ALPHA DATA ADM-PCIE-9V5 PCIe Card with Integrated User Manual Product Information

May 15, 2024
ALPHA DATA

ADM-PCIE-9V5 PCIe Card with Integrated

“`html

Product Information

Specifications:

  • Model: ADM-PCIE-9V5

  • FPGA: Xilinx Virtex UltraScale+ Plus

  • Transceivers: Low latency

  • Connectivity: Four QSFP-DD cages

  • PCI Express Compliance: CEM revision 3.0

  • Dimensions (PCB only): 100.15mm x 181.5mm x
    1.6mm

  • Dimensions (Fully Assembled): 120.9mm x
    181.5mm x 19.7mm, Weight: 590 grams

  • PCIe Compatibility: PCIe Gen 3 with 8
    lanes

Product Usage Instructions:

Installation:

To install the ADM-PCIE-9V5, follow these steps:

  1. Ensure your system has an available PCIe slot that meets the
    mechanical requirements (8 or 16 lanes).

  2. Gently insert the card into the PCIe slot, making sure it is
    properly seated.

  3. Secure the card in place using the mounting screws
    provided.

Configuration:

To configure the ADM-PCIE-9V5, you can refer to the complete
pinout table provided in the user manual or visit the
manufacturer’s website for detailed instructions.

Maintenance:

For maintenance, ensure the card is free from dust and debris to
prevent overheating. Use compressed air to clean the card if
necessary.

Frequently Asked Questions (FAQ):

Q: Where can I find the complete ordering options for

ADM-PCIE-9V5?

A: You can find the complete ordering options for ADM-PCIE-9V5
on the Alpha Data website at http://www.alpha-data.com/pdfs/adm-pcie- 9v5.pdf.

Q: What are the chassis requirements for ADM-PCIE-9V5?

A: The ADM-PCIE-9V5 requires a PCIe Gen 3 slot with 8 or 16
lanes for mechanical compatibility.

“`

ADM-PCIE-9V5 User Manual
Document Revision: 1.5 July 17th 2023

ADM-PCIE-9V5 User Manual

© 2023 Copyright Alpha Data Parallel Systems Ltd. All rights reserved.
This publication is protected by Copyright Law, with all rights reserved. No part of this publication may be reproduced, in any shape or form, without prior written consent from Alpha
Data Parallel Systems Ltd.

Head Office

Address: Suite L4A, 160 Dundee Street,

Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600

Fax:

+44 131 558 2700

email:

sales@alpha-data.com

website: http://www.alpha-data.com

US Office
10822 West Toller Drive, Suite 250 Littleton, CO 80127 (303) 954 8768 (866) 820 9956 – toll free sales@alpha-data.com http://www.alpha-data.com

All trademarks are the property of their respective owners.

ADM-PCIE-9V5 User Manual

Table Of Contents

1 1.1 1.2
2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.3 2.3.1 2.4
3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.7 3.8 3.8.1 3.8.1.1 3.8.2 3.9 3.9.1 3.9.2 3.10

Introduction …………………………………………………………………………………………………………………….. 1 Key Features …………………………………………………………………………………………………………………. 1 Order Code …………………………………………………………………………………………………………………… 1
Board Information ……………………………………………………………………………………………………………. 2 Physical Specifications …………………………………………………………………………………………………… 2 Chassis Requirements ……………………………………………………………………………………………………. 3 PCI Express ………………………………………………………………………………………………………………. 3 Mechanical Requirements …………………………………………………………………………………………… 3 Power Requirements ………………………………………………………………………………………………….. 3 KN32 ­ Emissions ………………………………………………………………………………………………………. 3 Thermal Performance …………………………………………………………………………………………………….. 4 Active VS Passive Thermal Management ………………………………………………………………………. 5 Customizations ……………………………………………………………………………………………………………… 5
Functional Description …………………………………………………………………………………………………….. 6 Overview ………………………………………………………………………………………………………………………. 6 Switches ……………………………………………………………………………………………………………………. 7 LEDs ………………………………………………………………………………………………………………………… 8 Clocking ……………………………………………………………………………………………………………………….. 9 Si5328 …………………………………………………………………………………………………………………….. 12 PCIe Reference Clocks ……………………………………………………………………………………………… 12 Fabric Clock …………………………………………………………………………………………………………….. 12 Programming Clock (EMCCLK) ………………………………………………………………………………….. 12 QSFP-DD Clock ……………………………………………………………………………………………………….. 12 Ultraport SlimSAS (OpenCAPI) ………………………………………………………………………………….. 12 PCI Express ………………………………………………………………………………………………………………… 13 QSFP-DD ……………………………………………………………………………………………………………………. 14 OpenCAPI Ultraport SlimSAS ………………………………………………………………………………………… 15 System Monitor ……………………………………………………………………………………………………………. 16 System Monitor Status LEDs ……………………………………………………………………………………… 17 Fan Controllers ………………………………………………………………………………………………………… 17 USB Interface ………………………………………………………………………………………………………………. 18 Configuration ……………………………………………………………………………………………………………….. 18 Configuration From Flash Memory ……………………………………………………………………………… 18 Building and Programming Configuration Images ……………………………………………………… 19 Configuration via JTAG ……………………………………………………………………………………………… 19 GPIO Connector ………………………………………………………………………………………………………….. 20 Direct Connect FPGA Signals …………………………………………………………………………………….. 20 Timing Input …………………………………………………………………………………………………………….. 20 User EEPROM …………………………………………………………………………………………………………….. 22

Appendix A Complete Pinout Table …………………………………………………………………………………………………… 23

List of Tables

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7

Mechanical Dimensions (PCB only) ……………………………………………………………………………………… 2 Mechanical Dimensions (Fully Assembled) …………………………………………………………………………… 2 Available Power By Rail ……………………………………………………………………………………………………… 3 Switch Functions ……………………………………………………………………………………………………………….. 7 LED Details ………………………………………………………………………………………………………………………. 8 Voltage, Current, and Temperature Monitors ……………………………………………………………………….. 16 Status LED Definitions ……………………………………………………………………………………………………… 17

ADM-PCIE-9V5 User Manual

Table 8

Complete Pinout Table ……………………………………………………………………………………………………… 23
List of Figures

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17

ADM-PCIE-9V5 Product Photo ……………………………………………………………………………………………. 1 ADM-PCIE-9V5 Top View …………………………………………………………………………………………………… 2 KN32 ­ Emissions ……………………………………………………………………………………………………………… 3 Thermal Performance ………………………………………………………………………………………………………… 4 ADM-PCIE-9V5 Fan …………………………………………………………………………………………………………… 5 ADM-PCIE-9V5 2-slot enhanced heat sink ……………………………………………………………………………. 5 ADM-PCIE-9V5 Block Diagram …………………………………………………………………………………………… 6 Switches …………………………………………………………………………………………………………………………… 7 Front Panel LEDs ………………………………………………………………………………………………………………. 8 Clock Topology ………………………………………………………………………………………………………………….. 9 VU5P FPGA Clock Location ……………………………………………………………………………………………… 10 VU9P FPGA Clock Location ………………………………………………………………………………………………. 11 QSFP-DD Location ………………………………………………………………………………………………………….. 14 OpenCAPI Location …………………………………………………………………………………………………………. 15 OpenCAPI Pinout …………………………………………………………………………………………………………….. 15 GPIO Connector Schematic ………………………………………………………………………………………………. 20 GPIO Connector Location …………………………………………………………………………………………………. 20

ADM-PCIE-9V5 User Manual
1 Introduction
The ADM-PCIE-9V5 is a high-performance reconfigurable computing card intended for Data Center applications, featuring a screened Xilinx Virtex UltraScale+ Plus FPGA with low latency transceivers and four QSFP-DD cages.

Figure 1 : ADM-PCIE-9V5 Product Photo
1.1 Key Features
Key Features · PCIe Gen3 x8 capable · Passive and active thermal management configuration · 1/2 length, full profile, x8 edge PCIe form factor · Four QSFP-DD cages for a total of 32 channels each capable of 28 Gpbs operation (total 896 Gbps) · One 8-lane Ultraport SlimSAS connectors compliant with OpenCAPI and suitable for IO expansion · Supports VU5P, VU9P Virtex UltraScale+ FPGAs in the A2104 package. · Front panel and rear edge JTAG access via USB port · FPGA configurable over USB/JTAG and SPI configuration flash · Voltage, current, and temperature monitoring · 8 GPIO signals and 1 isolated timing input · User LEDs and timing input options.
1.2 Order Code
See http://www.alpha-data.com/pdfs/adm-pcie-9v5.pdf for complete ordering options.

Introduction ad-ug-1385_v1_5.pdf

Page 1

ADM-PCIE-9V5 User Manual

2 Board Information

2.1 Physical Specifications

The ADM-PCIE-9V5 complies with PCI Express CEM revision 3.0.

Description PCB Dy Total Dx PCB Dz

Measure 100.15 mm 181.5 mm
1.6 mm

Table 1 : Mechanical Dimensions (PCB only)

Description Total Dy Total Dx Total Dz
Weight

Measure 120.9 mm 181.5 mm 19.7 mm 590 grams (without
fan)

Table 2 : Mechanical Dimensions (Fully Assembled)

Page 2

Figure 2 : ADM-PCIE-9V5 Top View
Board Information ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

2.2 Chassis Requirements

2.2.1 PCI Express

The ADM-PCIE-9V5 is capable of PCIe Gen 3 with 8 lanes, using the Xilinx Integrated Block for PCI Express.

2.2.2 Mechanical Requirements

An 8 or 16 lane physical PCIe slot is required for mechanical compatibility.

2.2.3 Power Requirements

The ADM-PCIE-9V5 draws power from the PCIe Edge and the 6-pin ATX power connector. The ADM-PCIE-9V5 does not use or require the 3.3V power from the PCIe Edge (though it does use 3.3V AUX). Revision 1 cards (serial number less than 110) require both PCIe edge and 6-pin ATX power connector. Revision 2 and onward can operate with only the PCIe edge. To operate with PCIe edge only, ensure SW1-3 is OFF (see Switches). As per PCIe specification, users should limit the board power consumption to 66W when using only the PCIe edge power. Adding the 6-pin ATX connector provides additional 75W of power, bringing the total board power dissipation maximum to 141W.
Power consumption estimation requires the use of the Xilinx XPE spreadsheet and a power estimator tool available from Alpha Data. Please contact support @alpha-data.com to obtain this tool.
The power available to the rails calculated using XPE are as follows:

Voltage 0.85-0.90
0.9 1.2 1.8 1.8 3.3

Source Name VCC_INT + VCCINT_IO + VCC_BRAM
MGTAVCC MGTAVTT VCCAUX + VCCAUX_IO + VCCO_1.8V MGTVCCAUX 3.3V for Optics

Current Capability 80A 8A 15A 3A 1A 9A

Table 3 : Available Power By Rail

2.2.4 KN32 ­ Emissions

Board Information ad-ug-1385_v1_5.pdf

Figure 3 : KN32 ­ Emissions

Page 3

ADM-PCIE-9V5 User Manual

2.3 Thermal Performance
If the FPGA core temperature exceeds 105 degrees Celsius, the FPGA design will be cleared to prevent the card from over-heating.
The ADM-PCIE-9V5 comes with a heat sink to help avoid thermal overstress of FPGA, since it is typically the hottest point on the card. The FPGA die temperature must remain under 100 degrees Celsius. To calculate the FPGA die temperature, take your application power, multiply by Theta JA from the table below, and add to your system internal ambient temperature. If you are using the fan provided with the board, you will find theta JA is approximately 0.88 degC/W for the board in still air.
The power dissipation can be estimated by using the Alpha Data power estimator in conjunction with the Xilinx Power Estimator (XPE) downloadable at http://www.xilinx.com/products/technology/power/xpe.html. Download the UltraScale tool and set the device according to your part number details: Virtex UltraScale+, VU13P/VU9P, A2104 package, -2/-3 speed grade, extended. Set the ambient temperature to your system ambient and select ‘user override’ for the effective theta JA and enter the figure associated with your system LFM in the blank field. Proceed to enter all applicable design elements and utilization in the following spreadsheet tabs. Next acquire the 9V5 power estimator from Alpha Data by contacting support@alpha-data.com. You will then plug in the FPGA power figures along with Optical module figures to get a board level estimate.

Theta JA

ADM-PCIE-9H7 Board Level Thermal Performance

1.60 1.50 1.40 1.30 1.20 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30
0.00

200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00 1600.00 1800.00 2000.00 Linear Feet per Minute (LFM)

Figure 4 : Thermal Performance

Page 4

Board Information ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
2.3.1 Active VS Passive Thermal Management
The ADM-PCIE-9V5 ships with a small optional blower for active cooling in systems with poor airflow. If the ADM-PCIE-9V5 will be installed in a server with controlled airflow, the card may be ordered without the additional fan hardware. The fans have a much shorter mean time between failure (MTBF) than the rest of the assembly, so passive cards have much longer life expectance before requiring maintenance. The ADM-PCIE-9V5 also includes a fan speed controller, allowing variable fan speed based on die temperature, and detection of a failed fan (see section Fan Controllers).

Figure 5 : ADM-PCIE-9V5 Fan
2.4 Customizations
Alpha Data provides extensive customization options to existing commercial off-the-shelf (COTS) products. Some options include, but are not limited to: additional networking cages in adjacent slots, enhanced heat sinks, baffles, and circuit additions. Please contact sales@alpha-data.com to get a quote and start your project today.

Figure 6 : ADM-PCIE-9V5 2-slot enhanced heat sink
Board Information ad-ug-1385_v1_5.pdf

Page 5

ADM-PCIE-9V5 User Manual

3 Functional Description

3.1 Overview
The ADM-PCIE-9V5 is a versatile reconfigurable computing platform with a Virtex UltraScale+ VU5P/VU9P FPGA, a Gen3x8 PCIe interface, four QSFP-DD cages, an OpenCAPI compatible Ultraport SlimSAS connector also capable of 28G/channel, an isolated input for a timing synchronization pulse, a 12 pin header for general purpose use (clocking, control pins, debug, etc.), front panel LEDs, and a robust system monitor.

Q(8QS(x8Q2S(Fx88Q2SFPxG82SFP-Gb8DpFP-GbsDDpP-b)sDDp-)sDD) D
(8x28Gbps)

USB (back)

USB to JTAG

Mux+Hub

System Monitor

PPS ISOLATION

GPIO

x32
MGT GPIO

x4
MGT

XCVU5P XCVU9P
FLGA2104

FireFly
(4x28Gbps)

0

MGT MGT

MGT x8

USB (front)

QSPI (Config)

I2C (0,4) (5,7)
x8 PCIe Gen3 Edge

ATX PWR Blower
SlimSAS
(8x28Gbps)

Figure 7 : ADM-PCIE-9V5 Block Diagram

Page 6

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
3.1.1 Switches
The ADM-PCIE-9V5 has an octal DIP switch SW1, located on the rear side of the board. The function of each switch in SW1 is detailed below:

Figure 8 : Switches

Switch
SW1-1 SW1-2

Factory Default
OFF OFF

Function
User Switch 0 User Switch 1

OFF State
Pin AW33 = ‘1’ Pin AY36 = ‘1’

ON State
Pin BF52 = ‘0’ Pin BF47 = ‘0’

SW1-3 ON

12V Auto-detect

12V PCIe edge auto-detect ATX AUX power required

SW1-4 OFF

Power Off

Board will power up

Immediately power down

SW1-5 OFF SW1-6 ON SW1-7 ON SW1-8 ON

Service Mode HOST_I2C_EN CAPI_VPD_EN OpenCAPI_VPD_WP

System Monitor normal operation

System Monitor Service Mode (firmware update etc.)

System Monitor connected to System Monitor isolated from

PCIe slot I2C

PCIe slot I2C

OpenCAPI VPD PROM connected to PCIe slot I2C

OpenCAPI VPD PROM isolated from PCIe slot I2C

OpenCAPI VPD is write protected

CAPI VPD is writable

Table 4 : Switch Functions Use I/O Standard “LVCMOS18” when constraining the User Switch pins.

Functional Description ad-ug-1385_v1_5.pdf

Page 7

ADM-PCIE-9V5 User Manual
3.1.2 LEDs
There are 9 LEDs on the ADM-PCIE-9V5, 6 of which are general purpose and whose meaning can be defined by the user. The other 3 have fixed functions described below:

User LEDs

D8

D6

LED_G2 LED_G4

D13

D12

LED_G3 LED_G5

D1

D2

LED_G0 LED_G1

Status LEDs

D4

D5

D7

DONE STAT_1 STAT_0

Figure 9 : Front Panel LEDs

Comp. Ref. D1 D2 D8 D13 D6 D12 D4 D5 D7

Function
USER_LED_G0_1V8 USER_LED_G1_1V8 USER_LED_G2_1V8 USER_LED_G3_1V8 USER_LED_G4_1V8 USER_LED_G5_1V8
DONE Status 1 Status 0

ON State

OFF State

User defined ‘0’

User defined ‘1’

User defined ‘0’

User defined ‘1’

User defined ‘0’

User defined ‘1’

User defined ‘0’

User defined ‘1’

User defined ‘0’

User defined ‘1’

User defined ‘0’

User defined ‘1’

FPGA is configured

FPGA is not configured

See Status LED Definitions

See Status LED Definitions

Table 5 : LED Details See Section Complete Pinout Table for full list of user controlled LED nets and pins

Page 8

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

3.2 Clocking
The ADM-PCIE-9V5 provides flexible reference clock solutions for the many multi-gigabit transceiver quads and FPGA fabric. Any programmable clock, from the SI5338 Clock Synthesizer, is re-configurable from the front panel USB Interface by using Alpha Data’s avr2util utility. This allows the user to configure almost any arbitrary clock frequency during application run time. The maximum clock frequency is 312.5MHz. Customers who purchase RD-9V5 also have the option of embedding IP into their FPGA design that permits programmable clock re-configuration via PCIe or from within the FPGA.
There is also two available Si5328 jitter attenuator. These can provide clean and synchronous clocks to the QSFP-DD and OpenCAPI (SlimSAS) quad locations at many clock frequencies. These devices only use volatile memory, so the FPGA design will need to re-configure the register map after any power cycle event.
All clock names in the section below can be found in Complete Pinout Table.

J10
(OpenCAPI)

PCIe Edge
U36
(ASFLMPLV100.000MHZ-LR-T)
Buffer NB6N11S

25MHz 30ppm Source

0
Si5338
1
Clock Synth 2
3

Buffer NB6N11S
Buffer NB6N11S

FPGA Bank 64 (LVDS) SI5328_0_REFCLK_IN_P SI5328_0_REFCLK_IN_N
FPGA Bank 64 (LVDS) SI5328_1_REFCLK_IN_P SI5328_1_REFCLK_IN_N
FPGA Bank 64 (LVCMO18) SI5328_1V8_SDA SI5328_1V8_SCL

Crystal 114.285MHz
Crystal 114.285MHz

CLKIN1 Si5328_0 CLKOUT1

CLKIN2

(2.5V VCC)

CLKOUT2

XA/XB I2C

Address: 1101000 CS_CA = CMODE = GND
Other control pins = N/C

CLKIN1 Si5328_1 CLKOUT1

CLKIN2

(2.5V VCC)

CLKOUT2

XA/XB I2C

Address: 1101001 CS_CA = CMODE = GND
Other control pins = N/C

PCIE_REFCLK (MGTREFCLK0_227)
PCIE_LCL_REFCLK (MGTREFCLK1_225)
CAPI_CLK_1 156.25MHz std. MGTREFCLK0_224) CAPI_CLK_2 156.25MHz std. MGTREFCLK0_225) MGT_PROGCLK_0 156.25 Default (MGTREFCLK0_121)
MGT_PROGCLK_1 156.25 Default (MGTREFCLK0_232) MGT_PROGCLK_2 156.25 Default (MGTREFCLK0_126) FABRIC_CLK 300MHz Default (IO Bank 66) SI5328_0_OUT_0 (MGTREFCLK1_121) SI5328_0_OUT_1 (MGTREFCLK1_232)
SI5328_1_OUT_0 (MGTREFCLK1_126) SI5328_1_OUT_1 (MGTREFCLK1_224)

Figure 10 : Clock Topology

Functional Description ad-ug-1385_v1_5.pdf

Page 9

ADM-PCIE-9V5 User Manual

GTY Quad 133 X0Y36 – X0Y39

QSFP-DD 2 lanes 4 – 7
SI5328_1_OUT_0 QSFP-DD 2 lanes 0 – 3
MGT_PROG CL K_2
QSFP-DD 3 lanes 4 – 7

GTY Quad 132 X0Y32 – X0Y35
M [LN] 1 GTY Quad 131 X0Y28 – X0Y31
0 L [LN] (RCAL)
GTY Quad 130 X0Y24 – X0Y27
K [LN]

GTY Quad 129 X0Y20 – X0Y23

GTY Quad 128 X0Y16 – X0Y19

QSFP-DD 3 lanes 0 – 3
SI5328_0_OUT_0 QSFP-DD 1 lanes 0 – 3
MGT_PROG CL K_0
QSFP-DD 0 lanes 0 – 3

GTY Quad 127 X0Y12 – X0Y15
J [LS] 1 GTY Quad 126 X0Y8 – X0Y11
0 I [LS] (RCAL)
GTY Quad 125 X0Y4 – X0Y7
H [LS]

GTY Quad 124 X0Y0 – X0Y3

CMA C X0Y5

HP I/O Bank 53 M

HP I/O Bank 73 Q

ILKN X1Y5

PCIE4 X0Y3

HP I/O Bank 52 L

HP I/O Bank 72 P

ILKN X1Y4

CMA C X0Y4

HP I/O Bank 51 K

HP I/O Bank 71 O

SY SMON Configuration

ILKN X0Y3

HP I/O Bank 50 J

HP I/O Bank 70 N

Configuration

CMA C X0Y3
CMA C X0Y2

HP I/O Bank 49

HP I/O Bank 69

SLR Crossing

HP I/O Bank 48

HP I/O Bank 68

PCIE4 X1Y2
ILKN X1Y2

PCIE4 X0Y1

HP I/O Bank 47 I

HP I/O Bank 67 E

ILKN X1Y1

CMA C X0Y1

HP I/O Bank 46 H

HP I/O Bank 66 D

SY SMON Configuration

ILKN X0Y0
CMA C X0Y0

HP I/O Bank 45 G
HP I/O Bank 44 F

HP I/O Bank 65 C
HP I/O Bank 64 B

Configuration
PCIE4 X1Y0 (Tandem)

Key:

Unbonded (not connected to package pins)

GTY Quad 233 X1Y36 ­ X1Y39
G [RN] GTY Quad 232 1 X1Y32 ­ X1Y35
F [RN] 0
GTY Quad 231 X1Y28 ­ X1Y31 E [RN] (RCAL)

QSFP-DD 0 lanes 4 – 7
SI5328_0_OUT_1 QSFP-DD 1 lanes 4 – 7
MGT_PROG CL K_1
FireFly (all 4 lanes)

GTY Quad 230 X1Y24 ­ X1Y27

GTY Quad 229 X1Y20 ­ X1Y23

GTY Quad 228 X1Y16 ­ X1Y19

GTY Quad 227 X1Y12 ­ X1Y15
D [RS] 0
GTY Quad 226 X1Y8 ­ X1Y11 C [RS] (RCAL)
GTY Quad 225 1 X1Y4 ­ X1Y7
B [RS] 0
GTY Quad 224 1 X1Y0 ­ X1Y3
A [RS] 0

PCIe Edge (lanes 0 to 3) PCIE_REFCLK
PCIe Edge (lanes 4 to 7)
PCIE_LCL_REFCLK OpenCAPI (lanes 4 to 7)
CAPI_CLK_2 SI5328_1_OUT_1 OpenCAPI (lanes 0 to 3) CAPI_CLK_1

Figure 11 : VU5P FPGA Clock Location

Page 10

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

GTY Quad 133 X0Y56 – X0Y59
GTY Quad 132 X0Y52 – X0Y55
GTY Quad 131 X0Y48 – X0Y51
(RCAL)
GTY Quad 130 X0Y44 – X0Y47
GTY Quad 129 X0Y40 – X0Y43

GTY Quad 128 X0Y36 – X0Y39

QSFP-DD 2 lanes 4 – 7
SI5328_1_OUT_0 QSFP-DD 2 lanes 0 – 3
MGT_PROG CL K_2
QSFP-DD 3 lanes 4 – 7

GTY Quad 127 X0Y32 – X0Y35
M [LN] 1 GTY Quad 126 X0Y28 – X0Y31
0 L [LN] (RCAL)
GTY Quad 125 X0Y24 – X0Y27
K [LN]

GTY Quad 124 X0Y20 – X0Y23

GTY Quad 123 X0Y16 – X0Y19

QSFP-DD 3 lanes 0 – 3
SI5328_0_OUT_0 QSFP-DD 1 lanes 0 – 3
MGT_PROG CL K_0
QSFP-DD 0 lanes 0 – 3

GTY Quad 122 X0Y12 – X0Y15
J [LS] 1 GTY Quad 121 X0Y8 – X0Y11
0 I [LS] (RCAL)
GTY Quad 120 X0Y4 – X0Y7
H [LS]

GTY Quad 119 X0Y0 – X0Y3

CMA C X0Y8
PCIE4 X0Y5
CMA C X0Y7
ILKN X0Y6
CMA C X0Y6
CMA C X0Y5
PCIE4 X0Y3
CMA C X0Y4
ILKN X0Y3
CMA C X0Y3
CMA C X0Y2
PCIE4 X0Y1
CMA C X0Y1
ILKN X0Y0
CMA C X0Y0

HP I/O Bank 53 HP I/O Bank 52 HP I/O Bank 51 HP I/O Bank 50

HP I/O Bank 73 Q
HP I/O Bank 72 P
HP I/O Bank 71 O
HP I/O Bank 70 N

HP I/O Bank 49

HP I/O Bank 69

SLR Crossing

HP I/O Bank 48 M

HP I/O Bank 68

HP I/O Bank 47 L

HP I/O Bank 67 E

HP I/O Bank 46 K

HP I/O Bank 66 D

HP I/O Bank 45 J

HP I/O Bank 65 C

HP I/O Bank 44

HP I/O Bank 64 B

SLR Crossing

HP I/O Bank 43 I

HP I/O Bank 63

HP I/O Bank 42 H

HP I/O Bank 62

HP I/O Bank 41 G

HP I/O Bank 61

HP I/O Bank 40 F

HP I/O Bank 60

HP I/O Bank 39

HP I/O Bank 59

ILKN X1Y8
ILKN X1Y7
SY SMON Configuration
Configuration
PCIE4 X1Y4
ILKN X1Y5
ILKN X1Y4
SY SMON Configuration
Configuration
PCIE4 X1Y2 (Tandem)
ILKN X1Y2
ILKN X1Y1
SY SMON Configuration
Configuration
PCIE4 X1Y0

Key:

Unbonded (not connected to package pins)

GTY Quad 233 X1Y56 ­ X1Y59
G [RN] GTY Quad 232 1 X1Y52 ­ X1Y55
F [RN] 0
GTY Quad 231 X1Y48 ­ X1Y51 E [RN] (RCAL)

QSFP-DD 0 lanes 4 – 7
SI5328_0_OUT_1 QSFP-DD 1 lanes 4 – 7
MGT_PROG CL K_1
FireFly (all 4 lanes)

GTY Quad 230 X1Y44 ­ X1Y47

GTY Quad 229 X1Y40 ­ X1Y43

GTY Quad 228 X1Y36 ­ X1Y39

GTY Quad 227 X1Y32 ­ X1Y35
D [RS] 0
GTY Quad 226 X1Y28 ­ X1Y31 C [RS] (RCAL)
GTY Quad 225 1 X1Y24 ­ X1Y27
B [RS] 0
GTY Quad 224 1 X1Y20 ­ X1Y23
A {RS] 0

PCIe Edge (lanes 0 to 3) PCIE_REFCLK
PCIe Edge (lanes 4 to 7)
PCIE_LCL_REFCLK OpenCAPI (lanes 4 to 7)
CAPI_CLK_2 SI5328_1_OUT_1 OpenCAPI (lanes 0 to 3) CAPI_CLK_1

GTY Quad 223 X1Y16 ­ X1Y19
GTY Quad 222 X1Y12 ­ X1Y15
GTY Quad 221 X1Y8 ­ X1Y11
(RCAL)
GTY Quad 220 X1Y4 ­ X1Y7
GTY Quad 219 X1Y0 ­ X1Y3

Figure 12 : VU9P FPGA Clock Location

Functional Description ad-ug-1385_v1_5.pdf

Page 11

ADM-PCIE-9V5 User Manual
3.2.1 Si5328
If jitter attenuation is required please see the reference documentation for the Si5328. https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5328.pdf The circuit connections mirror the Xilinx VCU108 Development Kits (page 57 of the schematic, component U57). The MGT RXOUTCLK can be used to pass a recovered clock to the FPGA fabric. Please refer to Xilinx UG578 and the VCU108 for more information. The CLKIN2 input of the SI5328, provided by the SI5338, is only available in rev2 PCBs and onward (Serial number greater than 109).
3.2.2 PCIe Reference Clocks
The 8 MGT lanes connected to the PCIe card edge use MGT tiles 226 through 227 and use the system 100 MHz clock (net name PCIE_REFCLK). Alternatively, a clean, onboard 100MHz clock is available as well (net name PCIE_LCL_REFCLK).
3.2.3 Fabric Clock
The design offers a fabric clock (net name FABRICCLK) which defaults to 300 MHz. This clock is intended to be used for IDELAY elements in FPGA designs. The fabric clock is connected to a Global Clock (GC) pin. DIFF_TERM_ADV = TERM_100 is required for LVDS termination
3.2.4 Programming Clock (EMCCLK)
A 100MHz clock (net name EMCCLK_B) is fed into the EMCCLK pin to drive the SPI flash device during configuration of the FPGA. Note that this is not a global clock capable IO pin.
3.2.5 QSFP-DD Clock
The QSFP-DD clocks have a default 156.25MHz reference clock. Note that this clock frequency can be changed to any arbitrary clock frequency up to 312MHz by re-programing the Si5338 reprogrammable clock oscillator. See details on avr2util in the section: USB Interface. See net names MGTPROGCLK
for pin locations. The QSFP-DD cages are also located such that they can be clocked from the Si5328 jitter attenuators. See net names SI5328OUT for pin locations.
3.2.6 Ultraport SlimSAS (OpenCAPI)
The Ultraport SlimSAS connector is located in MGT tile 224 and 225. For OpenCAPI an external 156.25MHz clock is provided over the cable. See net names CAPICLK
for cable clock pin locations. Another alternative clock source for this interface is the PCIE_LCL_REFCLK clock synthesizer at 100MHz. For jitter sensitive applications, this interface can be clocked from the Si5328 jitter attenuator. See net names SI5328OUT* for pin locations.

Page 12

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
3.3 PCI Express
The ADM-PCIE-9V5 is capable of PCIe Gen 3 with 8 lanes. The FPGA drives these lanes directly using the Integrated PCI Express block from Xilinx. Negotiation of PCIe link speed and number of lanes used is generally automatic and does not require user intervention. PCI Express reset (PERST#) connected to the FPGA through a buffer. See Complete Pinout Table signal PERST0_1V8_L. The other pin assignments for the high speed lanes are provided in the pinout attached to the Complete Pinout Table The PCI Express specification requires that all add-in cards be ready for enumeration within 120ms after power is valid (100ms after power is valid + 20ms after PERST is released). The ADM- PCIE-9V5 does meet this requirement when configured from a tandem bitstream with the proper SPI constraints detailed in the section: Configuration From Flash Memory. For more details on tandem configuration, see Xilinx xapp 1179.
Note: Different motherboards/backplanes will benefit from different RX equalization schemes within the PCIe IP core provided by Xilinx. Alpha Data recommends using the following setting if a user experiences link errors or training issues with their system: within the IP core generator, change the mode to “Advanced” and open the “GT Settings” tab, change the “form factor driven insertion loss adjustment” from “Add-in Card” to “Chip-to-Chip” (See Xilinx PG195, PG213, and PG239 for more details).

Functional Description ad-ug-1385_v1_5.pdf

Page 13

ADM-PCIE-9V5 User Manual
3.4 QSFP-DD
Four QSFP-DD cages are available at the front panel. These cages are capable of housing either QSFP28 or QSFP-DD cables (backwards compatible). Both active optical and passive copper QSFP-DD/QSFP28 compatible models are fully compliant. The communication interface can run at up to 28Gbps per channel. Each QSFP-DD cage has 8 channels (total maximum bandwidth of 224Gbps per cage). This cage is ideally suited for 8x 10G/25G, 2x 100G Ethernet, or any other protocol supported by the Xilinx GTY Transceivers. Please see Xilinx User Guide UG578 for more details on the capabilities of the transceivers. All QSFP-DD cages have control signals connected to the FPGA. Their connectivity is detailed in the Complete Pinout Table at the end of this document. The notation used in the pin assignments is QSFP_0, QSFP_1, QSFP_2, and QSFP_3, with locations clarified in the diagram below. The Management Interface of each QSFP-DD cage is connected to the FPGA, as detailed in Complete Pinout Table. The available signals are SDA/SCL (I2C), INT_L (interrupt), LPMODE (low power mode), RST_L (reset), and MODPRS_L (module present).
Note: The LPMODE (Low Power Mode) to the cage is pulled up by default. The FPGA can either (a) drive the relevant LPMODE pin low or (b) issue I2C transactions in order to power-up a given QSFP-DD/QSFP28 module

Figure 13 : QSFP-DD Location
It is possible for Alpha Data to pre-fit the ADM-PCIE-9V5 with QSFP-DD and QSFP28 components. Please contact sales@alpha-data.com for full details and options.
Alpha Data has tested the ADM-PCIE-9V5 with an array of passive cables from multiple manufacturers. Please contact sales@alpha-data.com for more details on appropriate and available cables. Cable types include: QSFP-DD to 8x SFP, QSFP-DD to 2x QSFP, and QSFP-DD to QSFP-DD.

Page 14

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
3.5 OpenCAPI Ultraport SlimSAS
An Ultraport SlimSAS receptacle along the back of the board allows for OpenCAPI compliant interfaces running at 200G (8 channels at 25G). Please contact support@alpha-data.com or your IBM representative for more details on OpenCAPI and its benefits. The SlimSAS connector can also be used to connect multiple ADM-PCIE-9V5 cards within a chassis.

Figure 14 : OpenCAPI Location

CAPI_RX1_P CAPI_RX1_N CAPI_RX3_P CAPI_RX3_N
CAPI_RX4_P CAPI_RX4_N CAPI_RX6_P CAPI_RX6_N
CAPI_TX6_P CAPI_TX6_N CAPI_TX4_P CAPI_TX4_N
CAPI_TX3_P CAPI_TX3_N CAPI_TX1_P CAPI_TX1_N CAPI_TX0_P CAPI_TX0_N

C428 47nF C424 47nF C423 47nF C422 47nF
C418 47nF C413 47nF C408 47nF C407 47nF CAPI_I2C_SCL CAPI_I2C_SDA
C399 47nF C397 47nF C392 47nF C391 47nF
C378 47nF C366 47nF C363 47nF C358 47nF C356 47nF C354 47nF

A1 25V A2 25V A3
A4 25V A5 25V A6
A7 A8 A9 A10 25V A11 25V A12 A13 25V A14 25V A15 A16 A17 A18 A19 25V A20 25V A21 A22 25V A23 25V A24 A25 A26 A27 A28 25V A29 25V A30 A31 25V A32 25V A33 A34 25V A35 25V A36 A37 MH1 MH2

J10
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 MH1 MH2

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 MH3 MH4

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 MH3 MH4

C115 47nF 25V C112 47nF 25V C110 47nF 25V C105 47nF 25V
C104 47nF 25V C102 47nF 25V C101 47nF 25V C99 47nF 25V
CAPI_PRE_DETECT
C96 47nF 25V C95 47nF 25V C94 47nF 25V C92 47nF 25V CAPI_CLK_0_P CAPI_CLK_0_N
C83 47nF 25V C82 47nF 25V

GND

U10-J074-242T

GND

CAPI_RX0_P CAPI_RX0_N CAPI_RX2_P CAPI_RX2_N
CAPI_RX5_P CAPI_RX5_N CAPI_RX7_P CAPI_RX7_N
CAPI_INT/RESET CAPI_TX7_P CAPI_TX7_N CAPI_TX5_P CAPI_TX5_N
CAPI_TX2_P CAPI_TX2_N

Figure 15 : OpenCAPI Pinout

Functional Description ad-ug-1385_v1_5.pdf

Page 15

ADM-PCIE-9V5 User Manual

3.6 System Monitor

The ADM-PCIE-9V5 has the ability to monitor its own temperature and the voltages and currents of certain power supply rails, in order to provide an indication of board health. The monitoring is implemented using an Atmel AVR microcontroller.
If the core FPGA temperature exceeds 105 degrees Celsius, the FPGA will be cleared to prevent damage to the card.
The microcontroller monitors power supply rail voltages & currents and temperatures at certain points on the board. This information can be read out via USB using the avr2util utility, and also via PCIe if RD-9V5 is purchased.

Monitors ETC EC 12V_AUX 12V_AUX_I 12V_EDGE 12V_EDGE_I 3V3_EDGE 3V3_AUX 3V3_DIG 2V5_CLK 1V8_DIG 1V8_MGT_AUX 1V2_AVTT 0V9_AVCC
VCC_INT
GND uC_Temp Board0_Temp Board1_Temp FPGA_Temp

Identifier Purpose/Description

ETC

Elapsed time counter (seconds)

EC

Event counter (power cycles)

ADC00 ADC01 ADC02 ADC03 ADC04

12v board input supply from 6-pin ATX Cable 12V input current from 6-pin ATX Cable in amps 12V board input supply from PCIe Edge 12V board input current from PCIe Edge in amps 3.3V board input supply from PCIe edge (unused)

ADC05 3.3V auxilary board input supply from PCIE edge

ADC06 3.3V generated onboard for QSFP optics

ADC07 ADC08 ADC09 ADC10 ADC11

2.5V generated onboard for clock circuitry 1.8V generated onboard fpr FPGA IO voltage (VCCO) 1.8V generated onboard for transceiver power (AVCC_AUX) 1.2V generated onboard for transceiver Power (AVTT) 0.9V generated onboard for transceiver Power (AVCC)

ADC12

0.85-0.90V generated onboard for VccINT + VccBRAM + VccINT_IO

ADC13 0V electrical ground

TMP00 TMP01 TMP02 TMP03

uC on-die temperature Board temperature near front panel (U3) Board temperature near back edge (U23) FPGA on-die temperature

Table 6 : Voltage, Current, and Temperature Monitors

Page 16

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

3.6.1 System Monitor Status LEDs

LEDs D5 (Red) and D7 (Green) indicate the card health status.

LEDs Green Green + Red Flashing Green + Flashing Red (together) Flashing Green

  • Flashing Red (alternating) Flashing Green + Red
    Red
    Flashing Red

Status Running and no alarms Standby (Powered off)
Attention – critical alarm active
Service Mode
Attention – alarm active Missing application firmware or invalid firmware FPGA configuration cleared to protect board

Table 7 : Status LED Definitions

3.6.2 Fan Controllers
The onboard USB bus controlled by the system monitor has access to a MAX6620 fan controller. This device can be controlled through the multiple onboard system monitor communication interfaces, including USB, PCIe Edge SMBUS, and FPGA sysmon seral communication port. The fan controller is on I2C bus 1 at address 0x2a. For additional questions. Contact support@alpha-data.com with additional questions on utilizing these controllers.

Functional Description ad-ug-1385_v1_5.pdf

Page 17

ADM-PCIE-9V5 User Manual

3.7 USB Interface

The FPGA can be configured directly from the USB connection on either the front panel or the rear card edge. The ADM-PCIE-9V5 utilizes the Digilent USB- JTAG converter box which is supported by the Xilinx software tool suite. Simply connect a micro-USB AB type cable between the ADM-PCIE-9V5 USB port and a host computer with Vivado installed. Vivado Hardware Manager will automatically recognize the FPGA and allow you to configure the FPGA and the SPI configuration Flash memory.
The same USB connector is used to directly access the system monitor system. All voltages, currents, temperatures, and non-volatile clock configuration settings can be accessed using Alpha Data’s avr2util software at this interface.
Avr2util for Windows and the associated USB driver is downloadable here: https://support.alpha-data.com/pub/firmware/utilities/windows/
Avr2util for Linux is downloadable here: https://support.alpha- data.com/pub/firmware/utilities/linux/
Use “avr2util.exe /?” to see all options.
For example “avr2util.exe /usbcom com4 display-sensors” will display all sensor values.
For example “avr2util.exe /usbcom com4 setclknv 1 100000000” will set the MGT_PROGCLK_1 100MHz. setclk index 0 = MGT_PROGCLK_1, index 1 = MGT_PROGCLK_1, index 2 = MGT_PROGCLK_2, index 3 = FABRIC_CLK.
Change ‘com4’ to match the com port number assigned under windows device manager.

3.8 Configuration

There are two main ways of configuring the FPGA on the ADM-PCIE-9V5: · From Flash memory, at power-on, as described in Section 3.8.1
· Using USB cable connected at either USB port Section 3.8.2

3.8.1 Configuration From Flash Memory

The FPGA can be automatically configured at power-on from two 1 Gbit QSPI flash memory device configured as an x8 SPI device (Micron part numbers MT25QU01GBBB8E12-0). These flash devices are typically divided into two regions of 128 MiByte each, where each region is sufficiently large to hold an uncompressed bitstream for a VU5P or VU9P FPGA.
The ADM-PCIE-9V5 is shipped with a simple PCIe endpoint bitstream which should be visible to the operating system (using e.g. Windows Device Manager or “lspci” in Linux) in order to provided confidence that the card is working correctly when installed in a system. On request, Alpha Data can pre-load custom bitstreams during production test. Please contact sales@alpha-data.com in order to discuss this possibility.
It is possible to use Multiboot with a fallback image on this hardware. The master SPI configuration interface and the Fallback MultiBoot are discussed in detail in Xilinx UG570.
At power-on, the FPGA attempts to configure itself automatically in SPI master mode, depending on the header of the bitstream that has been flashed into the card. This normally results in SPIx8 configuration at EMCCLK frequency. The configuration scheme used in the ADM-PCIE-9V5 is compatible with Multiboot; see Xilinx UG570 for details. The FPGA can also be made to reconfigure itself from an arbitrary Flash address using the ICAPE3 primitive; this is also described in Xilinx UG570.
The image loaded can also support tandem PROM or tandem PCIE with field update configuration methods. These options reduce power-on load times to help meet the PCIe reset timing requirements. Tandem with field also enables a host system to reconfigure the user FPGA logic without losing the PCIe link, a useful feature when system resets and power cycles are not an option.

Page 18

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
The Alpha Data System Monitor is also capable of reconfiguring the flash memory and reprograming the FPGA. This provides a useful failsafe mechanism to re-program the FPGA even if it drops off the PCIe bus. The system monitor can be accessed with avr2util over USB at the front panel and rear edge.
3.8.1.1 Building and Programming Configuration Images
Generate a bitfile with these constraints (see xapp1233): · set_property BITSTREAM.GENERAL.COMPRESS TRUE [ current_design ] · set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN {DIV-1} [current_design] · set_property BITSTREAM.CONFIG.SPI_32BIT_ADDR YES [current_design] · set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 8 [current_design] · set_property BITSTREAM.CONFIG.SPI_FALL_EDGE YES [current_design] · set_property BITSTREAM.CONFIG.UNUSEDPIN {Pullnone} [current_design] · set_property CFGBVS GND [ current_design ] · set_property CONFIG_VOLTAGE 1.8 [ current_design ] · set_property BITSTREAM.CONFIG.OVERTEMPSHUTDOWN Enable [current_design] Generate an MCS file with these properties (write_cfgmem): · -format MCS · -size 256 · -interface SPIx8 · -loadbit “up 0x0000000 <directory/to/file/filename.bit>” (0th location) Program with vivado hardware manager with these settings (see xapp1233): · SPI part: mt25qu01g-spi- x1_x2_x4_x8 · State of non-config mem I/O pins: Pull-none
3.8.2 Configuration via JTAG
A micro-USB AB Cable may be attached to the front panel or rear edge USB port. This permits the FPGA to be reconfigured using the Xilinx Vivado Hardware Manager via the integrated Digilent JTAG converter box. The device will be automatically recognized in Vivado Hardware Manager.
For more detailed instructions, please see “Using a Vivado Hardware Manager to Program an FPGA Device” section of Xilinx UG908: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ ug908 -vivado-programming-debugging.pdf

Functional Description ad-ug-1385_v1_5.pdf

Page 19

ADM-PCIE-9V5 User Manual
3.9 GPIO Connector
The GPIO option consists of a versatile shrouded connector from Molex with part number 87832-1222. This connector gives users eight signals connected to the FPGA. Recommended mating plug: Molex 0875681273 or 0511101260

Figure 16 : GPIO Connector Schematic

Figure 17 : GPIO Connector Location

3.9.1 Direct Connect FPGA Signals
8 nets are broken out to the GPIO header, as four sets of differential pairs. These signal are suitable for any 1.8V signalling standards supported by the Xilinx UltraScale architecture. See Xilinx UG571 for IO options. LVDS and 1.8 CMOS are popular options. The 0th GPIO signal index is suitable for a global clock connection.
The direct connect GPIO signals are limited to 1.8V by a quickswitch (74CBTLVD3245PW) in order to protect the FPGA from overvoltage on IO pins. This quickswitch allows the signals to travel in either direction with only 4 ohms of series impedance and less than 1ns of propagation delay. The nets are directly connected to the FPGA after the quickswitch.
Direct connect signal names are labeled GPIO_0_1V8_P/N and GPIO_1_1V8_P/N, etc. to show polarity and grouping. The signal pin allocations can be found in Complete Pinout Table
3.9.2 Timing Input
Pins 1 and 2 of J1 can be used as an isolated timing input signal (up to 25MHz). Applications can either directly connect to the GPIO connector, or Alpha Data can provide a cabled solution with an SMA or similar connector on the front panel. Contact sales@alpha-data.com for front panel connector options.
For pin locations, see signal name ISO_CLK in Complete Pinout Table.

Page 20

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual The signal is isolated through a optical isolator part number TLP2367 with 220 ohm of series resistance.

Functional Description ad-ug-1385_v1_5.pdf

Page 21

ADM-PCIE-9V5 User Manual
3.10 User EEPROM
A 2Kb I2C user EEPROM is provided for storing MAC addresses or other user information. The EEPROM is part number CAT34C02HU4IGT4A The address pins A2, A1, and A0 are all strapped to a logical ‘0’. Write protect (WP), Serial Clock (SCL), and Serial Data (SDA) pin assignments can be found in Complete Pinout Table with the names SPARE_WP, SPARE_SCL, and SPARE_SDA respectively. WP, SDA, and SCL signals all have external pull-up resistors on the card.

Page 22

Functional Description ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual
Appendix A: Complete Pinout Table

Pin Number
BF12 BD12 BC8 BE12 BC9 BF11 AR8 AR9 AL8 AL9 BE24 BF24 BC23 BB1 BB2 AY1 AY2 AV1 AV2 AT1 AT2 AP1 AP2 AM1 AM2 AK1 AK2 AJ3 AJ4 BE4 BE5 BC4 BC5

Signal Name

Pin Name

Bank Voltage

AVR_B2U_1V8

IO_L2P_T0L_N2_66

AVR_HS_B2U_1V8

IO_L1P_T0L_N0_DBC_66

AVR_HS_CLK_1V8

IO_L12N_T1U_N11_GC_66

AVR_HS_U2B_1V8

IO_L1N_T0L_N1_DBC_66

AVR_MON_CLK_1V8

IO_L12P_T1U_N10_GC_66

AVR_U2B_1V8

IO_L2N_T0L_N3_66

CAPI_CLK_1_PIN_N

MGTREFCLK0N_224

CAPI_CLK_1_PIN_P

MGTREFCLK0P_224

CAPI_CLK_2_PIN_N

MGTREFCLK0N_225

CAPI_CLK_2_PIN_P

MGTREFCLK0P_225

CAPI_I2C_SCL_1V8

IO_L1P_T0L_N0_DBC_64

CAPI_I2C_SDA_1V8

IO_L1N_T0L_N1_DBC_64

CAPI_INT/RESET_1V8

IO_L2P_T0L_N2_64

CAPI_RX0_N

MGTYRXN0_224

CAPI_RX0_P

MGTYRXP0_224

CAPI_RX1_N

MGTYRXN1_224

CAPI_RX1_P

MGTYRXP1_224

CAPI_RX2_N

MGTYRXN2_224

CAPI_RX2_P

MGTYRXP2_224

CAPI_RX3_N

MGTYRXN3_224

CAPI_RX3_P

MGTYRXP3_224

CAPI_RX4_N

MGTYRXN0_225

CAPI_RX4_P

MGTYRXP0_225

CAPI_RX5_N

MGTYRXN1_225

CAPI_RX5_P

MGTYRXP1_225

CAPI_RX6_N

MGTYRXN2_225

CAPI_RX6_P

MGTYRXP2_225

CAPI_RX7_N

MGTYRXN3_225

CAPI_RX7_P

MGTYRXP3_225

CAPI_TX0_N

MGTYTXN0_224

CAPI_TX0_P

MGTYTXP0_224

CAPI_TX1_N

MGTYTXN1_224

CAPI_TX1_P

MGTYTXP1_224

Table 8 : Complete Pinout Table (continued on next page)

1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18)
MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18)
MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Complete Pinout Table ad-ug-1385_v1_5.pdf

Page 23

ADM-PCIE-9V5 User Manual

Pin Number
BA4 BA5 AW4 AW5 AU4 AU5 AT6 AT7 AR4 AR5 AP6 AP7 AF13 AE12 AL20
BA9
AY9
G22 R21 G21 Y1 Y2 W3 W4 V1 V2 U3 U4 H22 H23 V6 V7 T6 T7

Signal Name

Pin Name

Bank Voltage

CAPI_TX2_N

MGTYTXN2_224

MGT

CAPI_TX2_P

MGTYTXP2_224

MGT

CAPI_TX3_N

MGTYTXN3_224

MGT

CAPI_TX3_P

MGTYTXP3_224

MGT

CAPI_TX4_N

MGTYTXN0_225

MGT

CAPI_TX4_P

MGTYTXP0_225

MGT

CAPI_TX5_N

MGTYTXN1_225

MGT

CAPI_TX5_P

MGTYTXP1_225

MGT

CAPI_TX6_N

MGTYTXN2_225

MGT

CAPI_TX6_P

MGTYTXP2_225

MGT

CAPI_TX7_N

MGTYTXN3_225

MGT

CAPI_TX7_P

MGTYTXP3_225

MGT

CCLK

CCLK_0

1.8 (LVCMOS18)

DONE_1V8

DONE_0

1.8 (LVCMOS18)

EMCCLK_B

IO_L24P_T3U_N10_EMCCLK_65

1.8 (LVCMOS18)

FABRIC_CLK_PIN_N

IO_L13N_T2L_N1_GC_QBC_66

1.8 (LVDS with DIFF_TERM_ADV)

FABRIC_CLK_PIN_P

IO_L13P_T2L_N0_GC_QBC_66

1.8 (LVDS with DIFF_TERM_ADV)

FIREFLY_INT_1V8_L

IO_L13P_T2L_N0_GC_QBC_72

1.8 (LVCMOS18)

FIREFLY_MODPRS_L

IO_L3P_T0L_N4_AD15P_72

1.8 (LVCMOS18)

FIREFLY_RST_1V8_L

IO_L13N_T2L_N1_GC_QBC_72

1.8 (LVCMOS18)

FIREFLY_RX0_N

MGTYRXN0_231

MGT

FIREFLY_RX0_P

MGTYRXP0_231

MGT

FIREFLY_RX1_N

MGTYRXN1_231

MGT

FIREFLY_RX1_P

MGTYRXP1_231

MGT

FIREFLY_RX2_N

MGTYRXN2_231

MGT

FIREFLY_RX2_P

MGTYRXP2_231

MGT

FIREFLY_RX3_N

MGTYRXN3_231

MGT

FIREFLY_RX3_P

MGTYRXP3_231

MGT

FIREFLY_SCL_1V8

IO_L14N_T2L_N3_GC_72

1.8 (LVCMOS18)

FIREFLY_SDA_1V8

IO_L14P_T2L_N2_GC_72

1.8 (LVCMOS18)

FIREFLY_TX0_N

MGTYTXN0_231

MGT

FIREFLY_TX0_P

MGTYTXP0_231

MGT

FIREFLY_TX1_N

MGTYTXN1_231

MGT

FIREFLY_TX1_P

MGTYTXP1_231

Table 8 : Complete Pinout Table (continued on next page)

MGT

Page 24

Complete Pinout Table ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

Pin Number
P6 P7 M6 M7 AJ11 BF16 AP11 AN11 AM11 AL11
AM19
AM18
AN20 AP20 AV23 AU23 AV21 AU21 AV24 AU24 AR22 AR23 AC12 AT22 AK39 AK38
R8 R9 V39 V38 AJ8 AJ9 AC8 AC9

Signal Name

Pin Name

Bank Voltage

FIREFLY_TX2_N

MGTYTXN2_231

MGT

FIREFLY_TX2_P

MGTYTXP2_231

MGT

FIREFLY_TX3_N

MGTYTXN3_231

MGT

FIREFLY_TX3_P

MGTYTXP3_231

MGT

FPGA_FLASH_CE0_L

RDWR_FCS_B_0

1.8 (LVCMOS18)

FPGA_FLASH_CE1_L

IO_L2N_T0L_N3_FWE_FCS2_B_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ0

D00_MOSI_0

1.8 (LVCMOS18)

FPGA_FLASH_DQ1

D01_DIN_0

1.8 (LVCMOS18)

FPGA_FLASH_DQ2

D02_0

1.8 (LVCMOS18)

FPGA_FLASH_DQ3

D03_0

1.8 (LVCMOS18)

FPGA_FLASH_DQ4

IO_L22P_T3U_N6_DBC_AD0P _D04_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ5

IO_L22N_T3U_N7_DBC_AD0N _D05_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ6

IO_L21P_T3L_N4_AD8P_D06_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ7

IO_L21N_T3L_N5_AD8N_D07_65

1.8 (LVCMOS18)

GPIO_0_1V8_N

IO_L14N_T2L_N3_GC_64

1.8 (LVCMOS18or LVDS)

GPIO_0_1V8_P

IO_L14P_T2L_N2_GC_64

1.8 (LVCMOS18or LVDS)

GPIO_1_1V8_N

IO_L15N_T2L_N5_AD11N_64

1.8 (LVCMOS18or LVDS)

GPIO_1_1V8_P

IO_L15P_T2L_N4_AD11P_64

1.8 (LVCMOS18or LVDS)

GPIO_2_1V8_N

IO_L16N_T2U_N7_QBC_AD3N_64 1.8 (LVCMOS18or LVDS)

GPIO_2_1V8_P

IO_L16P_T2U_N6_QBC_AD3P_64 1.8 (LVCMOS18or LVDS)

GPIO_3_1V8_N

IO_L17N_T2U_N9_AD10N_64

1.8 (LVCMOS18or LVDS)

GPIO_3_1V8_P

IO_L17P_T2U_N8_AD10P_64

1.8 (LVCMOS18or LVDS)

INIT_B_1V8

INIT_B_0

1.8 (LVCMOS18)

ISO_CLK_1V8

IO_L13P_T2L_N0_GC_QBC_64

1.8 (LVCMOS18)

MGT_PROGCLK_0_PIN_N

MGTREFCLK0N_121

MGT REFCLK

MGT_PROGCLK_0_PIN_P

MGTREFCLK0P_121

MGT REFCLK

MGT_PROGCLK_1_PIN_N

MGTREFCLK0N_232

MGT REFCLK

MGT_PROGCLK_1_PIN_P

MGTREFCLK0P_232

MGT REFCLK

MGT_PROGCLK_2_PIN_N

MGTREFCLK0N_126

MGT REFCLK

MGT_PROGCLK_2_PIN_P

MGTREFCLK0P_126

MGT REFCLK

PCIE_LCL_REFCLK_PIN_N

MGTREFCLK1N_225

MGT REFCLK

PCIE_LCL_REFCLK_PIN_P

MGTREFCLK1P_225

MGT REFCLK

PCIE_REFCLK_PIN_N

MGTREFCLK0N_227

MGT REFCLK

PCIE_REFCLK_PIN_P

MGTREFCLK0P_227

Table 8 : Complete Pinout Table (continued on next page)

MGT REFCLK

Complete Pinout Table ad-ug-1385_v1_5.pdf

Page 25

ADM-PCIE-9V5 User Manual

Pin Number
AA3 AA4 AB1 AB2 AC3 AC4 AD1 AD2 AE3 AE4 AF1 AF2 AG3 AG4 AH1 AH2 Y6 Y7 AB6 AB7 AD6 AD7 AF6 AF7 AH6 AH7 AK6 AK7 AM6 AM7 AN4 AN5 AM17 AH11 T23 P22

Signal Name

Pin Name

Bank Voltage

PCIE_RX0_N

MGTYRXN3_227

PCIE_RX0_P

MGTYRXP3_227

PCIE_RX1_N

MGTYRXN2_227

PCIE_RX1_P

MGTYRXP2_227

PCIE_RX2_N

MGTYRXN1_227

PCIE_RX2_P

MGTYRXP1_227

PCIE_RX3_N

MGTYRXN0_227

PCIE_RX3_P

MGTYRXP0_227

PCIE_RX4_N

MGTYRXN3_226

PCIE_RX4_P

MGTYRXP3_226

PCIE_RX5_N

MGTYRXN2_226

PCIE_RX5_P

MGTYRXP2_226

PCIE_RX6_N

MGTYRXN1_226

PCIE_RX6_P

MGTYRXP1_226

PCIE_RX7_N

MGTYRXN0_226

PCIE_RX7_P

MGTYRXP0_226

PCIE_TX0_PIN_N

MGTYTXN3_227

PCIE_TX0_PIN_P

MGTYTXP3_227

PCIE_TX1_PIN_N

MGTYTXN2_227

PCIE_TX1_PIN_P

MGTYTXP2_227

PCIE_TX2_PIN_N

MGTYTXN1_227

PCIE_TX2_PIN_P

MGTYTXP1_227

PCIE_TX3_PIN_N

MGTYTXN0_227

PCIE_TX3_PIN_P

MGTYTXP0_227

PCIE_TX4_PIN_N

MGTYTXN3_226

PCIE_TX4_PIN_P

MGTYTXP3_226

PCIE_TX5_PIN_N

MGTYTXN2_226

PCIE_TX5_PIN_P

MGTYTXP2_226

PCIE_TX6_PIN_N

MGTYTXN1_226

PCIE_TX6_PIN_P

MGTYTXP1_226

PCIE_TX7_PIN_N

MGTYTXN0_226

PCIE_TX7_PIN_P

MGTYTXP0_226

PERST0_1V8_L

IO_T3U_N12_PERSTN0_65

PROGRAM_B_1V8

PROGRAM_B_0

QSFP_0_INT_1V8_L

IO_L6P_T0U_N10_AD6P_72

QSFP_0_LPMODE_1V8

IO_L5N_T0U_N9_AD14N_72

Table 8 : Complete Pinout Table (continued on next page)

MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18)

Page 26

Complete Pinout Table ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

Pin Number
P20 R22 BC46 BC45 BA46 BA45 AW46 AW45 AU46 AU45 K1 K2 H1 H2 F1 F2 D1 D2 N22 M22 BD43 BD42 BB43 BB42 AY43 AY42 AV43 AV42 G4 G5 F6 F7 E4 E5 C4 C5

Signal Name

Pin Name

Bank Voltage

QSFP_0_MODPRS_L

IO_L1P_T0L_N0_DBC_72

QSFP_0_RST_1V8_L

IO_L5P_T0U_N8_AD14P_72

QSFP_0_RX0_N

MGTYRXN0_120

QSFP_0_RX0_P

MGTYRXP0_120

QSFP_0_RX1_N

MGTYRXN1_120

QSFP_0_RX1_P

MGTYRXP1_120

QSFP_0_RX2_N

MGTYRXN2_120

QSFP_0_RX2_P

MGTYRXP2_120

QSFP_0_RX3_N

MGTYRXN3_120

QSFP_0_RX3_P

MGTYRXP3_120

QSFP_0_RX4_N

MGTYRXN0_233

QSFP_0_RX4_P

MGTYRXP0_233

QSFP_0_RX5_N

MGTYRXN1_233

QSFP_0_RX5_P

MGTYRXP1_233

QSFP_0_RX6_N

MGTYRXN2_233

QSFP_0_RX6_P

MGTYRXP2_233

QSFP_0_RX7_N

MGTYRXN3_233

QSFP_0_RX7_P

MGTYRXP3_233

QSFP_0_SCL_1V8

IO_L4P_T0U_N6_DBC_AD7P_72

QSFP_0_SDA_1V8

IO_L4N_T0U_N7_DBC_AD7N_72

QSFP_0_TX0_N

MGTYTXN0_120

QSFP_0_TX0_P

MGTYTXP0_120

QSFP_0_TX1_N

MGTYTXN1_120

QSFP_0_TX1_P

MGTYTXP1_120

QSFP_0_TX2_N

MGTYTXN2_120

QSFP_0_TX2_P

MGTYTXP2_120

QSFP_0_TX3_N

MGTYTXN3_120

QSFP_0_TX3_P

MGTYTXP3_120

QSFP_0_TX4_N

MGTYTXN0_233

QSFP_0_TX4_P

MGTYTXP0_233

QSFP_0_TX5_N

MGTYTXN1_233

QSFP_0_TX5_P

MGTYTXP1_233

QSFP_0_TX6_N

MGTYTXN2_233

QSFP_0_TX6_P

MGTYTXP2_233

QSFP_0_TX7_N

MGTYTXN3_233

QSFP_0_TX7_P

MGTYTXP3_233

Table 8 : Complete Pinout Table (continued on next page)

1.8 (LVCMOS18) 1.8 (LVCMOS18)
MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Complete Pinout Table ad-ug-1385_v1_5.pdf

Page 27

ADM-PCIE-9V5 User Manual

Pin Number
K24 K23 N20 L23 AR46 AR45 AN46 AN45 AL46 AL45 AJ46 AJ45 T1 T2 R3 R4 P1 P2 M1 M2 R23 T21 AT43 AT42 AP43 AP42 AM43 AM42 AL41 AL40 L4 L5 K6 K7 J4 J5

Signal Name

Pin Name

Bank Voltage

QSFP_1_INT_1V8_L

IO_L8P_T1L_N2_AD5P_72

QSFP_1_LPMODE_1V8 IO_L7N_T1L_N1_QBC_AD13N_72

QSFP_1_MODPRS_L

IO_L1N_T0L_N1_DBC_72

QSFP_1_RST_1V8_L

IO_L7P_T1L_N0_QBC_AD13P_72

QSFP_1_RX0_N

MGTYRXN0_121

QSFP_1_RX0_P

MGTYRXP0_121

QSFP_1_RX1_N

MGTYRXN1_121

QSFP_1_RX1_P

MGTYRXP1_121

QSFP_1_RX2_N

MGTYRXN2_121

QSFP_1_RX2_P

MGTYRXP2_121

QSFP_1_RX3_N

MGTYRXN3_121

QSFP_1_RX3_P

MGTYRXP3_121

QSFP_1_RX4_N

MGTYRXN0_232

QSFP_1_RX4_P

MGTYRXP0_232

QSFP_1_RX5_N

MGTYRXN1_232

QSFP_1_RX5_P

MGTYRXP1_232

QSFP_1_RX6_N

MGTYRXN2_232

QSFP_1_RX6_P

MGTYRXP2_232

QSFP_1_RX7_N

MGTYRXN3_232

QSFP_1_RX7_P

MGTYRXP3_232

QSFP_1_SCL_1V8

IO_L6N_T0U_N11_AD6N_72

QSFP_1_SDA_1V8

IO_T0U_N12_VRP_72

QSFP_1_TX0_N

MGTYTXN0_121

QSFP_1_TX0_P

MGTYTXP0_121

QSFP_1_TX1_N

MGTYTXN1_121

QSFP_1_TX1_P

MGTYTXP1_121

QSFP_1_TX2_N

MGTYTXN2_121

QSFP_1_TX2_P

MGTYTXP2_121

QSFP_1_TX3_N

MGTYTXN3_121

QSFP_1_TX3_P

MGTYTXP3_121

QSFP_1_TX4_N

MGTYTXN0_232

QSFP_1_TX4_P

MGTYTXP0_232

QSFP_1_TX5_N

MGTYTXN1_232

QSFP_1_TX5_P

MGTYTXP1_232

QSFP_1_TX6_N

MGTYTXN2_232

QSFP_1_TX6_P

MGTYTXP2_232

Table 8 : Complete Pinout Table (continued on next page)

1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18)
MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Page 28

Complete Pinout Table ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

Pin Number
H6 H7 J20 J22 M23 K22 W46 W45 U46 U45 R46 R45 N46 N45 L46 L45 J46 J45 G46 G45 E46 E45 K21 J21 T43 T42 P43 P42 M43 M42 K43 K42 H43 H42 F43 F42

Signal Name

Pin Name

Bank Voltage

QSFP_1_TX7_N

MGTYTXN3_232

QSFP_1_TX7_P

MGTYTXP3_232

QSFP_2_INT_1V8_L

IO_T1U_N12_72

QSFP_2_LPMODE_1V8

IO_L12N_T1U_N11_GC_72

QSFP_2_MODPRS_L

IO_L2N_T0L_N3_72

QSFP_2_RST_1V8_L

IO_L12P_T1U_N10_GC_72

QSFP_2_RX0_N

MGTYRXN0_126

QSFP_2_RX0_P

MGTYRXP0_126

QSFP_2_RX1_N

MGTYRXN1_126

QSFP_2_RX1_P

MGTYRXP1_126

QSFP_2_RX2_N

MGTYRXN2_126

QSFP_2_RX2_P

MGTYRXP2_126

QSFP_2_RX3_N

MGTYRXN3_126

QSFP_2_RX3_P

MGTYRXP3_126

QSFP_2_RX4_N

MGTYRXN0_127

QSFP_2_RX4_P

MGTYRXP0_127

QSFP_2_RX5_N

MGTYRXN1_127

QSFP_2_RX5_P

MGTYRXP1_127

QSFP_2_RX6_N

MGTYRXN2_127

QSFP_2_RX6_P

MGTYRXP2_127

QSFP_2_RX7_N

MGTYRXN3_127

QSFP_2_RX7_P

MGTYRXP3_127

QSFP_2_SCL_1V8

IO_L11P_T1U_N8_GC_72

QSFP_2_SDA_1V8

IO_L11N_T1U_N9_GC_72

QSFP_2_TX0_N

MGTYTXN0_126

QSFP_2_TX0_P

MGTYTXP0_126

QSFP_2_TX1_N

MGTYTXN1_126

QSFP_2_TX1_P

MGTYTXP1_126

QSFP_2_TX2_N

MGTYTXN2_126

QSFP_2_TX2_P

MGTYTXP2_126

QSFP_2_TX3_N

MGTYTXN3_126

QSFP_2_TX3_P

MGTYTXP3_126

QSFP_2_TX4_N

MGTYTXN0_127

QSFP_2_TX4_P

MGTYTXP0_127

QSFP_2_TX5_N

MGTYTXN1_127

QSFP_2_TX5_P

MGTYTXP1_127

Table 8 : Complete Pinout Table (continued on next page)

MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Complete Pinout Table ad-ug-1385_v1_5.pdf

Page 29

ADM-PCIE-9V5 User Manual

Pin Number
D43 D42 B43 B42 L20 M20 N23 L21 AG46 AG45 AF44 AF43 AE46 AE45 AD44 AD43 AC46 AC45 AB44 AB43 AA46 AA45 Y44 Y43 J24 M21 AK43 AK42 AJ41 AJ40 AG41 AG40 AE41 AE40 AC41 AC40

Signal Name

Pin Name

Bank Voltage

QSFP_2_TX6_N

MGTYTXN2_127

QSFP_2_TX6_P

MGTYTXP2_127

QSFP_2_TX7_N

MGTYTXN3_127

QSFP_2_TX7_P

MGTYTXP3_127

QSFP_3_INT_1V8_L

IO_L10N_T1U_N7_QBC_AD4N_72

QSFP_3_LPMODE_1V8 IO_L10P_T1U_N6_QBC_AD4P_72

QSFP_3_MODPRS_L

IO_L2P_T0L_N2_72

QSFP_3_RST_1V8_L

IO_L9N_T1L_N5_AD12N_72

QSFP_3_RX0_N

MGTYRXN0_122

QSFP_3_RX0_P

MGTYRXP0_122

QSFP_3_RX1_N

MGTYRXN1_122

QSFP_3_RX1_P

MGTYRXP1_122

QSFP_3_RX2_N

MGTYRXN2_122

QSFP_3_RX2_P

MGTYRXP2_122

QSFP_3_RX3_N

MGTYRXN3_122

QSFP_3_RX3_P

MGTYRXP3_122

QSFP_3_RX4_N

MGTYRXN0_125

QSFP_3_RX4_P

MGTYRXP0_125

QSFP_3_RX5_N

MGTYRXN1_125

QSFP_3_RX5_P

MGTYRXP1_125

QSFP_3_RX6_N

MGTYRXN2_125

QSFP_3_RX6_P

MGTYRXP2_125

QSFP_3_RX7_N

MGTYRXN3_125

QSFP_3_RX7_P

MGTYRXP3_125

QSFP_3_SCL_1V8

IO_L8N_T1L_N3_AD5N_72

QSFP_3_SDA_1V8

IO_L9P_T1L_N4_AD12P_72

QSFP_3_TX0_N

MGTYTXN0_122

QSFP_3_TX0_P

MGTYTXP0_122

QSFP_3_TX1_N

MGTYTXN1_122

QSFP_3_TX1_P

MGTYTXP1_122

QSFP_3_TX2_N

MGTYTXN2_122

QSFP_3_TX2_P

MGTYTXP2_122

QSFP_3_TX3_N

MGTYTXN3_122

QSFP_3_TX3_P

MGTYTXP3_122

QSFP_3_TX4_N

MGTYTXN0_125

QSFP_3_TX4_P

MGTYTXP0_125

Table 8 : Complete Pinout Table (continued on next page)

MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Page 30

Complete Pinout Table ad-ug-1385_v1_5.pdf

ADM-PCIE-9V5 User Manual

Pin Number
AA41 AA40 W41 W40 U41 U40 BC15 BB9 AH39 AH38
N8 N9 AY23 AY24 AL24 T39 T38 AN8 AN9 AW22 AW23 AM24 AM21 AL21 BF14 BE15 BF15 BC11 AV9 AV8 AY8 AY7 AW8 AW7 BA15 BA14

Signal Name

Pin Name

QSFP_3_TX5_N QSFP_3_TX5_P QSFP_3_TX6_N QSFP_3_TX6_P QSFP_3_TX7_N QSFP_3_TX7_P
RF_DIR RF_IO SI5328_0_OUT_0_PIN_N SI5328_0_OUT_0_PIN_P SI5328_0_OUT_1_PIN_N SI5328_0_OUT_1_PIN_P SI5328_0_REFCLK_IN_N SI5328_0_REFCLK_IN_P SI5328_0_RST_1V8_L SI5328_1_OUT_0_PIN_N SI5328_1_OUT_0_PIN_P SI5328_1_OUT_1_PIN_N SI5328_1_OUT_1_PIN_P SI5328_1_REFCLK_IN_N SI5328_1_REFCLK_IN_P SI5328_1_RST_1V8_L SI5328_1V8_SCL SI5328_1V8_SDA SPARE_SCL SPARE_SDA SPARE_WP SRVC_MD_L_1V8 USER_LED_G0_1V8 USER_LED_G1_1V8 USER_LED_G2_1V8 USER_LED_G3_1V8 USER_LED_G4_1V8 USER_LED_G5_1V8 USR_SW_0 USR_SW_1

MGTYTXN1_125 MGTYTXP1_125 MGTYTXN2_125 MGTYTXP2_125 MGTYTXN3_125 MGTYTXP3_125 IO_L21P_T3L_N4_AD8P_66 IO_L14P_T2L_N2_GC_66 MGTREFCLK1N_121 MGTREFCLK1P_121 MGTREFCLK1N_232 MGTREFCLK1P_232 IO_L11N_T1U_N9_GC_64 IO_L11P_T1U_N8_GC_64 IO_L24P_T3U_N10_64 MGTREFCLK1N_126 MGTREFCLK1P_126 MGTREFCLK1N_224 MGTREFCLK1P_224 IO_L12N_T1U_N11_GC_64 IO_L12P_T1U_N10_GC_64 IO_L24N_T3U_N11_64 IO_L23N_T3U_N9_64 IO_L23P_T3U_N8_64 IO_L5N_T0U_N9_AD14N_66 IO_L6P_T0U_N10_AD6P_66 IO_L6N_T0U_N11_AD6N_66 IO_L3P_T0L_N4_AD15P_66 IO_L16P_T2U_N6_QBC_AD3P_66 IO_L16N_T2U_N7_QBC_AD3N_66 IO_L17P_T2U_N8_AD10P_66 IO_L17N_T2U_N9_AD10N_66 IO_L18P_T2U_N10_AD2P_66 IO_L18N_T2U_N11_AD2N_66 IO_L22N_T3U_N7_DBC_AD0N_66 IO_L23P_T3U_N8_66

Table 8 : Complete Pinout Table

Complete Pinout Table ad-ug-1385_v1_5.pdf

Bank Voltage
MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK 1.8 (LVDS) 1.8 (LVDS) 1.8 (LVCMOS18) MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK 1.8 (LVDS) 1.8 (LVDS) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18)
Page 31

ADM-PCIE-9V5 User Manual

Revision History

Date 29 Aug 2019 8 Nov 2019 18 Feb 2020 30 Apr 2020
12 Jun 2020 17 Jul 2023

Revision 1.0 1.1 1.2 1.3
1.4 1.5

Changed By K. Roth
K. Roth

Initial Release

Nature of Change

Updated sections Power Requirements and Switches to detail 12V auto-detect feature for rev2 boards.

K. Roth K. Roth

Added section KN32 ­ Emissions
Image QSFP-DD Location updated to show proper QSFP cage order at previous revision 1.2, and modified section Si5328 to remove reference to VCU110 and added notes on RXOUTCLK.

K. Roth

Image OpenCAPI Pinout added to show J10 pinout, and updated Thermal Performance with detailed data for blower and LFM thermal performance.

K. Roth

Separated PCB dimensions in Physical Specifications for consistency with other user guides.

Address: Suite L4A, 160 Dundee Street,

Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600

Fax:

+44 131 558 2700

email:

sales@alpha-data.com

website: http://www.alpha-data.com

5.0

Address: 10822 West Toller Drive, Suite 250

Littleton, CO 80127

Telephone: (303) 954 8768

Fax:

(866) 820 9956 – toll free

email:

sales@alpha-data.com

website: http://www.alpha-data.com

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals