm under the unit (to avoid operating problems in the event of heavy snow). Where there is a risk of snow build up or leaves increase the clearance. Use the vibration-dampening supports supplied with the unit. The effects of the wind can be minimised by installing the unit with the intake side facing a wall. The unit must not be installed with the intake side against the prevailing wind. The effects of the wind can be further minimised by installed a deflector plate facing the unit air flow side (not supplied). Be at least 1m distance from any part of the outdoor unit and property boundary.

Alpha E-Tec Hybrid – Installation of Heat Pump 15

5.2 POSITIONING THE HEAT PUMP
NOTE: The clearances shown in Fig. 5.1 must be left free to allow air to circulate and to ensure accessibility for repairs or maintenance on every side of the heat pump. In fact, it must be possible to disassemble all the components under the utmost safety conditions (both for objects and for people).
If the heat pump is to be installed in regions subject to heavy snow: It will be necessary to raise the unit by at least 100 mm above the maximum expected snowfall or, alternatively, use wall-support brackets, see Fig. 5.5 (optional) to protect the unit from direct snowfall and take care that the unit is NEVER buried under snow. The unit must be installed in a position protected from snow falling from above.
If this is not possible, you must at least prevent the snow from clogging the air/coolant exchanger (even by constructing a small protective roof for the heat pump, if necessary. See Fig. 5.3).
If blowing lateral snowfalls are possible, make sure that the heat exchanger coil CANNOT be covered by snow.

100

311 (mm)

15 0

a

574 <150
Fig. 5.2

a
c
b d c
a – Snow cover or shelter b – Pedestal c – Prevailing wind direction d – Air outlet
Fig. 5.3

a

311

574

100

(mm)

<100

(mm)

Fig. 5.4
16 Alpha E-Tec Hybrid – Installation of Heat Pump

300
a – Anti-vibration rubber Fig. 5.5

5.3 CONDENSATE DRAINAGE
If the condensate produced is drained through the drain pipe, connect the drain fitting (c in Fig. 5.6) supplied as standard to the drain pipe (d in Fig. 5.6) (not supplied) with an internal diameter of 16 mm. If the installation is in a very cold area or where heavy snow is likely and there is the possibility that the condensate might freeze, an optional trace heating kit for the outdoor unit is available which gives anti-freeze protection on the outdoor unit up to -15 °C. NOTE: If the condensate water produced by the unit is not properly drained, the performance of the entire system will suffer a negative impact and the system itself could be damaged.
b

a
Fig. 5.6

c
d
a – Drain hole b – Lower frame c – Drain fitting (supplied as standard) d – Flexible hose (not supplied)

5.4 THERMOSTATIC ANTIFREEZE VALVE
The E-Tec Hybrid is equipped with a system that protects it against freezing thanks to the periodic start-up of the pump and, if necessary, activation of the boiler unit.
If the outdoor unit is installed in areas where the temperature might fall below 0°C, it is recommended to provide special antifreeze systems in order to guarantee the units integrity, especially the water-gas heat exchanger, when there is a power cut.
For example, insert an appropriate quality, non-hazardous antifreeze liquid into the heating system. In this case, the instructions of the manufacturer of this liquid must be followed scrupulously regarding the percentage necessary with respect to the minimum temperature at which the system must be kept.
An aqueous solution must be made with potential pollution class of water 2 (EN 1717:2002).
NOTE: In cases where you do NOT wish to introduce antifreeze glycol into the system, the outdoor unit is equipped with a thermostatic antifreeze valve (supplied as standard, but to be installed as shown in Fig. 5.7), which intervenes when the water temperature detected inside the heat pump drops below 3 to 4°C, allowing the water inside the machine to be drained. The water drain is directed towards the condensate collection tank located in the lower part of the heat pump.
ATTENTION: Using the thermostatic antifreeze valve is an alternative to the solution of introducing antifreeze glycol into the circuit.

Refer to Fig. 5.7 and remove the covers to gain access to fit the freeze protection valve and vacuum breaker. 1 Remove the fixing screws and remove the top cover. 2 Remove the fixing screws and remove the front cover. 3 Remove the fixing screws and remove the rear cover.

2 2×

2× 1

3

a – Connection piece for b1 b1- Freeze protection valve (for water drainage) b2- Vacuum breaker

(a+b1) (b2) Fig. 5.7
Alpha E-Tec Hybrid – Installation of Heat Pump 17

1 Remove the clip.

Fig. 5.8

2 Remove and discard the stop with sealing washer.

3 Attach the freeze protection valve (b1) to the connection piece (a), using thread sealant.
4 Attach the connection piece to the heat pump unit.

a

1

2

b1

Fig. 5.9 Fig. 5.10
Fig. 5.11

5 Replace the clip.

Fig. 5.12

6 Replace the rear, front and top covers.

NOTE: In addition to the thermostatic antifreeze valve, a vacuum breaker valve is also supplied, which must be installed on the heat pump delivery valve (flow from the heat pump, F in Fig. 5.2) by removing the cap present in the valve and replacing it with the vacuum breaker as shown in Fig. 5.13.

1

2

3

b2

Fig. 5.13

18 Alpha E-Tec Hybrid – Installation of Heat Pump

5.5 CONNECT THE HEAT PUMP WIRING

a

NL X2M 3 2 1

0Vbus

GND 0+

P2 P1

Q1D1 ….Isolator switch Fig. 5.14

Fuse 20A
Q1DI
ELN 220-240V ac 50Hz 16A MCB

D+ D-32

X5M

0Vbus

GND 0+

P2 P1

X2M

Connect the resistor supplied with the Smartech controller across D+ and D-
Fig. 5.15

Refer to Sections 4.1and 4.7 for further wiring details.
1. Connect the power supply cable (shown in Fig. 5.14) to the heat pump terminal block X2M and secure in position with the 4 cable ties.
2. Connect the Smartech boiler receiver unit (a shown in Fig. 5.15) to the heat pump (terminal block X5M terminals 2 and 3) and secure in position with the cable tie.

The outdoor unit power cable (not standard supplied) must be suitable for outdoor installation and must have at least a flexible polychloroprene sheath (code IEC:60245 IEC 57 / CENELEC:H05RN-F). Indicatively, the appropriate cable section can be 2.5 x 4 mm2, to be checked depending on the specific installation conditions.

Outdoor Unit
E-Tec external heat pump

Nominal Values

Field of Tolerable Voltage

Hz

V

V

V

50 220-240 198

264

Maximum absorbed current (MAC) in normal operation A
10.3

Supply fuse/MCB required (a) 100mA
RCD A
16

Power supply cable
2.5 mm², 3 core

For the connection between outdoor and indoor units usese H07RN-F or H05RN-F class cables to power the indoor unit.

Indoor gas boiler power supply

Power supply

Max./Min.(V)

Single phase, 220-240V, 50Hz

±10%

Connection cable 1.5 mm², 3 core

BUS Communication cable between outdoor unit and Control
panel
0.75 mm², 2 core

Alpha E-Tec Hybrid – Installation of Heat Pump 19

E-TEC HYBRID OPERATING PRINCIPALS

The E-Tech Hybrid control logic establishes various operating situations described below:
CENTRAL HEATING MODE When operating in winter heating mode the operating logic between the boiler and heat pump can be selected between 2 options: ·Withfixedexternalswitchingtemperature(“MANUAL”mode). · Withvariableexternalswitchingtemperatureaccordingtotheelectricityandgascosts(“AUTO”mode).
OPERATION IN ROOM HEATING MODE (MANUAL MODE): Following a request in the room heating phase, if an external switching temperature between boiler and “manual” heat pump is set in the Control panel menu, below this temperature (example +5 °C) only the boiler is activated, above this temperature the heat pump always starts and if the set delivery time is not reached in the waiting time (which can be set in the specific parameter menu), the boiler is also activated, in series and simultaneously.
OPERATION IN ROOM HEATING MODE (AUTOMATIC MODE): With automatic operation, the specific menu includes the costs of electricity and gas through which the electronics calculate a convenience COP; based on the detected external temperature and the calculated flow set, the boiler (COP lower than the convenience COP) or the heat pump (COP greater than or equal to the convenience COP) are activated. Also in the latter case, if in the waiting time (which can be set in the specific parameter menu) you do not reach the set delivery set, the boiler is also activated, in series and at the same time. Simultaneous operation significantly increases the number of hours in which the heat pump is active in the heating period: for most of the time the heating request is satisfied by the heat pump alone or by the hybrid operating mode. NOTE: Depending on the outdoor temperature, for a flow temperature higher than 55 °C, the boiler is activated directly.

SCeHt RSisect 85 °C

55 °C

ExFculunsziivoenoapmeernatoion of tehseclbuosilveordineldl’oor unità a counnditensazione

FOuunounzptiditeoàornaeoastrimtoeurnennniatto STe hdeopinodiol toermupnoitdi raagantglerasciaeimutohmtcanieptcsvpgihtelvaoe’arezausralditntaottiaosuiantttnrefaieàtfemeptnitirinhpasomttreennhetersoereasenitttuara

FOuunnouzpititdeoàorneaoastrmtieourennnniatto SeThdoepinodilotoermupnoitdi alastotivsatazriotsneifnthone ssei t raagngterciiauemhmcaneptcpgihlevoe’ureasladtntatiaouiattteanrfàtmeeptiirnipasmtrtenehtreeraoenttuara

25 °C -25 °C

Te1

Te2

ETxetmerpnal 25 °C estteemrnpa

In”automatic”modevaluesTe1andTe2aredeterminedbythesystemlogic (by setting the “manual” mode, the value “Te2” corresponds to the value of “Te1” + 5 °C)

Fig. 6.1

20 Alpha E-Tec Hybrid – Operating Principals

SMARTECH CONTROL SYSTEM SETTINGS

1

FRI 12:08

20 5
6 15°

°2 3
.4

21.5

4

7

8

9

Fig. 7.1
The Alpha E-Tec Hybrid is supplied with the Smartech WiFi control for full remote set-up and control of the Hybrid system. For the initial set-up and user control please refer to the documentation supplied with the Smartech device. The advance settings in this document are for the commissioning engineer only and should not be altered once the system has been set up by the engineer.

7.1 MAIN SCREEN
The external body of the thermostat is either a button or adjustment knob. Navigation operations.
Rotate
Press
Press for three seconds
Wait five seconds It is possible to set the temperature both locally (from the thermostat) and remotely from the App.

Item

Main screen display

1

Text message (for example: date, connection status, error)

° Temperature degree symbol

2

Heating request

DHW request 3 Detected room temperature 4 Set room temperature 5 Weather (if connected to internet) 6 Outdoor temperature (if connected to internet)
STAND-BY operating mode

7

SUMMER operating mode

WINTER operating mode

Battery level 100%

Battery level 75%

8

Battery level 50%

Battery level 25%

Battery flat

Automatic mode with programming

9

Temporary manual mode (until next time slot) – semi automatic

Manual mode

Alpha E-Tec Hybrid – Smartech Control System Settings 21

7.2 OPERATING MODE
Mode: To define the operating mode of the boiler refer to the boiler instructions.

FRI 12:08

20 15°

°

.4

21.5

<
WINTER SUMMER
OFF

7.3 DATE AND TIME SETTING
Date: You may set the date and time. If A is displayed, the time and data are set automatically from Internet. NOTE: Check that the date and time are entered correctly to guarantee proper operation of the calendars.

FRI 12:08

20 15°

°

.4

21.5

< 09 : 57 01 – 01 – 2017
A

FRI 12:08 MODE

FRI 12:08

20 15°

°

.4

21.5

<
WINTER SUMMER
OFF

<
WINTER SUMMER
OFF

FRI 12:08 SETTINGS

< 09 : 57 01 – 01 – 2017
A

FRI 12:08 DATE

< 11 : 43 23 – 07 – 2020
A

BACK

<

09 : 57

01 – 01 – 2017 A

22 Alpha E-Tec Hybrid – Smartech Control System Settings

If the Smartech is not connected to the Internet, you must enter the M mode, to manually set the current time and date.

FRI 12:08

20 15°

°

.4

21.5

FRI 12:08 SETTINGS FRI 12:08
DATE

BACK

<

09 : 57

01 – 01 – 2017 A

< 09 : 57 01 – 01 – 2017
A
< 09 : 57 01 – 01 – 2017
A
< 09 : 57 01 – 01 – 2017
M
< 09 : 57 01 – 01 – 2017
M

< 09 : 57 01 – 01 – 2017
M
< 09 : 57 01 – 01 – 2017
M

<
11 : 57 01 – 01 – 2017
M
Perform the same procedure carried out for the hours, also for minutes, day, month and current year.
<
11 : 43 23 – 07 – 2020
M

< 11 : 57 01 – 01 – 2017
M

BACK

<

11 : 43

23 – 07 – 2020 M

< 11 : 57 01 – 01 – 2017
M

Alpha E-Tec Hybrid – Smartech Control System Settings 23

7.4 SETTING UP THE SYSTEM FLOW AND DHW TEMPERATURES
Select the ‘THERMOSTAT’ screen to set up ‘Maximum system delivery temperature’ and ‘DHW temperature’.

FRI 12:08
20 15° .4 21.5

<
SET 42 42
SET 54 43

<
SET 44 42
SET 54 43

FRI 12:08 SETTINGS FRI 12:08 THERMOSTAT

<
SET 42 42
SET 54 43
<
SET 44 42
SET 54 43

Perform the same procedure described for the ‘DHW temperature’.
1<
SET 42 42 2
SET 54 43 3
4 1 – DHW temperature (settable) 2 – Read DHW temperature display 3 – Read system flow temperature display 4 – Maximum system flow temperature (settable)

<
SET 42 42
SET 54 43

<
SET 44 42
SET 54 43

24 Alpha E-Tec Hybrid – Smartech Control System Settings

7.5 CLIMATIC CURVE SETTING
Select the ‘CURVE’ screen to enable/disable (disabled by default) climatic offsetting with external temperature and to set up the relevant operation parameters. The offset curve establishes how the system flow temperature TM is corrected according to the external temperature TE. NOTE: The external temperature value TE is detected by the external units probe.

FRI 12:08

20 15°

°

.4

21.5

FRI 12:08 SETTINGS FRI 12:08
CURVE

OFF

<

TM MAX
40
TM MIN
20

03
OFFSET

TE MIN
-05

TE MAX
025

OFF

<

TM MAX
40
TM MIN
20

03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
40
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
45
TM MIN
25

<
02
OFFSET

TE MIN
-03

TE MAX
030

ON
TM MAX
40
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
40
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
40
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
45
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
45
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

ON
TM MAX
45
TM MIN
20

<
03
OFFSET

TE MIN
-05

TE MAX
025

TM max: Max. flow temperature

TM min: Min. flow temperature

TE max: Max. external temperature

TE min: Min. external temperature

Offset: System flow temperature increase/decrease calculated by the system

OFF:

Disables operation with the external probe

ON:

Enables operation with the

external probe

RECOMMENDED CURVE SETTING VALUES Under floor heating systems: TMmin = 25°C TMmax = 40°C Fan coil heat emitters: TMmin = 35°C TMmax = 50°C Radiator system (existing radiators): TMmin = 40°C TMmax = 60°C Replacement radiator systems (correctley designed): TMmin = 35°C TMmax = 55°C The outside temperature settings: TEmin = 0°C TEmax = 20°C

Perform the same procedure described for the previous value, also for the other numerical values on the screen.

Alpha E-Tec Hybrid – Smartech Control System Settings 25

7.6 SET PROGRAM
Set: Allows you to program the various days of the week, associating them to one of the stored calendars.

FRI 12:08

20 15°

°

.4

21.5

SUN MON TUE WED THU FRI SAT

<
C1 C1 C2 C1 C1 C1

SUN MON TUE WED THU FRI SAT

<
C3 C2 C1 C4 C3 C2 C2

FRI 12:08 PROGRAM

SUN MON TUE WED THU FRI SAT

<
C3 C1 C2 C1 C1 C1

FRI 12:08 SET

SUN MON TUE WED THU FRI SAT

<
C3 C1 C2 C1 C1 C1

SUN MON TUE WED THU FRI SAT

<
C1 C1 C2 C1 C1 C1

SUN MON TUE WED THU FRI SAT

<
C3 C2 C1 C4 C1 C1

Perform the same procedure described for the previous value, also for the other values on the screen.

26 Alpha E-Tec Hybrid – Smartech Control System Settings

Calendar ‘Copy’ and ‘Paste’ function
It is also possible to manually change the data of the various calendars, to copy the calendar already set (for example: Cal2) and to paste it onto another calendar (for example: Cal3).

FRI 12:08

20 15°

°

.4

21.5

COPY

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

CAL3

<

TIME T°
06:00 – 07:30 22.5° 07:30 – 17:30 21.5° 17:30 – 21:00 23.5° 21:00 – 24:00 20.5°

CAL3

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

FRI 12:08 PROGRAM

COPY

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

CAL3

<

TIME T°
06:00 – 07:30 22.5° 07:30 – 17:30 21.5° 17:30 – 21:00 23.5° 21:00 – 24:00 20.5°

FRI 12:08 CAL2

CAL2

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

PASTE

<

TIME T°
06:00 – 07:30 22.5° 07:30 – 17:30 21.5° 17:30 – 21:00 23.5° 21:00 – 24:00 20.5°

CAL2

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

CAL2

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

PASTE

<

TIME T°
06:30 – 07:30 22.5° 07:30 – 16:30 21.5° 16:30 – 21:00 23.5° 21:00 – 24:00 20.5°

Alpha E-Tec Hybrid – Smartech Control System Settings 27

7.7 SET ECO PROGRAM
Set Eco: Allows you to set the room temperature outside of the programmed time slots of the calendar.

FRI 12:08

20 15°

°

.4

21.5

FRI 12:08 22.5
SET ECO

7.8 PROGRAM ON
Program On: Allows you to follow the hourly programming set by the user.

FRI 12:08

20 15°

°

.4

21.5

FRI 12:08 PROGRAM

FRI 12:08 22.5
SET ECO

FRI 12:08 20.5
SET ECO

It is recommended to set the ECO temperature at 15°C to maintain efficiency.
Lower ECO settings will cause the Hybrid boiler to be less efficient working against the building thermal mass and building heat losses.

FRI 12:08 20.5
SET ECO

FRI 12:08 PROGRAM FRI 12:08 PROGRAM ON

FRI 12:08

20 15°

°

.4

21.5

28 Alpha E-Tec Hybrid – Smartech Control System Settings

7.9 PROGRAM OFF
Program Off: Enables manual mode, keeping the room temperature set by the user.

FRI 12:08

20 15°

°

.4

21.5

FRI 12:08 PROGRAM FRI 12:08 PROGRAM OFF

FRI 12:08

20 15°

°

.4

21.5

Alpha E-Tec Hybrid – Smartech Control System Settings 29

7.10 ADVANCED SETTINGS MENU
Enter the hidden menu of the ‘DIAGNOSTIC’ screen to view and set up the systems advanced settings. NOTE: To prevent malfunction due to any incorrect settings, access to this menu is solely restricted to an authorised Alpha technical support centre.

FRI 12:08
20 15° .4 21.5
FRI 12:08

MTA BP

ON <
1.0

TI

300

FREEZE 04.5

DIFF ON -0.1

DIFF OFF 0.1

OFFSET 0.0

1-5

A — B — C — <
D — E — F –G — H — I –L — M — N –O — P — Q –R — S — T –U — V — Z —
5-5

SETTINGS FRI 12:08

INT T SWITCH P F1 P F2 P F3 P GAS G TYPE

A<
06 0.34 0.34 0.34 0.11 9.60
2-5

DIAGNOSTIC FRI 12:08 DIAGNOSTIC FRI 12:08

EN T INT EN T DHW T INT T INT DHW IST DHW T BAND PUMP

ON <
ON 020 005 02 03 OFF
3-5

GLYCOL DELTAT

OFF <
005

4-5
DIAGNOSTIC OK
30 Alpha E-Tec Hybrid – Smartech Control System Settings

7.11 LIST OF ADVANCED SETTINGS

Advanced settings screen 1 – 5

Menu Parameter

Description

MTA
BP TI Freeze Diff ON Diff OFF OFFSET

Room Probe Temperature Modulation If enabled (On): It allows the Smartech to modulate the system flow temperature according to the difference between the desired room temperature and the detected one If disabled (Off): The system flow temperature will be kept constant until the desired room temperature is reached Note: If the climatic offset function is enabled the maximum system flow temperature will be calculated based on the external ambient temperature according to the offset curve set. See Section 7.5
Proportional Band The temperature band for set point approach modulation
Time Interval Check period for Proportional Band calculation to achieve set point
Room Anti-freeze Function Allows to set the room temperature for activation of the antifreeze function
Thermal differential value to be subtracted from the room set point which determines the start of the heating request
Descrption: Thermal differential value to be added to the room set point which determines the end of the heating request
Room temperature reading adjustment Value to be added or subtracted to the room temperature reading

Range
On/Off
0 – 9.9°C 60 – 990 sec 0 – 10.0°C -0.1 – 1.5°C 0.0 – 1.5°C -3.0 – 3.0°C

Default
On
2.0°C 300 sec 4.5°C -0.1°C 0.1°C 0.0°C

Advanced settings screen 2 – 5

Menu Parameter

Description

Range

INT

Integration Mode

Establishes the integration mode of the heat pump with the

boiler. It is possible to choose Automatic or Manual

Auto – Man

T SWITCH

T Switch (manual activation temperature) Establishes the outdoor temperature under which heating integration is enabled

-10 – 30°C

P F1

F1 Electricity Price Allows the peak price of electricity to be entered in £/kWh for time slot 1

0 – 2.50 £/kWh

P F2

F2 Electricity Price Allows the intermediate price of electricity to be entered in £/kWh for time slot 2

0 – 2.50 £/kWh

P F3

F3 Electricity Price Allows the off peak price of electricity to be entered in £/kWh for time slot 3

0 – 2.50 £/kWh

P GAS

Gas Price Allows the price gasd to be entered in £/kWh

0.01 – 2.50 £/kWh

G TYPE

This parameter must be set to 9.6

0.00 – 9.99

Default Auto 0 0.34 0.34 0.34 1.05 9.6

Alpha E-Tec Hybrid – Smartech Control System Settings 31

Advanced settings screen 3 – 5

Menu Parameter

Description

EN T INT
EN T DHW T INT
T INT DHW IST DHW
BAND
PUMP

Enable Heating Integration Enables the operation of the boiler in heating
not used
Heating Integration Wait Time Heat pump running time before integration check
not used
not used
Integration Band Temperature band to determine if integration is required
Pump Down Function for gas removal on water/gas heat exchanger

Range On/Off
10 – 240 mins
0 – 15 °C
On/Off

Default On
20
3
Off

Advanced settings screen 4 – 5

Menu Parameter

Description

GLYCOL DELTAT

Indicate the presence of anti-freeze fluid in the system
Heat Pump Operating Delta T Temperature delta to be maintained with heat pump operation

Range On/Off 5 – 10

Default Off 5

Advanced settings screen 5 – 5
Menu Parameter
A Pump down B T switch setting C D E F G H Heat pump set up I Heat pump return temp L Heat pump flow temp M Compressor outlet temp N Cool temp on heat exchanger O Evaporator temp P Compressor frequency Q Heat pump initialisation R Heat pump operational S T Hot start U Cold start V Heat pump heating request Z –

Description
Function for gas removal on water/gas heat exchanger Temperature switch value in manual mode not used not used not used not used not used Heat pump flow set temperature Heat pump return temperature Temperature from heat pump Heat pump compressor temperature Coolant temperature inside heat exchanger Evaporator temperature Current compressor frequency Indicates that the initialisation phase of the heat pump has ended Indicates that the heat pump is available not used Indicates that the machine was hot started in DHW Indicates the machine was cold started Heating request towards heat pump not used

Range
0 = Off 1 = On -10 – 30 0 – 110
0 = Off 1 = On 0 = Off 1 = On
0 = Off 1 = On 0 = Off 1 = On 0 = Off 1 = On

Note: The system has other settings that have been placed inside the boiler control panel, see Section 3.12 internal unit PCB programming of the E-Tec 33 Hybrid.

32 Alpha E-Tec Hybrid – Smartech Control System Settings

7.12 DIAGNOSTICS
Select the ‘DIAGNOSTIC’ screen to view some system information including MAC address of the radio module, quality of the Bluetooth signal, current status of the connection between the boiler unit and Smartech, battery level and HW and SW versions. This screen is also used if you need to make a new pairing between the boiler and the Smartech.

FRI 12:08

20 15°

°

.4

21.5

ADDRESS
D0:CF:5E:9E:76.29
SIGNAL STRENGHT
NA
STATUS
PAIRING
BATTERY
3.24

FRI 12:08 SETTINGS

HW VERSION: STD 5.5
SW VERSION: 00 SW UI: 00 SW UE: 00 SW INVERT: 00 SW GTW: 00 SW GTW: 00 SW COM: 00

FRI 12:08
DIAGNOSTIC
ADDRESS
D0:CF:5E:9E:76.29
SIGNAL STRENGHT
NA
STATUS
DISCONNETED
BATTERY
3.24

Note: The ‘Signal strength’ field indicates the quality of the Bluetooth transmission between the boiler and the Smartech. It is recommended to use this indication when looking for the proper position of the Smartech. The indications provided are as follows:
Excellent: Stable and strong signal
Good: Stable signal
Poor: Weak signal, the Smartech should be moved closer to the boiler
Disconnected: Signal quality is insufficient, move the Smartech closer to the boiler.
Note: The maximum communication distance between the boiler and the Smartech is 10 metres in open field. The maximum actual distance might be shorter if there are walls, ceilings or obstacles between the two items.

Alpha E-Tec Hybrid – Smartech Control System Settings 33

7.13 RESTORING DEFAULT SETTINGS
In the event of incorrect programming of the Smartech settings, default values can be reset as follows: Enter the ‘Diagnostic’ menue (Section 7.10) and press 5 times until the word ‘DEFAULT’ appears in the ‘SIGNAL STRENGTH’ screen.
34 Alpha E-Tec Hybrid – Smartech Control System Settings

8 WIRING DIAGRAM
8.1 ILLUSTRATED WIRING DIAGRAM
Alpha E-Tec Hybrid – Wiring Diagram 35

-Vcc

Bl

HS W

M20 +UB

R

GND Bk

+Vcc

Br

M1

B1 B5 B10 S5

RR WW PP
Or Or

M30

M

Y1 W
P

L Br
G/Y N Bl PWM Y GND Bk FEED Br

Br R Y

Bl
Bk Br

R W
P Or

R W
P Or

Bl
R Br

Bk Y Br

PW

R Br Bk W Bl

Bk Bl Br Or

BrY Bl

5 J3 1

230 V

1

connections

X5

4 J2 1 3 J1 1

Fuse

3.15 AF 230 V

G/Y

XF1

9 1
Low voltage X6 connections
6 1

X1

T1

7

G/Y

1

X10

X16 2 1 X9 4 1 X3 4 1 X2 5 1 X4 6

E3

Or

Bl Br YBk

G Gy G Gy

YR Y Bk

Or

Bl Br G/Y Bk
Bl

Bk Y
Bl G/Y

LN AB

5612

LN
Br Bl G/Y

Mains Supply

3

230 V ~ 50 Hz

Colour Code Bk ……Black Bl …….Blue Br …….Brown G…….. Green Gy ……Grey G/Y ….Green/Yellow Or……. Orange P ……..Purple R ……..Red V ……..Violet W …….White Y ……..Yellow

S4 B2

GY
GY GG

Component identification A23 ……….Alpha outdoor heat pump A30 ……….Smartech receiver unit B1 …………Flow sensor B2 …………DHW sensor B5 …………Return sensor B9 …………DHW inlet sensor (optional) B10 ……….Flue sensor E3 …………Ignition and detection electrode M1…………Boiler pump M20……….Fan M30……….3-way valve motor R …………..120 Ohm resistor

R BkOr Bl Y Y

S4 …………DHW flow switch S5 …………System pressure switch T1 …………Ignition transformer Y1 …………Gas valve 1 …………..Engineers palmtop connection

A23

Bk R

44 41 25 24 38 48

Bl

For testing

only Y W

Br

X2 OT X2 OT

PWR

D-

X3 D- CLOUD BUS

BLE

B9

D+

X3 D+

X1

R

A30

RESET

X1

2 …………..Frame earth

3 …………..Output relay

ROOM THERMOSTAT CONTROL PANEL The connection of the Smartech receiver unit (A30) is required for the Alpha heat pump to operate.

ERROR CODES AND FAULT FINDING

9.1 CARRY OUT INITIAL FAULT FINDING CHECKS
In the event of a suspected functional fault with the boiler, carry out initial fault finding checks to establish the cause. 1. Check the correct gas, electrical and water supplies are available at the boiler. 2. Check the boiler system pressure is in the green area when cold. 3. Check that any boiler controls fitted are working and in an ‘ON’ position. 4. Carry out electrical supply and connection checks and check all fuses. Where an error code is displayed use the following tables to identify the fault and possible causes.

10.2 BOILER ERROR CODES AND FAULT FINDING
If any fault or anomaly persists, contact Alpha Heating Innovation Technical Helpline. The history of errors can be viewed in the ‘INFO’ menu – d9

Error code
01

Fault
Ignition failure

Fault description
Flame not detected during ignition sequence

Possible causes
Gas supply Check ignition/sensing electrode Ignition generator or lead Gas valve operation Check PCB and wire connections Flue restriction or blockage

02

Overheat boiler lock

Overheat sensor has activated

out

Pump or restricted flow problem Blocked heat exchanger Air in heat exchanger Check external valves/circuit *

03

High flue temperature Flue sensor intervention (flue temperature too

high)

Blocked or restricted primary flow Heat exchanger air flow blocked Flue restriction Flue sensor fault Air in primary heat exchanger

04

Gas valve electrical

connection fault

Gas valve wiring circuit fault detected

Gas valve lead connection fault Faulty gas valve Faulty PCB

05

CH flow sensor fault

Incorrect flow sensor resistance value

Flow sensor wire connections or sensor faulty

06

DHW sensor fault

DHW sensor resistance value is incorrect

DHW sensor wiring connection or sensor faulty

08

Max. number of resets Maximum number of resets reached (5)

Refer to fault history codes (INFO menu d9), to reset by turning the boiler off and on. If it will not clear replace PCB

10

Primary system

pressure low

Primary pressure switch has operated

Check expansion vessel pressure (1 bar) Leak in system Expansion relief valve operated Primary pressure switch

12

DHW inlet sensor fault Optional DHW inlet sensor resistance out of

range

Check sensor wiring and connections Check sensor resistance

15

Incorrect configuration Incorrect hydraulic configuration

Check the settings of the ‘A’ family parameters

There is an inconsistency between the settings

and signals received from the PCB

16

Fan fault

Fan wiring fault or fan faulty

Check fan wiring connections Fan fault PCB fault

20

Flame sensing fault

False flame detection Flame detected but gas valve is not open

Check flame sensing electrode and lead Electrical short circuit on sensing wires PCB fault

22

PCB fault

PCB software error

Replace PCB

23

Return sensor fault

Return sensor resistance out of range

Check sensor wiring and connections Check sensor resistance

24

Control panel button

Control panel button stuck in the on position

fault

Check for jammed control panel buttons Check for jammed PCB buttons

  • When external zone valves are fitted an external by-pass must also be installed.

36 Alpha E-Tec Hybrid – Error Codes and Fault Finding

Error code

Fault

Fault description

Possible causes

25

PCB fault

PCB fault – software error

Replace PCB

27

Primary circuit

overheat

Insufficient circulation in primary circuit causing overheating

Air in heat exchanger Isolation/system valves closed Check wiring/power to pump Pump seized/blocked Pump failed

29

Flue sensor fault

Flue sensor resistance out of range

Check sensor wiring and connections Check sensor resistance

31

Loss of

Loss of connection between the boiler and Alpha Remote control or receiver connection wiring

communication with

Climatic control unit

Distance or interference of RF signal

external control (Alpha

Remote control or receiver fault

Climatic)

(Check batteries if using RF controller)

37

Low supply voltage

Insufficient supply voltage to operate boiler

Check mains power supply Check for bad cable connections etc

38

Loss of flame

rectification

Flame detected but signal lost. Ignition retries after fan purge

Check flame sensing electrode and lead Check for flue gas recirculation Check the gas valve Check flue system and termination Check gas supply/working pressure Check/adjust combustion settings Check burner earth connection

43

Loss of flame

rectification

Repeated loss of flame signal during operation This fault can occur if the flue is exposed to high wind conditions (shown as E38 in the fault code history in the INFO menu)

Check as above for error code 38

45

High )T

The boiler detects a sudden, unexpected increase in )T between the flow sensor and the system return sensor

Burner input is limited for boiler protection, and once the right )T is restored, the boiler resumes regular operation. Make sure there is water circulating in the boiler, that the pump is configured according to the system requirements and that the return sensor is correct.

47

Reduced burner

output

Flue thermostat has sensed high flue gas temperature (110°C) and reduced the burner output to prevent damage. If the temperature continues to rise the boiler will lock out and E03 will be displayed

Air in heat exchanger Restricted primary flow Heat exchanger air flow blocked Flue restriction Flue sensor fault Pump fault

51

Climatic RF

Error between communication of the Climatic

communication fault

transmitter and boiler receiver

Batteries require replacing

60

Pump fault

The pump is stuck or there is an electrical pump fault

Check the pump operation, it may be necessary to free the pump shaft Check the pump wiring Replace the pump

61

Air in the pump

Restricted CH flow due to air or a circuit restriction Check Flow and Return valves are open Check for correct system pressure Check the system is purged properly

70

Return/flow sensor

Possible wiring fault, sensors incorrectly fitted,

error (return reading system blocked

higher than flow)

Check sensor wiring and connections Check sensor resistance Check circulation

75

Return/flow sensor

fault

Possible failure of one or both sensors

Check sensor wiring and connections Check sensor resistance

76

Return/flow sensor

fault

Possible failure of one or both sensors

Check sensor wiring and connections Check sensor resistance

Alpha E-Tec Hybrid – Error Codes and Fault Finding 37

Error code

Fault

Sr

Service reminder

n

Boiler completely

turned off

‘Blank Boiler fused blown screen’

Pump with UPM3 W3 electronics ONLY
Red pump LED

MB error

Pump with UPM4 electronics ONLY
Symbol with steady red light
MOD BUS error

OT error

Open therm error

Fault description
Service reminder count down (0 – 36 months) has reached zero See Section 6.13, parameter P6 Note: E97 is also shown on Climatic controller, if used
Screen only shows a single dot to indicate boiler is completely off Fuse on main PCB blown Pump fault
Pump fault Fault with heat pump communication link Fault with connection between Gateway and boiler

Possible causes

Note: The ‘Sr’ code will not stop the boiler

functioning

Note: Pressing the RESET button will clear the

‘Sr’ code for 24 hrs to allow the display to be

read

To permanently reset the error ‘Sr’ / E97

1. Enter the parameter menu using the

password 69. See Section 6.13

2. Parameter P6 will show 0

3. Set P6 to any value above zero, save by

pressing the mode button (

) and wait

for ’88’ to be displayed as confirmation

4. Then set P6 to 0, save by pressing the mode

button (

) and wait for ’88’ to be

displayed as confirmation

5. Now set the parameter P6 at the number

of months to the next service reminder

(i.e. 12 for one year). Save by pressing the

mode button (

) and wait for ’88’ to be

displayed as confirmation

Press mode button (

) for 2 seconds then

release. Boiler display will return and you can

select an operating mode

Incorrect power supply Seized or sticking pump – Check pump for free rotation Boiler component drawing excessive current. Check individual components in turn

There can be three possible causes for this anomaly: 1. Low power supply voltage. When the
minimum voltage is reached after about two seconds, the LED turns from red to green to red and the pump stops. Wait for the power supply voltage to rise. When the pump restarts the LED will turn green again with a delay of about one second Note: The flow rate decreases as the supply voltage decreases 2. Seized rotor. After about four seconds of the seized pump trying to start the LED turns from green to red. Carefully rotate the screw in the middle of the pump head to manually release the rotor. Circulation starts up immediately the rotor is freed and after about ten seconds the LED turns from red to green 3. Electrical fault. Pump, wiring or PCB fault. Check the indicated components

Possible causes for this anomaly: 1. Low power supply voltage 2. Seized rotor 3. Electrical fault

D+ – D- BUS cable connection fault Check cable and connections are correct Check resistor is fitted across D+ and D- on the heat pump terminals
Check yellow and white wires on the Gateway ‘OT’ connections and 40, 41 boiler terminals

38 Alpha E-Tec Hybrid – Error Codes and Fault Finding

10.3 BOILER ERROR CODES AND FAULT FINDING
List of Outdoor Unit Error codes ­ Shown on the Smartech Control and the user App.

Error code

Fault

Fault description

Possible causes

1006 Return sensor fault

Incorect reading from heat pump return sensor (water inlet)

Check sensor fitting Check sensor connections Check sensor for damage or incorrect readings

1008 Flow sensor fault

Incorrect reading from heat pump flow sensor (water outlet)

Check sensor fitting Check sensor connections Check sensor for damage or incorrect readings

1015 Flow temperature increase Abnormal flow temperature increase in the

(during DHW)

outdoor unit during DHW mode

Check pipework is connected correctlly Check flow sensor Check gas boiler diverter valve

1016 Flow temperature increase Abnormal flow temperature increase in the outdoor unit

Check pipe connections Check all valves are open Check for blockages or flow restrictions

1019 System water high temperature

System water circuit overheating

Check pipe connections Check all valves are open Check for blockages or flow restrictions

1020 Power supply voltage anomaly

The supply voltage to the outdoor unit is out of the normal range

Check cable condition and connections Check for water ingress or short circuit connections Check main power supply, consumer and breaker for faults

1021 High pressure error

Outdoor unit evaporator/condenser fault (evaporator temperature below 0°C or condenser temperature 59.5°C

Check the evaporator fins are clean and clear Check the condesation drainage is clear Check for freezing faults or ice build up Check compressor pipes for signs of leaks

1022 Overheat

Outdoor unit sensors overheat anomaly

Check all heat pump sensors

1024 DHW cylinder overheat DHW clyinder high temperature reading

Check cylinder for potential overheating Check back up heater functions Check DHW cylinder sensor

1026 DHW cylinder heating

DHW heating time greater than 6 hours

Check for correct diveter valve directions Check for excessive hot water demand or draw off Check DHW cylinder coil transfer too slow or scale build up

1032 Liquid probe error

Compressor liquid phase temperature sensor fault

Check for correct compressor function

1036 PCB fault detected

EEPROM control board error

Check wiring to PCB and connections Check for water ingress on electrics

1039 High pressure switch fault High pressure switch intervention

Check pressure switch function and connections High pressure in compressor circuit

1040 High pressure switch fault The pressure sensor has activated repeatedly (16 Check the pressure switch and connections

times in 300 minutes)

Check for compressor function issues

1043 Compressor overload

Compressor inverter overheat detected

Faulty compressor in heat pump

1044 Compressor start anomaly Compressor motor rotation anomaly

Compressor start capacitior faulty Faulty compressor in heat pump

1045 Fan anomaly

Fan stopped on start up

Fan faulty or jammed

1046 Fan anomaly

Fan rotation anomaly

Fan blocked Fan blades excessively dirty Fan blades or housing damaged

1050 Compressor high current Compressor power supply voltage too high anomaly

Faulty compressor in heat pump

1054 DHW temperature fault Abnormal DHW temperature increase

Check sensor position and connections Check back up immersion operation Check for additional heat sources (Solar/PV etc.)

1057 Power supply voltage to compressor

Compressor power supply voltage out of range before start up

Check cable condition and connections Check for water ingress or short circuit connections

1060 High pressure switch error High pressure switch fault

Check high pressure switch function and connections

1064 Compressor start anomally

The compressor does not start up properly

Check compressor electrical connections Heat pump compressor fault

Alpha E-Tec Hybrid – Error Codes and Fault Finding 39

Error code

Fault

1065 Compressor anomaly

Fault description
Compressor power supply BUS not coherent

1066 External temperature sensor error

Outdoor air temperature sensor anomaly

1072 High discharge temperature
1077 High external coil temperature

Compressor discharge temperature too high High temperature on external coil

1078 High pressure on external Pressure too high on external coil coil

1079 1080
1081

Pressure sensor anomaly
Coolant pressure probe anomaly
Discharge probe anomaly

Detected cooling gas pressure out of range Coolant pressure probe anomaly
Compressor temperature sensor anomaly

1083 Evaporator probe anomaly Outdoor coil temperature anomaly

1103 High inverter temperature Inverter board temperature too high

1104 1105

Inverter temperature increased abnormally
Inverter high current

Temperature on cooling fins too high High current detected on inverter

1118
1119 1123

Inverter temperature sensor fault
Coolant loss
Power supply voltage anomaly

Inverter temperature sensor anomaly
Lack of coolant in outdoor unit Power supply voltage out of range

1128 Communication error with Inverter communication error – hydronic board outdoor unit boards

Possible causes
Check compressor electrical connections Check heat pump PCB connections Check for water ingress on PCB electrics
Check connections and position of outside sensor Check sensor is not influenced by surrounding heat sources
Compressor fault Compressor overheating Excessive heat pump operating time
Blocked/damaged evaporator fins Restricted air flow across evaporator Check clearances and obstructions around heat pump Check and clean evaporator fins High ambient temperature operation
Blocked/damaged evaporator fins Restricted air flow across evaporatorCheck clearances and obstructions around heat pump Check and clean evaporator fins
Expansion valve fault
Check sensor location or damage Check sensor connections
Check sensor location or damage Check sensor connections
Blocked/damaged evaporator fins Restricted air flow across evaporator Check clearances and obstructions around heat pump Check and clean evaporator fins
Check inverter board connections Check for dust or dirt on board
Check for dust or dirt on board
Check inverter board connections Check for dust or dirt on board
Check inverter sensor and connections
Check for compressor circuit leaks
Check cable condition and connections Check for water ingress or short circuit connections
Check cable condition and connections

If the error or anomaly persists, contact an approved company (e.g. HVAC engineer or manufacturer).

Instructions on how to correctly dispose of the product.
At the end of its life, this appliance must not be disposed of as mixed municipal waste. It is mandatory to separate this type of waste so that the materials making up the appliance can be recycled and reused. Contact authorised operators for disposal of this type of appliance. Incorrect management of waste and its disposal has potential negative effects on the environment and on human health. The symbol on the appliance represents the prohibition of disposing of the product as mixed municipal waste.

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Alpha User Manuals

Related Manuals