ALPHA DATA ADM-PCIE-9H7 Data Center board with Xilinx Virtex Ultrascale User Manual Product Information

May 15, 2024
ALPHA DATA

ADM-PCIE-9H7 Data Center board with Xilinx Virtex Ultrascale

“`html

Product Information

Specifications

  • Product Name: ADM-PCIE-9H7

  • Revision: 1.5

  • Date: 28th July 2022

  • Manufacturer: Alpha Data Parallel Systems
    Ltd.

  • Key Features: High-performance reconfigurable
    computing card for Data Center applications, featuring a Xilinx
    Virtex UltraScale+ Plus FPGA with High Bandwidth Memory (HBM)

Product Usage Instructions

Introduction

The ADM-PCIE-9H7 is designed for high-performance reconfigurable
computing in Data Center applications. It features a Xilinx Virtex
UltraScale+ Plus FPGA with High Bandwidth Memory (HBM).

Key Features

The key features of the ADM-PCIE-9H7 include high-performance
computing capabilities suitable for Data Center applications.

Order Code

The order code for the ADM-PCIE-9H7 is ADM-PCIE-9H7. Refer to
the datasheet for complete ordering options.

Board Information

Physical Specifications

  • PCB Dimensions: 111.15 mm x 254 mm x 1.6
    mm

  • Fully Assembled Dimensions: 125.2 mm x 267.2
    mm x 41.9 mm, Weight: 1300 grams

Chassis Requirements

PCI Express

The ADM-PCIE-9H7 complies with PCI Express CEM revision 3.0 and
supports PCIe Gen 1/2/3 with 1/2/4/8/16 lanes using the Xilinx
Integrated Block for PCI Express.

FAQ

Q: What are the key features of the ADM-PCIE-9H7?

A: The key features include high-performance reconfigurable
computing capabilities, a Xilinx Virtex UltraScale+ Plus FPGA, and
High Bandwidth Memory (HBM) suitable for Data Center
applications.

Q: What are the physical dimensions of the ADM-PCIE-9H7?

A: The PCB dimensions are 111.15 mm x 254 mm x 1.6 mm, and the
fully assembled dimensions are 125.2 mm x 267.2 mm x 41.9 mm with a
weight of 1300 grams.

“`

ADM-PCIE-9H7 User Manual
Document Revision: 1.5 28th July 2022

ADM-PCIE-9H7 User Manual

© 2022 Copyright Alpha Data Parallel Systems Ltd. All rights reserved.
This publication is protected by Copyright Law, with all rights reserved. No part of this publication may be reproduced, in any shape or form, without prior written consent from Alpha
Data Parallel Systems Ltd.

Head Office

Address: Suite L4A, 160 Dundee Street,

Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600

Fax:

+44 131 558 2700

email:

sales@alpha-data.com

website: http://www.alpha-data.com

US Office
10822 West Toller Drive, Suite 250 Littleton, CO 80127 (303) 954 8768 (866) 820 9956 – toll free sales@alpha-data.com http://www.alpha-data.com

All trademarks are the property of their respective owners.

ADM-PCIE-9H7 User Manual

Table Of Contents

1 1.1 1.2
2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1
3 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.3 3.4 3.5 3.5.1 3.6 3.7 3.7.1 3.7.2 3.8 3.9 3.9.1 3.9.1.1 3.9.2 3.10 3.10.1 3.10.2 3.11 3.12 3.12.1

Introduction …………………………………………………………………………………………………………………….. 1 Key Features …………………………………………………………………………………………………………………. 1 Order Code …………………………………………………………………………………………………………………… 1
Board Information ……………………………………………………………………………………………………………. 2 Physical Specifications …………………………………………………………………………………………………… 2 Chassis Requirements ……………………………………………………………………………………………………. 2 PCI Express ………………………………………………………………………………………………………………. 2 Mechanical Requirements …………………………………………………………………………………………… 2 Power Requirements ………………………………………………………………………………………………….. 2 Thermal Performance …………………………………………………………………………………………………….. 4 Active VS Passive Thermal Management ………………………………………………………………………. 5
Functional Description …………………………………………………………………………………………………….. 6 Overview ………………………………………………………………………………………………………………………. 6 Switches ……………………………………………………………………………………………………………………. 7 LEDs ………………………………………………………………………………………………………………………… 8 Clocking ……………………………………………………………………………………………………………………….. 9 Si5328 …………………………………………………………………………………………………………………….. 10 PCIe Reference Clocks ……………………………………………………………………………………………… 10 Fabric Clock …………………………………………………………………………………………………………….. 10 Auxiliary Clock ………………………………………………………………………………………………………….. 11 Programming Clock (EMCCLK) ………………………………………………………………………………….. 11 QSFP28 ………………………………………………………………………………………………………………….. 11 Ultraport SlimSAS (OpenCAPI) …………………………………………………………………………………… 11 FireFly …………………………………………………………………………………………………………………….. 11 PCI Express ………………………………………………………………………………………………………………… 12 QSFP28 ……………………………………………………………………………………………………………………… 13 FireFly ………………………………………………………………………………………………………………………… 14 QSFP Expansion ……………………………………………………………………………………………………… 15 OpenCAPI Ultraport SlimSAS ………………………………………………………………………………………… 16 System Monitor ……………………………………………………………………………………………………………. 17 System Monitor Status LEDs ……………………………………………………………………………………… 18 Fan Controllers ………………………………………………………………………………………………………… 18 USB Interface ………………………………………………………………………………………………………………. 19 Configuration ……………………………………………………………………………………………………………….. 19 Configuration From Flash Memory ……………………………………………………………………………… 19 Building and Programming Configuration Images ……………………………………………………… 20 Configuration via JTAG ……………………………………………………………………………………………… 20 GPIO Connector ………………………………………………………………………………………………………….. 21 Direct Connect FPGA Signals …………………………………………………………………………………….. 21 Timing Input …………………………………………………………………………………………………………….. 21 User EEPROM …………………………………………………………………………………………………………….. 22 Battery Backed Encryption …………………………………………………………………………………………….. 22 Top Shroud Removal ………………………………………………………………………………………………… 23

Appendix A Complete Pinout Table …………………………………………………………………………………………………… 25

List of Tables

Table 1 Table 2 Table 3

Mechanical Dimensions (PCB only) ……………………………………………………………………………………… 2 Mechanical Dimensions (Fully Assembled) …………………………………………………………………………… 2 Available Power By Rail ……………………………………………………………………………………………………… 3

ADM-PCIE-9H7 User Manual

Table 4 Table 5 Table 6 Table 7 Table 8 Table 9

Switch Functions ……………………………………………………………………………………………………………….. 7 LED Details ………………………………………………………………………………………………………………………. 8 QSFP28 Part Numbers …………………………………………………………………………………………………….. 13 Voltage, Current, and Temperature Monitors ……………………………………………………………………….. 17 Status LED Definitions ……………………………………………………………………………………………………… 18 Complete Pinout Table ……………………………………………………………………………………………………… 25
List of Figures

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18

ADM-PCIE-9H7 Product Photo ……………………………………………………………………………………………. 1 Thermal Performance ………………………………………………………………………………………………………… 4 ADM-PCIE-9H7 Heat Sink with Fans ……………………………………………………………………………………. 5 ADM-PCIE-9H7 Block Diagram …………………………………………………………………………………………… 6 Switches …………………………………………………………………………………………………………………………… 7 Front Panel LEDs ………………………………………………………………………………………………………………. 8 Clock Topology ………………………………………………………………………………………………………………….. 9 Si5328 Block Diagram ……………………………………………………………………………………………………… 10 QSFP Locations ………………………………………………………………………………………………………………. 13 FireFly Locations ……………………………………………………………………………………………………………… 14 FQSFP connections …………………………………………………………………………………………………………. 15 FQSFP with shroud ………………………………………………………………………………………………………….. 15 OpenCAPI Location …………………………………………………………………………………………………………. 16 Flash Address Map ………………………………………………………………………………………………………….. 19 GPIO Connector Schematic ………………………………………………………………………………………………. 21 GPIO Connector Location …………………………………………………………………………………………………. 21 Top Shroud Screws ………………………………………………………………………………………………………….. 22 Top Shroud Screws ………………………………………………………………………………………………………….. 23

ADM-PCIE-9H7 User Manual
1 Introduction
The ADM-PCIE-9H7 is a high-performance reconfigurable computing card intended for Data Center applications, featuring a Xilinx Virtex UltraScale+ Plus FPGA with High Bandwidth Memory (HBM).

Figure 1 : ADM-PCIE-9H7 Product Photo
1.1 Key Features
Key Features · PCIe Gen1/2/3 x1/2/4/8/16 capable · Passive and active thermal management configuration · 3/4 length, full height, 2 slot, x16 edge PCIe form factor (GPU size) · 8GB HBM on-die memory capable of 460GB/s · Four QSFP28 cages capable of data rates up to 28 Gbps per channel (112 Gbps per cage) · Two 8 lane Ultraport SlimSAS connectors compliant with OpenCAPI · Supports either VU35P or VU37P Virtex UltraScale+ FPGAs · Eight (VU37P) or four (VU35P) FireFly sites capable of data rates up to 28 Gbps per channel (112 Gbps
per site) · Front panel and rear edge JTAG access via USB port · FPGA configurable over USB/JTAG and SPI configuration flash · Voltage, current, and temperature monitoring · 16 GPIO signals and 1 isolated timing input
1.2 Order Code
ADM-PCIE-9H7
See the datasheet for complete ordering options.

Introduction ad-ug-1341_v1_5.pdf

Page 1

ADM-PCIE-9H7 User Manual

2 Board Information

2.1 Physical Specifications

The ADM-PCIE-9H7 complies with PCI Express CEM revision 3.0.

Description PCB Dy PCB Dx PCB Dz

Measure 111.15 mm
254 mm 1.6 mm

Table 1 : Mechanical Dimensions (PCB only)

Description Total Dy Total Dx Total Dz Weight

Measure 125.2 mm 267.2 mm 41.9 mm 1300 grams

Table 2 : Mechanical Dimensions (Fully Assembled)

2.2 Chassis Requirements

2.2.1 PCI Express
The ADM-PCIE-9H7 is capable of PCIe Gen 1/2/3 with 1/2/4/8/16 lanes, using the Xilinx Integrated Block for PCI Express.
2.2.2 Mechanical Requirements
A 16-lane physical PCIe slot is required for mechanical compatibility.
2.2.3 Power Requirements
The ADM-PCIE-9H7 has a PCIe Auxiliary power connector on the back edge. This must be used in combination with the PCIe edge connector order for the board to power up. The total power envelope for the card is 225W.
The power sense signals as defined in the PCIe CEM are available to the FPGA for integration into user logic. It is highly recommended that if the application requires more than 150W available between the 6-pin Auxiliary plug and PCIe edge, the sense pins are interrogated to ensure the 8-pin 150W connector is present. For constraint information, see net names PWR_SENSE0_PIN, and PWR_SENSE1_PIN in Complete Pinout Table.
The PCIe Specification permits a standard full-height, double slot PCIe card to dissipate up to 225 W of power, drawn from the PCIe slot and auxiliary connector combined. Power consumption estimation requires the use of the Xilinx XPE spreadsheet and a power estimator tool available from Alpha Data. Please contact support@alpha-data.com to obtain this tool.
The power available to the rails calculated using XPE are as follows:

Page 2

Board Information ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
Voltage 0.72-0.90 0.85-0.90
0.9 1.2 1.2 1.8 1.8 2.5 3.3

Source Name VCC_INT
VCCINT_IO + VCC_BRAM MGTAVCC MGTAVTT
VCC_HBM * VCC_IO_HBM VCCAUX + VCCAUX_IO + VCCO_1.8V
MGTVCCAUX VCCAUX_HBM 3.3V for Optics Table 3 : Available Power By Rail

Current Capability 102A 25A 14A 25A 18A 7A 1A 2A 25A

Board Information ad-ug-1341_v1_5.pdf

Page 3

ADM-PCIE-9H7 User Manual
2.3 Thermal Performance
If the FPGA core temperature exceeds 105 degrees Celsius, the FPGA design will be cleared to prevent the card from over-heating. The ADM-PCIE-9H7 comes with a heat sink to reduce the heat of the FPGA which is typically the hottest point on the card. The FPGA die temperature must remain under 100 degrees Celsius. To calculate the FPGA die temperature, take your application power and multiply by Theta JA from the table below, and add to your system internal ambient temperature. If you are using the fan provided with the board, you will find theta JA is approximately 0.4 degC/W for the board in still air. The power dissipation can be estimated by using the Alpha Data power estimator in conjunction with the Xilinx Power Estimator (XPE) downloadable at http://www.xilinx.com/products/technology/power/xpe.html . Download the UltraScale tool and set the Device to Virtex UltraScale+, VU37P or VU35P, FSVH2892, -2 or -3, Extended. Set the ambient temperature to your system ambient and select User Override for the Effective theta JA and enter the figure associated with your system LFM in the blank field. Proceed to enter all applicable design elements and utilization in the following spreadsheet tabs. Next aquire the 9H7 power estimator from Alpha Data by contacting support@alpha-data.com. You will then plug in the FPGA power figures along with Optical module figures to get a board level estimate.
Figure 2 : Thermal Performance

Page 4

Board Information ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
2.3.1 Active VS Passive Thermal Management
Because it is likely a generic PC chassis to not provide sufficient airflow to cool the card, the ADM-PCIE-9H7 default built utilizes the active cooling configuration with fans installed to force air across the heat sink. If the ADM-PCIE-9H7 will be installed in a server with good controlled airflow, the order option /NF can be used to receive cards in the passive cooling configuration with the fans removed. The fans have a much shorter mean time between failure (MTBF) than the rest of the assembly, so passive cards have much longer life expectance before requiring maintenance. The ADM-PCIE-9H7 also includes fan speed controllers, allowing variable fan speed based on die temperature, and detection of failed fans (see section Fan Controllers).
Figure 3 : ADM-PCIE-9H7 Heat Sink with Fans

Board Information ad-ug-1341_v1_5.pdf

Page 5

ADM-PCIE-9H7 User Manual

3 Functional Description

3.1 Overview
The ADM-PCIE-9H7 is a versatile reconfigurable computing platform with a Virtex UltraScale+ VU37P or VU35P FPGA, a Gen3x16 PCIe interface, 8GB of HBM memory, four QSFP28 cages plus 8 FireFly sites (4 FireFly with a VU35P) each capable of 4x 28G or 1x 112G Serial IO of any Xilinx supported standard (Ethernet, SRIO, Infiniband, etc.), two OpenCAPI compatible Ultraport SlimSAS connector also capable of 28G/channel, an isolated input for a timing synchronization pulse, a 20 pin header for general purpose use (clocking, control pins, debug, etc.), and a robust system monitor.

(Q4xS28F(Q4GPxSb22p(8QF48sGxP)S2b28Fp(Q4G8sPx)Sb22p8F8sGP) b2p8s)

GPIO+PWR

x16

PPS ISOLATION

(4Fx2ir8(e4GFFxb2ilrp(y84esFGx)F2ibrl8p(ye4GsFFx)b2ilrpy8esG)Fblpys) x16

USB

Note: 4x FireFly sites not connected in VU35P (non-standard)

(back)

USB to JTAG

Mux+Hub

System Monitor

MGT GPIO

MGT

MGT

XCVU35P-2FSVH2892E or
XCVU37P-2FSVH2892E MGT

x16

(4Fx2ir8(e4GFFxb2ilrp(y84esFGx)F2ibrl8p(ye4GsFFx)b2ilrpy8esG)Fblpys)

x8

OpenCAPI

MGT

x8

OpenCAPI

0

MGT MGT MGT MGT

USB

(front)

QSPI (Config)

I2C (0,4) (5,7) (8,11) (12,15)
x16 PCIe Gen3 Edge

12V connector
(PCIe external)

Figure 4 : ADM-PCIE-9H7 Block Diagram

Page 6

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.1.1 Switches
The ADM-PCIE-9H7 has an octal DIP switch SW1, located on the rear side of the board. The function of each switch in SW1 is detailed below:

Figure 5 : Switches

Switch

Factory Default

Function

OFF State

SW1-1 OFF

User Switch 0

Pin BF52 = ‘1’

SW1-2 OFF

User Switch 1

Pin BF47 = ‘1’

SW1-3 SW1-4 SW1-5
SW1-6
SW1-7

OFF OFF OFF
ON
ON

Reserved
Power Off
Service Mode
HOST_I2 C_EN
CAPI_VP D_EN

Reserved Board will power up Regular Operation
Sysmon over PCIe I2C
OpenCAPI VPD available

SW1-8

ON

CAPI_VP D_WP

CAPI VPD is write protected

Table 4 : Switch Functions Use IO Standard “LVCMOS18” when constraining the user switch pins.

ON State Pin BF52 = ‘0’ Pin BF47 = ‘0’
Reserved Immediately power down Firmware update service mode
Sysmon isolated OpenCAPI VPD isolated
CAPI VPD is writable

Functional Description ad-ug-1341_v1_5.pdf

Page 7

ADM-PCIE-9H7 User Manual

3.1.2 LEDs
There are 24 LEDs on the ADM-PCIE-9H7, 21 of which are general purpose and whose meaning can be defined by the user. The other 3 have fixed functions described below:

D9 D11 D13 D14
CG1 CG0 CR0 CR1

D15 D16 D17 D18
BG0 BG1 BR0 BR1

D4 D6 D7

D8

DG0 DG1 DR0 DR1

QSFP LEDs

D21 D22 D23 D24
AG0 AG1 AR0 AR1

Status LEDs

D1

D2

D3

STAT_0 STAT_1 DONE

User LEDs

D25

D26

D27

LED_G2 LED_G1 LED_G0

D29

D30

LED_G3 LED_R0

Figure 6 : Front Panel LEDs

Comp. Ref. D1 D2 D3
D4-D24

Function
Status 0 Status 1 DONE QSFPLED*

ON State

OFF State

See Status LED Definitions

See Status LED Definitions

FPGA is configured

FPGA is not configured

User defined ‘0’

User defined ‘1’

D25-D30 USERLED*

User defined ‘0’

User defined ‘1’

Table 5 : LED Details See Section Complete Pinout Table for full list of user controlled LED nets and pins

Rev 1 PCBs LED nets QSFP_LED_CG0 and QSFP_LED_CR0 are tied together

Rev 1 PCBs LED nets QSFP_LED_CG1 and QSFP_LED_CR1 are tied together

Page 8

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

3.2 Clocking
The ADM-PCIE-9H7 provides flexible reference clock solutions for the many multi-gigabit transceiver quads and FPGA fabric. Any clock out of the Si5338 Clock Synthesizer is re-configurable from either the front panel USB USB Interface or the Alpha Data sysmon FPGA serial port. This allows the user to configure almost any arbitrary clock frequencies during application run time. Maximum clock frequency is 312.5MHz. After a clock is programmed to a certain frequency, that frequency will become the default on power-up.
There are also three available Si5328 jitter attenuators. These can provide clean clocks to all FireFly and QSFP28 quad locations at many clock frequencies. These devices do only use volatile memory, so the FPGA design will need to re-configure the circuits after any power cycle event.
All clock names in the section below can be found in Complete Pinout Table.

Card Edge PCIe Ref Clock (100MHz) On-board PCIe Ref Clock (100MHz)

PCIe Ref Clock (MGTREFCLK0_225) PCIe Ref Clock (MGTREFCLK0_226)

25MHz 30ppm Source

Si5338 0 Clock 1 Synth 2
3

SI5330B Fanout
SI5330B Fanout

FireFly CLK 161.1328125MHz Default (MGTREFCLK0_125) FireFly CLK 161.1328125MHz Default (MGTREFCLK0_126) FireFly CLK 161.1328125MHz Default (MGTREFCLK0_234) FireFly CLK 161.1328125MHz Default (MGTREFCLK0_135) QSFP28 161.1328125MHz Factory Default (MGTREFCLK0_228) QSFP28 161.1328125MHz Factory Default (MGTREFCLK0_230) QSFP28 161.1328125MHz Factory Default (MGTREFCLK0_129) QSFP28 161.1328125MHz Factory Default (MGTREFCLK0_131)
AUX_CLK 300Mhz Default (IO Bank 64)
FABRIC_CLK 300MHz Default (IO Bank 64)

CAPI Cable Clock (156.25MHz when used) CAPI Cable Clock (156.25MHz when used)

CAPI Cable Clock (MGTREFCLK0_128) CAPI Cable Clock (MGTREFCLK0_130)

Figure 7 : Clock Topology

Functional Description ad-ug-1341_v1_5.pdf

Page 9

ADM-PCIE-9H7 User Manual

3.2.1 Si5328

If jitter attenuation is required please see the reference documentation for the Si5328. https://www.silabs.com/ Support%20Documents/TechnicalDocs/Si5328.pdf
See diagram below for net names and configuration settings.

Crystal
114.285MHz
Crystal
114.285MHz
Crystal
114.285MHz

XA/XB CLKIN1
I2C

Si5328_2 CLKOUT1

(2.5V VCC)

CLKOUT2

Address: 1101010 CS_CA = CMODE = GND
Other control pins = N/C

XA/XB CLKIN1
I2C

Si5328 _1 CLKOUT1

(2.5V VCC)

CLKOUT2

Address: 1101001 CS_CA = CMODE = GND
Other control pins = N/C

XA/XB CLKIN1
I2C

Si5328_0 CLKOUT1

(2.5V VCC)

CLKOUT2

Address: 1101000 CS_CA = CMODE = GND
Other control pins = N/C

GPIO (LVCMOS18) Bank 66 SI5328_1V8_SDA SI5328_1V8_SCL
GPIO (LVDS) Bank 64 SI5328_0_REFCLK_IN_P SI5328_0_REFCLK_IN_N
GPIO (LVDS) Bank 66 SI5328_1_REFCLK_IN_P SI5328_1_REFCLK_IN_N
GPIO (LVDS) Bank 66 SI5328_2_REFCLK_IN_P SI5328_2_REFCLK_IN_N
FPGA

Quad 127 REFCLK0 (LVDS) SI5328_0_OUT1_P SI5328_0_OUT1_N
Quad 124 REFCLK0 (LVDS) SI5328_0_OUT0_P SI5328_0_OUT0_N
Quad 134 REFCLK0 (LVDS) SI5328_1_OUT1_P SI5328_1_OUT1_N
Quad 235 REFCLK0 (LVDS) SI5328_1_OUT0_P SI5328_1_OUT0_N
Quad 231 REFCLK0 (LVDS) SI5328_2_OUT1_P SI5328_2_OUT1_N
Quad 229 REFCLK0 (LVDS) SI5328_2_OUT0_P SI5328_2_OUT0_N

Figure 8 : Si5328 Block Diagram

3.2.2 PCIe Reference Clocks
The 16 MGT lanes connected to the PCIe card edge use MGT tiles 224 through 227 and use the system 100 MHz clock (net name PCIE_REFCLK). Alternatively, a clean, onboard 100MHz clock is available as well (net name PCIE_LCL_REFCLK).
3.2.3 Fabric Clock
The design offers a fabric clock (net name FABRIC_SRC_CLK) which defaults to 300 MHz. This clock is intended to be used for IDELAY elements in FPGA designs. The fabric clock is connected to a Global Clock (GC) pin. DIFF_TERM_ADV = TERM_100 is required for LVDS termination

Page 10

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.2.4 Auxiliary Clock
The design offers a auxiliary clock (net name AUX_CLK) which defaults to 300 MHz. This clock can be used for any purpose and is connected to a Global Clock (GC) pin. DIFF_TERM_ADV = TERM_100 is required for LVDS termination
3.2.5 Programming Clock (EMCCLK)
A 100MHz clock (net name EMCCLK_B) is fed into the EMCCLK pin to drive the SPI flash device during configuration of the FPGA. Note that this is not a global clock capable IO pin.
3.2.6 QSFP28
The QSFP28 cages are located in MGT tiles 228 through 231 and use a 161.1328125MHz default reference clock. Note that this clock frequency can be changed to any arbitrary clock frequency up to 312MHz by re-programing the Si5338 reprogrammable clock oscillator via system monitor. This can be done using the Alpha Data API or over USB with the appropriate Alpha Data Software tools. See net names QSFP_CLK_0 and QSFP_CLK_1 for pin locations. The QSFP28 cages are also located such that they can be clocked from a Si5328 jitter attenuator clock multiplier. See net names SI5328_2_OUT0 and SI5328_2_OUT1 for pin locations.
3.2.7 Ultraport SlimSAS (OpenCAPI)
The Ultraport SlimSAS connectors are located in MGT tile 128 through 131. For OpenCAPI an external 156.25MHz clock is provided over the cable. See net names CAPI_0_CLK1 and CAPI_1_CLK1 for pin locations. For other applications, this clock is shared with the QSFP clock from the Si5328 clock synthesizer (defaults to 161.1328125MHz). See net names QSFP_CLK_2 and QSFP_CLK_3 for pin locations.
3.2.8 FireFly
Eight FireFly connectors use MGT quads 124-127, 134-135, and 234-235 (134-135 and 234-235 are not present in VU35P). All eight quads can access the shared FireFly reference clock, which is independent from all other onboard clocks, and defaults to 161.1328125MHz. See net names FIREFLY_CLK_0, FIREFLY_CLK_1, FIREFLY_CLK_2, FIREFLY_CLK_3 for pin locations. Alternatively, two of the Si5328 clock synthesizers are connected to the FireFly quads. See net names SI5328_0_OUT0, SI5328_0_OUT1, SI5328_1_OUT0, and SI5328_1_OUT1 for pin locations.

Functional Description ad-ug-1341_v1_5.pdf

Page 11

ADM-PCIE-9H7 User Manual
3.3 PCI Express
The ADM-PCIE-9H7 is capable of PCIe Gen 1/2/3 with 1/2/4/8/16 lanes. The FPGA drives these lanes directly using the Integrated PCI Express block from Xilinx. Negotiation of PCIe link speed and number of lanes used is generally automatic and does not require user intervention. PCI Express reset (PERST#) connected to the FPGA at one location. See Complete Pinout Table signals PERST0_1V8_L. The other pin assignments for the high speed lanes are provided in the pinout attached to the Complete Pinout Table The PCI Express specification requires that all add-in cards be ready for enumeration within 120ms after power is valid (100ms after power is valid + 20ms after PERST is released). The ADM-PCIE-9H7 does meet this requirement when configured from a tandem bitstream with the proper SPI constraints detailed in the section: Configuration From Flash Memory. For more details on tandem configuration, see Xilinx xapp 1179.
Note: Different motherboards/backplanes will benefit from different RX equalization schemes within the PCIe IP core provided by Xilinx. Alpha Data recommends using the following setting if a user experiences link errors or training issues with their system: within the IP core generator, change the mode to “Advanced” and open the “GT Settings” tab, change the “form factor driven insertion loss adjustment” from “Add-in Card” to “Chip-to-Chip” (See Xilinx PG239 for more details).

Page 12

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.4 QSFP28
4 QSFP28 cages are available at the front panel. All cages are capable of housing either active optical or passive copper QSFP28 or QSFP compatible components. The communication interface can run at up to 28Gbps per channel. There are 16 channels between the 4 QSFP28 cages (total maximum bandwidth of 448Gbps). These cages are ideally suited for 16x 10G/25G, 4x 100G Ethernet, or any other protocol supported by the Xilinx GTY Transceivers. Please see Xilinx User Guide UG578 for more details on the capabilities of the transceivers. All QSFP28 cages have control signals connected to the FPGA. Their connectivity is detailed in the Complete Pinout Table at the end of this document. The notation used to differentiate between cages in the pin assignments is QSFPA, QSFPB, QSFP_C, and QSFP_D with locations clarified in the diagram below. To communicate with the QSFP module register space, use the QSFP__SDA1V8 and QSFP_SCL_1V8 as detailed in Complete Pinout Table.
Note: The LP_MODE (Low Power Mode) to each QSFP28 cage is tied to ground.

Figure 9 : QSFP Locations

It is possible for Alpha Data to pre-fit the ADM-PCIE-9H7 with QSFP28 optical transceivers. The table below shows the part number for the transceivers fitted when ordered with this board.

Order Code Q10 Q14 Q25

Description 40G (4×10) QSFP Optical Transceiver 56G (4×14) QSFP Optical Transceiver 100G (4×25) QSFP28 Optical Transceiver

Part Number FTL410QE2C FTL414QB2C FTLC9551REPM

Manufacturer Finisar Finisar Finisar

Table 6 : QSFP28 Part Numbers

Functional Description ad-ug-1341_v1_5.pdf

Page 13

ADM-PCIE-9H7 User Manual
3.5 FireFly
8 FireFly sites are available on the circuit board. All sites are capable of hosting either active optical or passive copper FireFly connectors. The communication interface can run at up to 28Gbps per channel in either medium. There are 32 channels between the 8 FireFly sites (total maximum bandwidth of 896Gbps). These cages are ideally suited for 32x 10G/25G, 8x 100G Ethernet, or any other protocol supported by the Xilinx GTY Transceivers. Please see Xilinx User Guide UG578 for more details on the capabilities of the transceivers. All FireFly sites have control signals connected to the FPGA. Their connectivity is detailed in the Complete Pinout Table at the end of this document. The notation used in the pin assignments is FIREFLY with locations clarified in the diagram below. To communicate with the optical module register space, use the FIREFLY_SDA_1V8 and FIREFLY*_SCL_1V8 as detailed in Complete Pinout Table. To install new FireFly modules, the top shroud will need to be temporarily or permanently removed. See Top Shroud Removal for details.
Note: If the ADM-PCIE-9H7 is fitted with a VU35P FPGA (non-standard) then FireFly interfaced 4-7 are not connected.
Figure 10 : FireFly Locations

Page 14

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.5.1 QSFP Expansion
Alpha Data part number AD-PCIE-FQSFP is available to expand the QSFP slot availability on the ADM-PCIE-9H7 from 4 to up to 12. These cards utilize the samtec FQSFP product https://www.samtec.com/ products/fqsfp Each QSFP slot can house a passive or optical QSFP cable, and are controllable over I2C using the GPIO expansion capabilities of the ADM-PCIE-9H7. These slots are suitable for 100Gbps Ethernet or any other similar high speed protocol.
Figure 11 : FQSFP connections

Figure 12 : FQSFP with shroud

Functional Description ad-ug-1341_v1_5.pdf

Page 15

ADM-PCIE-9H7 User Manual
3.6 OpenCAPI Ultraport SlimSAS
An Ultraport SlimSAS receptacles along the back of the board allow for OpenCAPI compliant interfaces running at 200G (8 chanels at 25G). Please contact support@alpha-data.com or your IBM representative for more details on OpenCAPI and its benefits. The SlimSAS connector can also be used to connect an additional 4x QSFP breakout board. When combined with the FireFly breakout boards, this results in 16 ports capable of 100Gbps each (1.6Tbps total). Alternatively, cabling can be used to connect multiple 9H7 cards within a chassis.
Figure 13 : OpenCAPI Location

Page 16

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

3.7 System Monitor

The ADM-PCIE-9H7 has the ability to monitor temperature, voltage, and current of the system to check on the operation of the board. The monitoring is implemented using an Atmel AVR microcontroller.
If the core FPGA temperature exceeds 105 degrees Celsius, the FPGA will be cleared to prevent damage to the card.
Control algorithms within the microcontroller automatically check line voltages and on board temperatures and shares makes the information available to the FPGA over a dedicated serial interface built into the Alpha Data reference design package (sold separately). The information can also be accessed directly from the microcontroller over the USB interface on the front panel or via the IPMI interface available at the PCIe card edge.

Monitors ETC EC 12.0V 12.0V 12.0V 3.3V 3.3V_I 3.3V 2.5V 1.8V 1.8V 1.2V 1.2V 0.9V 0.85-0.90V 0.72-0.90V uC_Temp Board0_Temp Board1_Temp FPGA_Temp

Index

Purpose/Description

ETC

Elapsed time counter (seconds)

EC

Event counter (power cycles)

ADC00 ADC01 ADC02 ADC03 ADC04

Board Input Supply (Edge Connector) Board Input Supply (Auxiliary 6-pin) Board Input Supply (Auxiliary 8-pin) Board Input Supply (Edge Connector) 3.3V input current in amps

ADC05 Board Input Auxiliary Power Supply

ADC06 Clock and DRAM Voltage Supply

ADC07 ADC08 ADC09 ADC10 ADC11

FPGA IO Voltage (VCCO) Transceiver Power (AVCC_AUX) HBM Power Transceiver Power (AVTT) Transceiver Power (AVCC)

ADC12 BRAM + INT_IO (VccINT_IO)

ADC13 FPGA Core Supply (VccINT)

TMP00 TMP01 TMP02 TMP03

FPGA on-die temperature Board temperature near front panel Board temperature near back top corner FPGA on-die temperature

Table 7 : Voltage, Current, and Temperature Monitors

Functional Description ad-ug-1341_v1_5.pdf

Page 17

ADM-PCIE-9H7 User Manual

3.7.1 System Monitor Status LEDs

LEDs D2 (Red) and D1 (Green) indicate the card health status.

LEDs Green Green + Red Flashing Green + Flashing Red (together) Flashing Green

  • Flashing Red (alternating) Flashing Green + Red
    Red
    Flashing Red

Status Running and no alarms Standby (Powered off)
Attention – critical alarm active
Service Mode
Attention – alarm active Missing application firmware or invalid firmware FPGA configuration cleared to protect board

Table 8 : Status LED Definitions

3.7.2 Fan Controllers
The onboard USB bus controlled by the system monitor has access to a MAX6620 fan controller. This device can be controlled through the multiple onboard system monitor communication interfaces, including USB, PCIe Edge SMBUS, and FPGA sysmon seral communication port. The fan controller is on I2C bus 1 at address 0x2a. For additional questions. Contact support@alpha-data.com with additional questions on utilizing these controllers.

Page 18

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

3.8 USB Interface

The FPGA can be configured directly from the USB connection on either the front panel or the rear card edge. The ADM-PCIE-9H7 utilizes the Digilent USB- JTAG converter box which is supported by the Xilinx software tool suite. Simply connect a micro-USB AB type cable between the ADM-PCIE-9H7 USB port and a host computer with Vivado installed. Vivado Hardware Manager will automatically recognize the FPGA and allow you to configure the FPGA and the SBPI configuration PROM.
The same USB connector is used to directly access the system monitor system. All voltages, currents, temperatures, and non-volatile clock configuration settings can be accessed using Alpha Data’s avr2util software at this interface.
Avr2util for Windows and the associated USB driver is downloadable here: https://support.alpha-data.com/pub/firmware/utilities/windows/
Avr2util for Linux is downloadable here:https://support.alpha- data.com/pub/firmware/utilities/linux/
Use “avr2util.exe /?” to see all options.
For example “avr2util.exe /usbcom com4 display-sensors” will display all sensor values.
For example “avr2util.exe /usbcom com4 setclknv 0 156250000” will set the FireFly clock to 156.25MHz. setclk index 0 = FireFly_CLK, setclk index 1 = QSFP_CLK, index 2 = AUX_CLK, index 3 = Fabric_CLK.
Change ‘com4’ to match the com port number assigned under windows device manager.

3.9 Configuration

There are two main ways of configuring the FPGA on the ADM-PCIE-9H7: · From Flash memory, at power-on, as described in Section 3.9.1
· Using USB cable connected at either USB port Section 3.9.2

3.9.1 Configuration From Flash Memory

The FPGA can be automatically configured at power-on from two 1 Gbit QSPI flash memory device configured as an x8 SPI device (Micron part numbers MT25QU01GBBB8E12-0SIT). These flash devices are typically divided into two regions of 128 MiByte each, where each region is sufficiently large to hold an uncompressed bitstream for a VU37P FPGA.
The ADM-PCIE-9H7 is shipped with a simple PCIe endpoint bitstream containing a basic Alpha Data ADXDMA bitstream. Alpha Data can load in other custom bitstreams during production test, please contact sales@alpha-data.com for more details.
It is possible to use Multiboot with a fallback image on this hardware. The master SPI configuration interface and the Fallback MultiBoot are discussed in detail in Xilinx UG570.
The flash address map is as detailed below:

Data Region

Region 0 Default (128 MiB)
Region 1 Multi-boot (128 MiB)

Start Address (Bytes) 0x000_0000
0x800_0000

Figure 14 : Flash Address Map
At power-on, the FPGA attempts to configure itself automatically in serial master mode based on the contents of the header in the programing file. Multibook and ICAP can be used to selected between the two configuration regions to be loaded into the FPGA. See Xilinx UG570 MultiBoot for details.

Functional Description ad-ug-1341_v1_5.pdf

Page 19

ADM-PCIE-9H7 User Manual
The image loaded can also support tandem PROM or tandem PCIE with field update configuration methods. These options reduce power-on load times to help meet the PCIe reset timing requirements. Tandem with field also enables a host system to reconfigure the user FPGA logic without losing the PCIe link, a useful feature when system resets and power cycles are not an option.
The Alpha Data System Monitor is also capable of reconfiguring the flash memory and reprograming the FPGA. This provides a useful failsafe mechanism to re-program the FPGA even if it drops off the PCIe bus. The system monitor can be accessed over USB at the front panel and rear edge, or over the SMBUS connections on the PCIe edge.
3.9.1.1 Building and Programming Configuration Images
Generate a bitfile with these constraints (see xapp1233): · set_property BITSTREAM.GENERAL.COMPRESS TRUE [ current_design ] · set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN {DIV-2} [current_design] · set_property BITSTREAM.CONFIG.SPI_32BIT_ADDR YES [current_design] · set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 8 [current_design] · set_property BITSTREAM.CONFIG.SPI_FALL_EDGE YES [current_design] · set_property BITSTREAM.CONFIG.UNUSEDPIN {Pullnone} [current_design] · set_property CFGBVS GND [ current_design ] · set_property CONFIG_VOLTAGE 1.8 [ current_design ] · set_property BITSTREAM.CONFIG.OVERTEMPSHUTDOWN Enable [current_design] Generate an MCS file with these properties (write_cfgmem): · -format MCS · -size 64 · -interface SPIx8 · -loadbit “up 0x0000000 <directory/to/file/filename.bit>” (0th location) · -loadbit “up 0x8000000 <directory/to/file/filename.bit>” (1st location, optional) Program with vivado hardware manager with these settings (see xapp1233): · SPI part: mt25qu01-spi- x1_x2_x4_x8 · State of non-config mem I/O pins: Pull-none · Target the four files generated from the write_cfgmem tcl command.
3.9.2 Configuration via JTAG
A micro-USB AB Cable may be attached to the front panel or rear edge USB port. This permits the FPGA to be reconfigured using the Xilinx Vivado Hardware Manager via the integrated Digilent JTAG converter box. The device will be automatically recognized in Vivado Hardware Manager.
For more detailed instructions, please see “Using a Vivado Hardware Manager to Program an FPGA Device” section of Xilinx UG908: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ ug908 -vivado-programming-debugging.pdf

Page 20

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.10 GPIO Connector
The GPIO option consists of a versatile shrouded connector from Molex with part number 87832-2020 that give users with custom IO requirements four direct connect to FPGA signals. Recommended mating plug: Molex 87568-2093
Figure 15 : GPIO Connector Schematic
Figure 16 : GPIO Connector Location
3.10.1 Direct Connect FPGA Signals
16 nets are broken out to the GPIO header, 6 as three differential pairs. These signal are suitable for any 1.8V supported signaling standards supported by the Xilinx UltraScale architecture. See Xilinx UG571 for IO options. LVDS and 1.8 CMOS are popular options. The direct connect GPIO signals are limited to 1.8V by a quickswitch (74CBTLVD3245PW) in order to protect the FPGA from overvoltage on IO pins. This quickswitch allows the signals to travel in either direction with only 4 ohms of series impedance and less than 1ns of propagation delay. The nets are directly connected to the FPGA after the quickswitch. Direct connect signal names are labeled GP0_1V8_P/N and GP1_1V8_P/N, etc. to show polarity and grouping. The signal pin allocations can be found in Complete Pinout Table
3.10.2 Timing Input
J22 (SMB jack) can be used as an isolated timing input signal (up to 10MHz). Applications can either directly connect to the GPIO connector, or Alpha Data can provide a cabled solution with an SMA or similar connector on the front panel. Contact sales@alpha-data.com for front panel connector options. For pin locations, see signal name PPS_BUF_1V8 in Complete Pinout Table. The signal is isolated through a optical isolator part number ACPL-M61L with a 739 ohm of series resistance.

Functional Description ad-ug-1341_v1_5.pdf

Page 21

ADM-PCIE-9H7 User Manual
3.11 User EEPROM
A 2Kb I2C user EEPROM is provided for storing MAC addresses or other user information. The EEPROM is part number CAT34C02HU4IGT4A The address pins A2, A1, and A0 are all strapped to a logical ‘0’. Write protect (WP), Serial Clock (SCL), and Serial Data (SDA) pin assignments can be found in Complete Pinout Table with the names SPARE_WP, SPARE_SCL, and SPARE_SDA respectively. WP, SDA, and SCL signals all have external pull-up resistors on the card.
3.12 Battery Backed Encryption
Two coin cell batter holders are available to provide voltage to the VBATT pin of the FPGA. When at least one battery is populated, the FPGA can hold an AES encryption key to guarantee the security of user IP. See Xilinx UG570, chapter 8 for more details. Two battery holders are present to allow hot swapping and battery replacement without losing the key information within the FPGA. Use a battery cell of less than 2.0V (NOT lithium chemistry) with 6.8mm diameter and between 2.1 and 2.6mm in height (i.e. SR621 or SR626 type). The battery slots are not filled by default. Please contact sales@alpha-data.com to have these fitted prior to shipping. The batteries can be accessed by removing the top shroud, see Top Shroud Removal for details.
Figure 17 : Top Shroud Screws

Page 22

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
3.12.1 Top Shroud Removal
The board can be accessed by removing the top shroud using a 1/16″ hex driver. Remove the 7 button head screws shown in the image below. Do not remove the other screws. The shroud will then lift straight up with no resistance for passive cooling configurations. Active cooling configurations will have fan connections that will resist removal after about 30mm. These four plugs can be safely removed to allow for complete board access. When re-installing, plug the fans back in with the shroud assembly hovering about 30mm above the top of the circuit board before installing the screws.
Figure 18 : Top Shroud Screws

Functional Description ad-ug-1341_v1_5.pdf

Page 23

ADM-PCIE-9H7 User Manual
Page Intentionally left blank

Page 24

Functional Description ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual
Appendix A: Complete Pinout Table

Pin Number
BK9
BJ9
BN50 BP48 BH50 BP49 BH49 BN51 AJ41 AJ40 BM29 BM28 BN31 AL50 AL49 AK52 AK51 AE50 AE49 AJ54 AJ53 AH52 AH51 AG54 AG53 AF52 AF51 AE54 AE53 AK47 AK46 AJ49

Signal Name

Pin Name

Bank Voltage

AUX_CLK_PIN_N

IO_L12N_T1U_N11_GC_68

1.8 (LVDS with DIFF_TERM_ADV)

AUX_CLK_PIN_P

IO_L12P_T1U_N10_GC_68

1.8 (LVDS with DIFF_TERM_ADV)

AVR_B2U_1V8

IO_L2P_T0L_N2_66

1.8 (LVCMOS18)

AVR_HS_B2U_1V8

IO_L1P_T0L_N0_DBC_66

1.8 (LVCMOS18)

AVR_HS_CLK_1V8

IO_L12N_T1U_N11_GC_66

1.8 (LVCMOS18)

AVR_HS_U2B_1V8

IO_L1N_T0L_N1_DBC_66

1.8 (LVCMOS18)

AVR_MON_CLK_1V8

IO_L12P_T1U_N10_GC_66

1.8 (LVCMOS18)

AVR_U2B_1V8

IO_L2N_T0L_N3_66

1.8 (LVCMOS18)

CAPI_0_CLK1_PIN_N

MGTREFCLK0N_128

MGT REFCLK

CAPI_0_CLK1_PIN_P

MGTREFCLK0P_128

MGT REFCLK

CAPI_0_I2C_SCL_1V8

IO_L1N_T0L_N1_DBC_64

1.8 (LVCMOS18)

CAPI_0_I2C_SDA_1V8

IO_L1P_T0L_N0_DBC_64

1.8 (LVCMOS18)

CAPI_0_INT/RESET_1V8

IO_L3P_T0L_N4_AD15P_64

1.8 (LVCMOS18)

CAPI_0_RX0_N

MGTYRXN0_128

MGT

CAPI_0_RX0_P

MGTYRXP0_128

MGT

CAPI_0_RX1_N

MGTYRXN1_128

MGT

CAPI_0_RX1_P

MGTYRXP1_128

MGT

CAPI_0_RX10_N

MGTYRXN3_129

MGT

CAPI_0_RX10_P

MGTYRXP3_129

MGT

CAPI_0_RX2_N

MGTYRXN2_128

MGT

CAPI_0_RX2_P

MGTYRXP2_128

MGT

CAPI_0_RX3_N

MGTYRXN3_128

MGT

CAPI_0_RX3_P

MGTYRXP3_128

MGT

CAPI_0_RX7_N

MGTYRXN0_129

MGT

CAPI_0_RX7_P

MGTYRXP0_129

MGT

CAPI_0_RX8_N

MGTYRXN1_129

MGT

CAPI_0_RX8_P

MGTYRXP1_129

MGT

CAPI_0_RX9_N

MGTYRXN2_129

MGT

CAPI_0_RX9_P

MGTYRXP2_129

MGT

CAPI_0_TX0_N

MGTYTXN0_128

MGT

CAPI_0_TX0_P

MGTYTXP0_128

MGT

CAPI_0_TX1_N

MGTYTXN1_128

Table 9 : Complete Pinout Table (continued on next page)

MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 25

ADM-PCIE-9H7 User Manual

Pin Number
AJ48 AE45 AE44 AJ45 AJ44 AH47 AH46 AG49 AG48 AG45 AG44 AF47 AF46 AD43 AD42 BP29 BP28 BP31 AD52 AD51 AC54 AC53 V52 V51 AC50 AC49 AB52 AB51 AA54 AA53 Y52 Y51 W54 W53 AD47 AD46

Signal Name

Pin Name

Bank Voltage

CAPI_0_TX1_P

MGTYTXP1_128

CAPI_0_TX10_N

MGTYTXN3_129

CAPI_0_TX10_P

MGTYTXP3_129

CAPI_0_TX2_N

MGTYTXN2_128

CAPI_0_TX2_P

MGTYTXP2_128

CAPI_0_TX3_N

MGTYTXN3_128

CAPI_0_TX3_P

MGTYTXP3_128

CAPI_0_TX7_N

MGTYTXN0_129

CAPI_0_TX7_P

MGTYTXP0_129

CAPI_0_TX8_N

MGTYTXN1_129

CAPI_0_TX8_P

MGTYTXP1_129

CAPI_0_TX9_N

MGTYTXN2_129

CAPI_0_TX9_P

MGTYTXP2_129

CAPI_1_CLK1_PIN_N

MGTREFCLK0N_130

CAPI_1_CLK1_PIN_P

MGTREFCLK0P_130

CAPI_1_I2C_SCL_1V8

IO_L2N_T0L_N3_64

CAPI_1_I2C_SDA_1V8

IO_L2P_T0L_N2_64

CAPI_1_INT/RESET_1V8

IO_L3N_T0L_N5_AD15N_64

CAPI_1_RX0_N

MGTYRXN0_130

CAPI_1_RX0_P

MGTYRXP0_130

CAPI_1_RX1_N

MGTYRXN1_130

CAPI_1_RX1_P

MGTYRXP1_130

CAPI_1_RX10_N

MGTYRXN3_131

CAPI_1_RX10_P

MGTYRXP3_131

CAPI_1_RX2_N

MGTYRXN2_130

CAPI_1_RX2_P

MGTYRXP2_130

CAPI_1_RX3_N

MGTYRXN3_130

CAPI_1_RX3_P

MGTYRXP3_130

CAPI_1_RX7_N

MGTYRXN0_131

CAPI_1_RX7_P

MGTYRXP0_131

CAPI_1_RX8_N

MGTYRXN1_131

CAPI_1_RX8_P

MGTYRXP1_131

CAPI_1_RX9_N

MGTYRXN2_131

CAPI_1_RX9_P

MGTYRXP2_131

CAPI_1_TX0_N

MGTYTXN0_130

CAPI_1_TX0_P

MGTYTXP0_130

Table 9 : Complete Pinout Table (continued on next page)

MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT REFCLK MGT REFCLK 1.8 (LVCMOS18) 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Page 26

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number
AC45 AC44 W45 W44 AB47 AB46 AA49 AA48 AA45 AA44 Y47 Y46 W49 W48 BD14 BE43
BJ53
BJ52
AR41 AR40 AN41 AN40 T12 T13 P43 P42 BG10 AY52 AY51 AW54 AW53 AW50 AW49 AV52

Signal Name

Pin Name

Bank Voltage

CAPI_1_TX1_N

MGTYTXN1_130

MGT

CAPI_1_TX1_P

MGTYTXP1_130

MGT

CAPI_1_TX10_N

MGTYTXN3_131

MGT

CAPI_1_TX10_P

MGTYTXP3_131

MGT

CAPI_1_TX2_N

MGTYTXN2_130

MGT

CAPI_1_TX2_P

MGTYTXP2_130

MGT

CAPI_1_TX3_N

MGTYTXN3_130

MGT

CAPI_1_TX3_P

MGTYTXP3_130

MGT

CAPI_1_TX7_N

MGTYTXN0_131

MGT

CAPI_1_TX7_P

MGTYTXP0_131

MGT

CAPI_1_TX8_N

MGTYTXN1_131

MGT

CAPI_1_TX8_P

MGTYTXP1_131

MGT

CAPI_1_TX9_N

MGTYTXN2_131

MGT

CAPI_1_TX9_P

MGTYTXP2_131

MGT

CCLK

CCLK_0

STARTUPE3

EMCCLK_B

IO_L24P_T3U_N10_EMCCLK_65

1.8 (LVCMOS18)

FABRIC_SRC_CLK_PIN_N IO_L13N_T2L_N1_GC_QBC_66

1.8 (LVDS with DIFF_TERM_ADV)

FABRIC_SRC_CLK_PIN_P IO_L13P_T2L_N0_GC_QBC_66

1.8 (LVDS with DIFF_TERM_ADV)

FIREFLY_CLK_0_PIN_N

MGTREFCLK0N_125

MGT REFCLK

FIREFLY_CLK_0_PIN_P

MGTREFCLK0P_125

MGT REFCLK

FIREFLY_CLK_1_PIN_N

MGTREFCLK0N_126

MGT REFCLK

FIREFLY_CLK_1_PIN_P

MGTREFCLK0P_126

MGT REFCLK

FIREFLY_CLK_2_PIN_N

MGTREFCLK0N_234

MGT REFCLK

FIREFLY_CLK_2_PIN_P

MGTREFCLK0P_234

MGT REFCLK

FIREFLY_CLK_3_PIN_N

MGTREFCLK0N_135

MGT REFCLK

FIREFLY_CLK_3_PIN_P

MGTREFCLK0P_135

MGT REFCLK

FIREFLY0_MODPRS_L

IO_L21P_T3L_N4_AD8P_68

1.8 (LVCMOS18)

FIREFLY0_RX0_N

MGTYRXN0_125

MGT

FIREFLY0_RX0_P

MGTYRXP0_125

MGT

FIREFLY0_RX1_N

MGTYRXN1_125

MGT

FIREFLY0_RX1_P

MGTYRXP1_125

MGT

FIREFLY0_RX2_N

MGTYRXN2_125

MGT

FIREFLY0_RX2_P

MGTYRXP2_125

MGT

FIREFLY0_RX3_N

MGTYRXN3_125

Table 9 : Complete Pinout Table (continued on next page)

MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 27

ADM-PCIE-9H7 User Manual

Pin Number
AV51 BP11 BP12 AY47 AY46 AW45 AW44 AV47 AV46 AU45 AU44 BG9 BC54 BC53 BB52 BB51 BA54 BA53 BA50 BA49 BP13 BP14 BC49 BC48 BC45 BC44 BB47 BB46 BA45 BA44 BF12 AU54 AU53 AT52 AT51 AR54

Signal Name

Pin Name

Bank Voltage

FIREFLY0_RX3_P

MGTYRXP3_125

FIREFLY0_SCL_1V8

IO_L1N_T0L_N1_DBC_68

FIREFLY0_SDA_1V8

IO_L1P_T0L_N0_DBC_68

FIREFLY0_TX0_N

MGTYTXN0_125

FIREFLY0_TX0_P

MGTYTXP0_125

FIREFLY0_TX1_N

MGTYTXN1_125

FIREFLY0_TX1_P

MGTYTXP1_125

FIREFLY0_TX2_N

MGTYTXN2_125

FIREFLY0_TX2_P

MGTYTXP2_125

FIREFLY0_TX3_N

MGTYTXN3_125

FIREFLY0_TX3_P

MGTYTXP3_125

FIREFLY1_MODPRS_L

IO_L21N_T3L_N5_AD8N_68

FIREFLY1_RX0_N

MGTYRXN0_124

FIREFLY1_RX0_P

MGTYRXP0_124

FIREFLY1_RX1_N

MGTYRXN1_124

FIREFLY1_RX1_P

MGTYRXP1_124

FIREFLY1_RX2_N

MGTYRXN2_124

FIREFLY1_RX2_P

MGTYRXP2_124

FIREFLY1_RX3_N

MGTYRXN3_124

FIREFLY1_RX3_P

MGTYRXP3_124

FIREFLY1_SCL_1V8

IO_L2N_T0L_N3_68

FIREFLY1_SDA_1V8

IO_L2P_T0L_N2_68

FIREFLY1_TX0_N

MGTYTXN0_124

FIREFLY1_TX0_P

MGTYTXP0_124

FIREFLY1_TX1_N

MGTYTXN1_124

FIREFLY1_TX1_P

MGTYTXP1_124

FIREFLY1_TX2_N

MGTYTXN2_124

FIREFLY1_TX2_P

MGTYTXP2_124

FIREFLY1_TX3_N

MGTYTXN3_124

FIREFLY1_TX3_P

MGTYTXP3_124

FIREFLY2_MODPRS_L

IO_L22P_T3U_N6_DBC_AD0P_68

FIREFLY2_RX0_N

MGTYRXN0_126

FIREFLY2_RX0_P

MGTYRXP0_126

FIREFLY2_RX1_N

MGTYRXN1_126

FIREFLY2_RX1_P

MGTYRXP1_126

FIREFLY2_RX2_N

MGTYRXN2_126

Table 9 : Complete Pinout Table (continued on next page)

MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18)
MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT MGT MGT

Page 28

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number
AR53 AP52 AP51 BN12 BM12 AU49 AU48 AT47 AT46 AR49 AR48 AR45 AR44 BF11 AN54 AN53 AN50 AN49 AM52 AM51 AL54 AL53 BN14 BN15 AP47 AP46 AN45 AN44 AM47 AM46 AL45 AL44 BE11 L1 L2 K3**

Signal Name

Pin Name

Bank Voltage

FIREFLY2_RX2_P

MGTYRXP2_126

FIREFLY2_RX3_N

MGTYRXN3_126

FIREFLY2_RX3_P

MGTYRXP3_126

FIREFLY2_SCL_1V8

IO_L3N_T0L_N5_AD15N_68

FIREFLY2_SDA_1V8

IO_L3P_T0L_N4_AD15P_68

FIREFLY2_TX0_N

MGTYTXN0_126

FIREFLY2_TX0_P

MGTYTXP0_126

FIREFLY2_TX1_N

MGTYTXN1_126

FIREFLY2_TX1_P

MGTYTXP1_126

FIREFLY2_TX2_N

MGTYTXN2_126

FIREFLY2_TX2_P

MGTYTXP2_126

FIREFLY2_TX3_N

MGTYTXN3_126

FIREFLY2_TX3_P

MGTYTXP3_126

FIREFLY3_MODPRS_L

IO_L22N_T3U_N7_DBC_AD0N_68

FIREFLY3_RX0_N

MGTYRXN0_127

FIREFLY3_RX0_P

MGTYRXP0_127

FIREFLY3_RX1_N

MGTYRXN1_127

FIREFLY3_RX1_P

MGTYRXP1_127

FIREFLY3_RX2_N

MGTYRXN2_127

FIREFLY3_RX2_P

MGTYRXP2_127

FIREFLY3_RX3_N

MGTYRXN3_127

FIREFLY3_RX3_P

MGTYRXP3_127

FIREFLY3_SCL_1V8

IO_L4N_T0U_N7_DBC_AD7N_68

FIREFLY3_SDA_1V8

IO_L4P_T0U_N6_DBC_AD7P_68

FIREFLY3_TX0_N

MGTYTXN0_127

FIREFLY3_TX0_P

MGTYTXP0_127

FIREFLY3_TX1_N

MGTYTXN1_127

FIREFLY3_TX1_P

MGTYTXP1_127

FIREFLY3_TX2_N

MGTYTXN2_127

FIREFLY3_TX2_P

MGTYTXP2_127

FIREFLY3_TX3_N

MGTYTXN3_127

FIREFLY3_TX3_P

MGTYTXP3_127

FIREFLY4_MODPRS_L

IO_L23P_T3U_N8_68

FIREFLY4_RX0_N

MGTYRXN0_234

FIREFLY4_RX0_P

MGTYRXP0_234

FIREFLY4_RX1_N

MGTYRXN1_234

Table 9 : Complete Pinout Table (continued on next page)

MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 29

ADM-PCIE-9H7 User Manual

Pin Number
K4 J1 J2 H3 H4 BM13 BM14 L6 L7 L10 L11 K8 K9 J6 J7 BF10 G1 G2 F3 F4 E1 E2 D3 D4 BM15 BL15 G6 G7 E6 E7 C6 C7 A5 A6 BE10 G54

Signal Name

Pin Name

Bank Voltage

FIREFLY4_RX1_P

MGTYRXP1_234

FIREFLY4_RX2_N

MGTYRXN2_234

FIREFLY4_RX2_P

MGTYRXP2_234

FIREFLY4_RX3_N

MGTYRXN3_234

FIREFLY4_RX3_P

MGTYRXP3_234

FIREFLY4_SCL_1V8

IO_L5N_T0U_N9_AD14N_68

FIREFLY4_SDA_1V8

IO_L5P_T0U_N8_AD14P_68

FIREFLY4_TX0_N

MGTYTXN0_234

FIREFLY4_TX0_P

MGTYTXP0_234

FIREFLY4_TX1_N

MGTYTXN1_234

FIREFLY4_TX1_P

MGTYTXP1_234

FIREFLY4_TX2_N

MGTYTXN2_234

FIREFLY4_TX2_P

MGTYTXP2_234

FIREFLY4_TX3_N

MGTYTXN3_234

FIREFLY4_TX3_P

MGTYTXP3_234

FIREFLY5_MODPRS_L

IO_L23N_T3U_N9_68

FIREFLY5_RX0_N

MGTYRXN0_235

FIREFLY5_RX0_P

MGTYRXP0_235

FIREFLY5_RX1_N

MGTYRXN1_235

FIREFLY5_RX1_P

MGTYRXP1_235

FIREFLY5_RX2_N

MGTYRXN2_235

FIREFLY5_RX2_P

MGTYRXP2_235

FIREFLY5_RX3_N

MGTYRXN3_235

FIREFLY5_RX3_P

MGTYRXP3_235

FIREFLY5_SCL_1V8

IO_L6N_T0U_N11_AD6N_68

FIREFLY5_SDA_1V8

IO_L6P_T0U_N10_AD6P_68

FIREFLY5_TX0_N

MGTYTXN0_235

FIREFLY5_TX0_P

MGTYTXP0_235

FIREFLY5_TX1_N

MGTYTXN1_235

FIREFLY5_TX1_P

MGTYTXP1_235

FIREFLY5_TX2_N

MGTYTXN2_235

FIREFLY5_TX2_P

MGTYTXP2_235

FIREFLY5_TX3_N

MGTYTXN3_235

FIREFLY5_TX3_P

MGTYTXP3_235

FIREFLY6_MODPRS_L

IO_L24P_T3U_N10_68

FIREFLY6_RX0_N

MGTYRXN0_135

Table 9 : Complete Pinout Table (continued on next page)

MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT

Page 30

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number G53
F52
F51 E54 E53 D52 D51 BP9 BN11 G49 G48 E49 E48 C49 C48 A50 A49 BE9 L54 L53 K52 K51 J54 J53 H52 H51 BM10 BP8 L49 L48 L45 L44 K47 K46 J49 J48**

Signal Name

Pin Name

Bank Voltage

FIREFLY6_RX0_P

MGTYRXP0_135

FIREFLY6_RX1_N

MGTYRXN1_135

FIREFLY6_RX1_P

MGTYRXP1_135

FIREFLY6_RX2_N

MGTYRXN2_135

FIREFLY6_RX2_P

MGTYRXP2_135

FIREFLY6_RX3_N

MGTYRXN3_135

FIREFLY6_RX3_P

MGTYRXP3_135

FIREFLY6_SCL_1V8

IO_L7P_T1L_N0_QBC_AD13P_68

FIREFLY6_SDA_1V8

IO_T0U_N12_VRP_68

FIREFLY6_TX0_N

MGTYTXN0_135

FIREFLY6_TX0_P

MGTYTXP0_135

FIREFLY6_TX1_N

MGTYTXN1_135

FIREFLY6_TX1_P

MGTYTXP1_135

FIREFLY6_TX2_N

MGTYTXN2_135

FIREFLY6_TX2_P

MGTYTXP2_135

FIREFLY6_TX3_N

MGTYTXN3_135

FIREFLY6_TX3_P

MGTYTXP3_135

FIREFLY7_MODPRS_L

IO_L24N_T3U_N11_68

FIREFLY7_RX0_N

MGTYRXN0_134

FIREFLY7_RX0_P

MGTYRXP0_134

FIREFLY7_RX1_N

MGTYRXN1_134

FIREFLY7_RX1_P

MGTYRXP1_134

FIREFLY7_RX2_N

MGTYRXN2_134

FIREFLY7_RX2_P

MGTYRXP2_134

FIREFLY7_RX3_N

MGTYRXN3_134

FIREFLY7_RX3_P

MGTYRXP3_134

FIREFLY7_SCL_1V8

IO_L8P_T1L_N2_AD5P_68

FIREFLY7_SDA_1V8

IO_L7N_T1L_N1_QBC_AD13N_68

FIREFLY7_TX0_N

MGTYTXN0_134

FIREFLY7_TX0_P

MGTYTXP0_134

FIREFLY7_TX1_N

MGTYTXN1_134

FIREFLY7_TX1_P

MGTYTXP1_134

FIREFLY7_TX2_N

MGTYTXN2_134

FIREFLY7_TX2_P

MGTYTXP2_134

FIREFLY7_TX3_N

MGTYTXN3_134

FIREFLY7_TX3_P

MGTYTXP3_134

Table 9 : Complete Pinout Table (continued on next page)

MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT 1.8 (LVCMOS18) 1.8 (LVCMOS18) MGT MGT MGT MGT MGT MGT MGT MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 31

ADM-PCIE-9H7 User Manual

Pin Number
BC15 BP47 AW15 AY15 AY14 AY13
BE45
BE46
BF42 BF43 BJ32 BH32 BF36 BF35 BG32 BF32 BK30 BH35 BH34 BG29 BG33 BH29 BG30 BF31 BH30 BJ29 BJ31 BK29 AN14 AN15 AR14 AR15 AL1 AL2

Signal Name

Pin Name

Bank Voltage

FPGA_FLASH_CE0_L

RDWR_FCS_B_0

STARTUPE3

FPGA_FLASH_CE1_L

IO_L2N_T0L_N3_FWE_FCS2_B_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ0

D00_MOSI_0

STARTUPE3

FPGA_FLASH_DQ1

D01_DIN_0

STARTUPE3

FPGA_FLASH_DQ2

D02_0

STARTUPE3

FPGA_FLASH_DQ3

D03_0

STARTUPE3

FPGA_FLASH_DQ4

IO_L22P_T3U_N6_DBC_AD0P _D04_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ5

IO_L22N_T3U_N7_DBC_AD0N _D05_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ6

IO_L21P_T3L_N4_AD8P_D06_65

1.8 (LVCMOS18)

FPGA_FLASH_DQ7

IO_L21N_T3L_N5_AD8N_D07_65

1.8 (LVCMOS18)

GPIO_0_1V8_N

IO_L13N_T2L_N1_GC_QBC_64 1.8 (LVDS or LVCMOS18)

GPIO_0_1V8_P

IO_L13P_T2L_N0_GC_QBC_64 1.8 (LVDS or LVCMOS18)

GPIO_1_1V8_N

IO_L17N_T2U_N9_AD10N_64

1.8 (LVDS or LVCMOS18)

GPIO_1_1V8_P

IO_L17P_T2U_N8_AD10P_64

1.8 (LVDS or LVCMOS18)

GPIO_10

IO_L21N_T3L_N5_AD8N_64

1.8 ( LVCMOS18)

GPIO_11

IO_L23P_T3U_N8_64

1.8 ( LVCMOS18)

GPIO_12

IO_L22N_T3U_N7_DBC_AD0N_64

1.8 ( LVCMOS18)

GPIO_2_1V8_N

IO_L18N_T2U_N11_AD2N_64

1.8 (LVDS or LVCMOS18)

GPIO_2_1V8_P

IO_L18P_T2U_N10_AD2P_64

1.8 (LVDS or LVCMOS18)

GPIO_3

IO_L19P_T3L_N0_DBC_AD9P_64

1.8 ( LVCMOS18)

GPIO_4

IO_T2U_N12_64

1.8 ( LVCMOS18)

GPIO_5

IO_L20P_T3L_N2_AD1P_64

1.8 ( LVCMOS18)

GPIO_6

IO_L19N_T3L_N1_DBC_AD9N_64

1.8 ( LVCMOS18)

GPIO_7

IO_L21P_T3L_N4_AD8P_64

1.8 ( LVCMOS18)

GPIO_8

IO_L20N_T3L_N3_AD1N_64

1.8 ( LVCMOS18)

GPIO_9

IO_L22P_T3U_N6_DBC_AD0P_64

1.8 ( LVCMOS18)

OPTICAL_INT_1V8_L

IO_L24N_T3U_N11_64

1.8 ( LVCMOS18)

OPTICAL_RST_1V8_L

IO_T3U_N12_64

1.8 ( LVCMOS18)

PCIE_LCL_REFCLK_PIN_N

MGTREFCLK0N_226

MGT REFCLK

PCIE_LCL_REFCLK_PIN_P

MGTREFCLK0P_226

MGT REFCLK

PCIE_REFCLK_PIN_N

MGTREFCLK0N_225

MGT REFCLK

PCIE_REFCLK_PIN_P

MGTREFCLK0P_225

MGT REFCLK

PCIE_RX0_N

MGTYRXN3_227

MGT

PCIE_RX0_P

MGTYRXP3_227

Table 9 : Complete Pinout Table (continued on next page)

MGT

Page 32

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number
AM3 AM4 AW1 AW2 AY3 AY4 BA5 BA6 BA1 BA2 BB3 BB4 BC1 BC2 AN5 AN6 AN1 AN2 AP3 AP4 AR1 AR2 AT3 AT4 AU1 AU2 AV3 AV4 AW5 AW6 AL10 AL11 AM8 AM9 AW10 AW11

Signal Name

Pin Name

PCIE_RX1_N

MGTYRXN2_227

PCIE_RX1_P

MGTYRXP2_227

PCIE_RX10_N

MGTYRXN1_225

PCIE_RX10_P

MGTYRXP1_225

PCIE_RX11_N

MGTYRXN0_225

PCIE_RX11_P

MGTYRXP0_225

PCIE_RX12_N

MGTYRXN3_224

PCIE_RX12_P

MGTYRXP3_224

PCIE_RX13_N

MGTYRXN2_224

PCIE_RX13_P

MGTYRXP2_224

PCIE_RX14_N

MGTYRXN1_224

PCIE_RX14_P

MGTYRXP1_224

PCIE_RX15_N

MGTYRXN0_224

PCIE_RX15_P

MGTYRXP0_224

PCIE_RX2_N

MGTYRXN1_227

PCIE_RX2_P

MGTYRXP1_227

PCIE_RX3_N

MGTYRXN0_227

PCIE_RX3_P

MGTYRXP0_227

PCIE_RX4_N

MGTYRXN3_226

PCIE_RX4_P

MGTYRXP3_226

PCIE_RX5_N

MGTYRXN2_226

PCIE_RX5_P

MGTYRXP2_226

PCIE_RX6_N

MGTYRXN1_226

PCIE_RX6_P

MGTYRXP1_226

PCIE_RX7_N

MGTYRXN0_226

PCIE_RX7_P

MGTYRXP0_226

PCIE_RX8_N

MGTYRXN3_225

PCIE_RX8_P

MGTYRXP3_225

PCIE_RX9_N

MGTYRXN2_225

PCIE_RX9_P

MGTYRXP2_225

PCIE_TX0_PIN_N

MGTYTXN3_227

PCIE_TX0_PIN_P

MGTYTXP3_227

PCIE_TX1_PIN_N

MGTYTXN2_227

PCIE_TX1_PIN_P

MGTYTXP2_227

PCIE_TX10_PIN_N

MGTYTXN1_225

PCIE_TX10_PIN_P

MGTYTXP1_225

Table 9 : Complete Pinout Table (continued on next page)

Bank Voltage
MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 33

ADM-PCIE-9H7 User Manual

Pin Number
AY8 AY9 BA10 BA11 BB8 BB9 BC10 BC11 BC6 BC7 AN10 AN11 AP8 AP9 AR10 AR11 AR6 AR7 AT8 AT9 AU10 AU11 AU6 AU7 AV8 AV9 BF41 BG50 BJ54 BH54 BK54 BN35 AL5 AL6 AK3 AK4

Signal Name

Pin Name

Bank Voltage

PCIE_TX11_PIN_N

MGTYTXN0_225

MGT

PCIE_TX11_PIN_P

MGTYTXP0_225

MGT

PCIE_TX12_PIN_N

MGTYTXN3_224

MGT

PCIE_TX12_PIN_P

MGTYTXP3_224

MGT

PCIE_TX13_PIN_N

MGTYTXN2_224

MGT

PCIE_TX13_PIN_P

MGTYTXP2_224

MGT

PCIE_TX14_PIN_N

MGTYTXN1_224

MGT

PCIE_TX14_PIN_P

MGTYTXP1_224

MGT

PCIE_TX15_PIN_N

MGTYTXN0_224

MGT

PCIE_TX15_PIN_P

MGTYTXP0_224

MGT

PCIE_TX2_PIN_N

MGTYTXN1_227

MGT

PCIE_TX2_PIN_P

MGTYTXP1_227

MGT

PCIE_TX3_PIN_N

MGTYTXN0_227

MGT

PCIE_TX3_PIN_P

MGTYTXP0_227

MGT

PCIE_TX4_PIN_N

MGTYTXN3_226

MGT

PCIE_TX4_PIN_P

MGTYTXP3_226

MGT

PCIE_TX5_PIN_N

MGTYTXN2_226

MGT

PCIE_TX5_PIN_P

MGTYTXP2_226

MGT

PCIE_TX6_PIN_N

MGTYTXN1_226

MGT

PCIE_TX6_PIN_P

MGTYTXP1_226

MGT

PCIE_TX7_PIN_N

MGTYTXN0_226

MGT

PCIE_TX7_PIN_P

MGTYTXP0_226

MGT

PCIE_TX8_PIN_N

MGTYTXN3_225

MGT

PCIE_TX8_PIN_P

MGTYTXP3_225

MGT

PCIE_TX9_PIN_N

MGTYTXN2_225

MGT

PCIE_TX9_PIN_P

MGTYTXP2_225

MGT

PERST0_1V8_L

IO_T3U_N12_PERSTN0_65

1.8 ( LVCMOS18)

PPS_BUF_1V8

IO_L20N_T3L_N3_AD1N_66

1.8 ( LVCMOS18)

PWR_SENSE_PIN

IO_L16N_T2U_N7_QBC_AD3N_66

1.8 ( LVCMOS18)

PWR_SENSE0_PIN

IO_L16P_T2U_N6_QBC_AD3P_66

1.8 ( LVCMOS18)

PWR_SENSE1_PIN

IO_L15N_T2L_N5_AD11N_66

1.8 ( LVCMOS18)

QSFP_A_MODPRS_L

IO_L7N_T1L_N1_QBC_AD13N_64

1.8 ( LVCMOS18)

QSFP_A_RX0_N

MGTYRXN0_228

MGT

QSFP_A_RX0_P

MGTYRXP0_228

MGT

QSFP_A_RX1_N

MGTYRXN1_228

MGT

QSFP_A_RX1_P

MGTYRXP1_228

Table 9 : Complete Pinout Table (continued on next page)

MGT

Page 34

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number
AJ1 AJ2 AH3 AH4 BN29 BN30 AK8 AK9 AJ6 AJ7 AJ10 AJ11 AH8 AH9 BN34 AG1 AG2 AF3 AF4 AE1 AE2 AE5 AE6 BL30 BM30 AG6 AG7 AG10 AG11 AF8 AF9 AE10 AE11 BP34 AD3 AD4

Signal Name

Pin Name

Bank Voltage

QSFP_A_RX2_N

MGTYRXN2_228

MGT

QSFP_A_RX2_P

MGTYRXP2_228

MGT

QSFP_A_RX3_N

MGTYRXN3_228

MGT

QSFP_A_RX3_P

MGTYRXP3_228

MGT

QSFP_A_SCL_1V8

IO_L4P_T0U_N6_DBC_AD7P_64

1.8 ( LVCMOS18)

QSFP_A_SDA_1V8

IO_L4N_T0U_N7_DBC_AD7N_64

1.8 ( LVCMOS18)

QSFP_A_TX0_N

MGTYTXN0_228

MGT

QSFP_A_TX0_P

MGTYTXP0_228

MGT

QSFP_A_TX1_N

MGTYTXN1_228

MGT

QSFP_A_TX1_P

MGTYTXP1_228

MGT

QSFP_A_TX2_N

MGTYTXN2_228

MGT

QSFP_A_TX2_P

MGTYTXP2_228

MGT

QSFP_A_TX3_N

MGTYTXN3_228

MGT

QSFP_A_TX3_P

MGTYTXP3_228

MGT

QSFP_B_MODPRS_L

IO_L8P_T1L_N2_AD5P_64

1.8 ( LVCMOS18)

QSFP_B_RX0_N

MGTYRXN0_229

MGT

QSFP_B_RX0_P

MGTYRXP0_229

MGT

QSFP_B_RX1_N

MGTYRXN1_229

MGT

QSFP_B_RX1_P

MGTYRXP1_229

MGT

QSFP_B_RX2_N

MGTYRXN2_229

MGT

QSFP_B_RX2_P

MGTYRXP2_229

MGT

QSFP_B_RX3_N

MGTYRXN3_229

MGT

QSFP_B_RX3_P

MGTYRXP3_229

MGT

QSFP_B_SCL_1V8

IO_L5P_T0U_N8_AD14P_64

1.8 ( LVCMOS18)

QSFP_B_SDA_1V8

IO_L5N_T0U_N9_AD14N_64

1.8 ( LVCMOS18)

QSFP_B_TX0_N

MGTYTXN0_229

MGT

QSFP_B_TX0_P

MGTYTXP0_229

MGT

QSFP_B_TX1_N

MGTYTXN1_229

MGT

QSFP_B_TX1_P

MGTYTXP1_229

MGT

QSFP_B_TX2_N

MGTYTXN2_229

MGT

QSFP_B_TX2_P

MGTYTXP2_229

MGT

QSFP_B_TX3_N

MGTYTXN3_229

MGT

QSFP_B_TX3_P

MGTYTXP3_229

MGT

QSFP_C_MODPRS_L

IO_L8N_T1L_N3_AD5N_64

1.8 ( LVCMOS18)

QSFP_C_RX0_N

MGTYRXN0_230

MGT

QSFP_C_RX0_P

MGTYRXP0_230

Table 9 : Complete Pinout Table (continued on next page)

MGT

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 35

ADM-PCIE-9H7 User Manual

Pin Number
AC1 AC2 AC5 AC6 AB3 AB4 BN32 BP32 AD8 AD9 AC10 AC11 AB8 AB9 AA6 AA7 AJ14 AJ15 AD12 AD13 AG41 AG40 AB43 AB42 BL32 AA1 AA2 Y3 Y4 W1 W2 V3 V4 BM32 BM34 AA10

Signal Name

Pin Name

Bank Voltage

QSFP_C_RX1_N

MGTYRXN1_230

MGT

QSFP_C_RX1_P

MGTYRXP1_230

MGT

QSFP_C_RX2_N

MGTYRXN2_230

MGT

QSFP_C_RX2_P

MGTYRXP2_230

MGT

QSFP_C_RX3_N

MGTYRXN3_230

MGT

QSFP_C_RX3_P

MGTYRXP3_230

MGT

QSFP_C_SCL_1V8

IO_L6P_T0U_N10_AD6P_64

1.8 ( LVCMOS18)

QSFP_C_SDA_1V8

IO_L6N_T0U_N11_AD6N_64

1.8 ( LVCMOS18)

QSFP_C_TX0_N

MGTYTXN0_230

MGT

QSFP_C_TX0_P

MGTYTXP0_230

MGT

QSFP_C_TX1_N

MGTYTXN1_230

MGT

QSFP_C_TX1_P

MGTYTXP1_230

MGT

QSFP_C_TX2_N

MGTYTXN2_230

MGT

QSFP_C_TX2_P

MGTYTXP2_230

MGT

QSFP_C_TX3_N

MGTYTXN3_230

MGT

QSFP_C_TX3_P

MGTYTXP3_230

MGT

QSFP_CLK_0_PIN_N

MGTREFCLK0N_228

MGT REFCLK

QSFP_CLK_0_PIN_P

MGTREFCLK0P_228

MGT REFCLK

QSFP_CLK_1_PIN_N

MGTREFCLK0N_230

MGT REFCLK

QSFP_CLK_1_PIN_P

MGTREFCLK0P_230

MGT REFCLK

QSFP_CLK_2_PIN_N

MGTREFCLK0N_129

MGT REFCLK

QSFP_CLK_2_PIN_P

MGTREFCLK0P_129

MGT REFCLK

QSFP_CLK_3_PIN_N

MGTREFCLK0N_131

MGT REFCLK

QSFP_CLK_3_PIN_P

MGTREFCLK0P_131

MGT REFCLK

QSFP_D_MODPRS_L

IO_L9P_T1L_N4_AD12P_64

1.8 ( LVCMOS18)

QSFP_D_RX0_N

MGTYRXN0_231

MGT

QSFP_D_RX0_P

MGTYRXP0_231

MGT

QSFP_D_RX1_N

MGTYRXN1_231

MGT

QSFP_D_RX1_P

MGTYRXP1_231

MGT

QSFP_D_RX2_N

MGTYRXN2_231

MGT

QSFP_D_RX2_P

MGTYRXP2_231

MGT

QSFP_D_RX3_N

MGTYRXN3_231

MGT

QSFP_D_RX3_P

MGTYRXP3_231

MGT

QSFP_D_SCL_1V8

IO_T0U_N12_VRP_64

1.8 ( LVCMOS18)

QSFP_D_SDA_1V8

IO_L7P_T1L_N0_QBC_AD13P_64

1.8 ( LVCMOS18)

QSFP_D_TX0_N

MGTYTXN0_231

Table 9 : Complete Pinout Table (continued on next page)

MGT

Page 36

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Pin Number
AA11 Y8 Y9 W6 W7 W10 W11
BN49 BM49 BK48 BK49 BM50 BL51 BK50 BK51 BM52 BJ48 BL52 BJ49 BL53 BL50 BH47 BJ47 AV43 AV42 AL41 AL40 BL33 BK33 P12 P13 T43 T42 BJ51 BH51 BG54

Signal Name

Pin Name

Bank Voltage

QSFP_D_TX0_P

MGTYTXP0_231

MGT

QSFP_D_TX1_N

MGTYTXN1_231

MGT

QSFP_D_TX1_P

MGTYTXP1_231

MGT

QSFP_D_TX2_N

MGTYTXN2_231

MGT

QSFP_D_TX2_P

MGTYTXP2_231

MGT

QSFP_D_TX3_N

MGTYTXN3_231

MGT

QSFP_D_TX3_P

MGTYTXP3_231

MGT

QSFP_LED_AG0_1V8

IO_L3N_T0L_N5_AD15N_66

1.8 ( LVCMOS18)

QSFP_LED_AG1_1V8

IO_L4P_T0U_N6_DBC_AD7P_66

1.8 ( LVCMOS18)

QSFP_LED_AR0_1V8

IO_L7P_T1L_N0_QBC_AD13P_66

1.8 ( LVCMOS18)

QSFP_LED_AR1_1V8

IO_L7N_T1L_N1_QBC_AD13N_66

1.8 ( LVCMOS18)

QSFP_LED_BG0_1V8

IO_L4N_T0U_N7_DBC_AD7N_66

1.8 ( LVCMOS18)

QSFP_LED_BG1_1V8

IO_L5P_T0U_N8_AD14P_66

1.8 ( LVCMOS18)

QSFP_LED_BR0_1V8

IO_L8P_T1L_N2_AD5P_66

1.8 ( LVCMOS18)

QSFP_LED_BR1_1V8

IO_L8N_T1L_N3_AD5N_66

1.8 ( LVCMOS18)

QSFP_LED_CG0_1V8

IO_L5N_T0U_N9_AD14N_66

1.8 ( LVCMOS18)

QSFP_LED_CG0_1V8

IO_L9P_T1L_N4_AD12P_66

1.8 ( LVCMOS18)

QSFP_LED_CG1_1V8

IO_L6P_T0U_N10_AD6P_66

1.8 ( LVCMOS18)

QSFP_LED_CG1_1V8

IO_L9N_T1L_N5_AD12N_66

1.8 ( LVCMOS18)

QSFP_LED_DG0_1V8

IO_L6N_T0U_N11_AD6N_66

1.8 ( LVCMOS18)

QSFP_LED_DG1_1V8

IO_T0U_N12_VRP_66

1.8 ( LVCMOS18)

QSFP_LED_DR0_1V8

IO_L10P_T1U_N6_QBC_AD4P_66

1.8 ( LVCMOS18)

QSFP_LED_DR1_1V8

IO_L10N_T1U_N7_QBC_AD4N_66

1.8 ( LVCMOS18)

SI5328_0_OUT0_PIN_N

MGTREFCLK0N_124

MGT REFCLK

SI5328_0_OUT0_PIN_P

MGTREFCLK0P_124

MGT REFCLK

SI5328_0_OUT1_PIN_N

MGTREFCLK0N_127

MGT REFCLK

SI5328_0_OUT1_PIN_P

MGTREFCLK0P_127

MGT REFCLK

SI5328_0_REFCLK_IN_N

IO_L12N_T1U_N11_GC_64

MGT REFCLK

SI5328_0_REFCLK_IN_P

IO_L12P_T1U_N10_GC_64

MGT REFCLK

SI5328_1_OUT0_PIN_N

MGTREFCLK0N_235

MGT REFCLK

SI5328_1_OUT0_PIN_P

MGTREFCLK0P_235

MGT REFCLK

SI5328_1_OUT1_PIN_N

MGTREFCLK0N_134

MGT REFCLK

SI5328_1_OUT1_PIN_P

MGTREFCLK0P_134

MGT REFCLK

SI5328_1_REFCLK_IN_N

IO_L11N_T1U_N9_GC_66

MGT REFCLK

SI5328_1_REFCLK_IN_P

IO_L11P_T1U_N8_GC_66

MGT REFCLK

SI5328_1V8_SCL

IO_L17N_T2U_N9_AD10N_66

Table 9 : Complete Pinout Table (continued on next page)

MGT REFCLK

Complete Pinout Table ad-ug-1341_v1_5.pdf

Page 37

ADM-PCIE-9H7 User Manual

Pin Number BG53 AG14 AG15
AB12 AB13 BH52 BG52 BF51 BE49 BE50 BD51 BM48 BF53 BG48 BG49 BE54 BE53 BF52 BF47

Signal Name
SI5328_1V8_SDA SI5328_2_OUT0_PIN_N SI5328_2_OUT0_PIN_P SI5328_2_OUT1_PIN_N SI5328_2_OUT1_PIN_P SI5328_2_REFCLK_IN_N SI5328_2_REFCLK_IN_P
SI5328_RST_1V8_L SPARE_SCL SPARE_SDA SPARE_WP
SRVC_MD_L_1V8 USER_LED_G0_1V8 USER_LED_G1_1V8 USER_LED_G2_1V8 USER_LED_G3_1V8 USER_LED_R0_1V8
USR_SW_0 USR_SW_1

Pin Name
IO_L17P_T2U_N8_AD10P_66 MGTREFCLK0N_229 MGTREFCLK0P_229 MGTREFCLK0N_231 MGTREFCLK0P_231
IO_L14N_T2L_N3_GC_66 IO_L14P_T2L_N2_GC_66 IO_L21P_T3L_N4_AD8P_66
IO_L23P_T3U_N8_66 IO_L23N_T3U_N9_66 IO_L24P_T3U_N10_66 IO_L3P_T0L_N4_AD15P_66
IO_T2U_N12_66 IO_L19P_T3L_N0_DBC_AD9P_66 IO_L19N_T3L_N1_DBC_AD9N_66
IO_L18N_T2U_N11_AD2N_66 IO_L18P_T2U_N10_AD2P_66 IO_L21N_T3L_N5_AD8N_66 IO_L22P_T3U_N6_DBC_AD0P_66

Table 9 : Complete Pinout Table ** Pin fields marked are not present in VU35P (FireFly 4-7)

Bank Voltage
MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK MGT REFCLK 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18) 1.8 ( LVCMOS18)

Page 38

Complete Pinout Table ad-ug-1341_v1_5.pdf

ADM-PCIE-9H7 User Manual

Revision History

Date 17 Jul 2018 20 Sep 2018
19 Oct 2018 10 Jun 2019 28 Jul 2022
17 Jul 2023

Revision 1.0 1.1
1.2 1.3 1.4
1.5

Changed By K. Roth
K. Roth

Initial Release

Nature of Change

Added thermal data, added FQSFP details, added link to linux avr2util.

K. Roth

Added section Battery Backed Encryption, corrected grammatical errors, clarified FireFly site reduction from 8 to 4 with VU35P

K. Roth K. Roth

Corrected LED labeling mistakes in section LEDs
Clarified section Power Requirements in that both the PCIE AUX power cable and the PCIE edge are required for the baord to power on.

K. Roth

Corrected clock index numbers in USB Interface for setclk commands, add table for PCB dimmension in Board Information

Address: Suite L4A, 160 Dundee Street,

Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600

Fax:

+44 131 558 2700

email:

sales@alpha-data.com

website: http://www.alpha-data.com

5.0

Address: 10822 West Toller Drive, Suite 250

Littleton, CO 80127

Telephone: (303) 954 8768

Fax:

(866) 820 9956 – toll free

email:

sales@alpha-data.com

website: http://www.alpha-data.com

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals