SENVA 154-0040-0C EMX True RMS Energy Meter User Guide
- June 16, 2024
- SENVA
Table of Contents
- SENVA 154-0040-0C EMX True RMS Energy Meter
- Product Information
- Product Usage Instructions
- See Also: 152-0390 EMX Installation Instructions
- Setup Registers and Parameters
- Metering
- Pulse Output
- Communications
- Alarms
- Metering Register:
- Real Time Clock Registers
- Logging Registers
- MODBUS Exception Codes
- Appendix D: Hex and ASCIl Conversions
- Read User Manual Online (PDF format)
- Download This Manual (PDF format)
SENVA 154-0040-0C EMX True RMS Energy Meter
Product Information
Specifications
- Description : Phase Configuration
- Current Element : Current Scale Current Orientation
- Voltage Scale : Display Units
- Reg. R/W Min Max Default Scale Units
Product Usage Instructions
-
Phase Configuration
The phase configuration allows you to select the current element and orientation for each phase. -
Current Element
-
For phases A, B, C:
- 1-ABCN
- 2-ABC
- 3-ABN
- 4-AB
-
Current Scale
The current scale determines the scale for measuring current. It is expressed in Amps per Volt. -
Transformer
- Scale : 10 – 60000
-
Rogowski Coil
Scale: To be calculated based on the coils mV/1000A rating. -
Voltage Scale
The voltage scale determines the scale for measuring voltage. It is expressed as a decimal. -
Scale
1-32000 -
Description
- Pulse Out 1 Source
-
Pulse Out 1 Wh
- Reg. R/W Min Max Default : 0-9
-
Pulse Out 1 Duration
- Reg. R/W Min Max Defaul t: 0-5
-
Pulse Out 2 Source
- Reg. R/W Min Max Default: 0-9
-
Pulse Out 2 Wh
- Reg. R/W Min Max Default: 0-9
-
Pulse Out 2 Duration
- Reg. R/W Min Max Default : 0-5
-
Communications
- Protocol: Modbus (1) or Bacnet (2)
-
Baud Rate
- 1-9600, 2-19200, 3-38400, 4-57600, 5-76800, 6-115200
-
Parity & Stop bits
- 1-Even parity 1 stop bit, 2-Odd parity 1 stop bit, 3-No parity 2 stop bits, 4-No parity 1 stop bit
-
Modbus Address (slave) address
- Reg. R/W Min Max Default: 1-247
-
Alarm – Voltage
- Enable or disable voltage alarms.
-
Out of Range
- 1-Disable, 2-Enable
-
Nominal Voltage
- Reg. R/W Min Max Default : 10-60000
-
Threshold
- Reg. R/W Min Max Default: 1-20
-
Alarm – Current
- Enable or disable current alarms.
-
Out of Range
- 0-Disable, 1-Enable
FAQ
-
Q: What is the current scale for a CT ratio of 20A / 0.333V?
A: The current scale will be 20.0 * 10 = 200. -
Q: How do I calculate the current scale for a Rogowski coil?
A: The current scale for a Rogowski coil can be calculated using the formula: (333.33 mV / x mV) 1000A 10(scale). -
Q: How do I calculate the voltage scale for a potential transformer of 25:10?
A: The voltage scale can be calculated by dividing the PT ratio (25 / 10) and multiplying it by 100. In this case, the voltage scale would be 2.5 * 100 = -
Q: What are the available options for pulse out 1 source?
A: The available options for pulse out 1 source are: Import W
(1), Export Wh (2), Import VARh (3), Export VARh (4), Mirror Input 1 (5), Mirror Input 2 (6), Alarm Normally Open (7), Alarm Normally Closed (8), Phase Loss Normally Open (9), Phase Loss Normally Closed (10). -
Q: What is the default baud rate?
A: The default baud rate is 9600. -
Q: What is the default Modbus address?
A: The default Modbus address is 1. -
Q: How do I enable or disable voltage alarms?
A: You can enable or disable voltage alarms by selecting the “Enable” or “Disable” option for the “Out of Range” setting. -
Q: What is the default nominal voltage for out of range alarms?
A: The default nominal voltage for out of range alarms is 2400. -
Q: What is the default threshold for voltage alarms?
A: The default threshold for voltage alarms is 10. -
Q: How do I enable or disable current alarms?
A: You can enable or disable current alarms by selecting the “Enable” or “Disable” option for the “Out of Range” setting. -
Q: What is the default scale for the current element?
A: The default scale for the current element is N/A.
User’s Manual – Modbus
EMX- User Interface and Modbus
- Communications Guide
- Senva Sensors
- 9290 SW Nimbus Ave
- Beaverton, OR 97008
1 54-0040-0C
Copyright ©2023. All rights reserved. This document contains Senva Sensors proprietary information, and may not be reproduced or distributed without written permission.
See Also: 152-0390 EMX Installation Instructions
154-0041 EMX BACnet Protocol Guide
Display Navigation
Congratulations on installing your new Senva EMX energy meter! This Modbus Protocol Guide assumes the first stage of installation is complete, with the meter and any CTs connected and powered. The OLEO display should show the home screen when any button is pressed. If not, refer to the separate Installation Instructions before continuing. Now, only the network configuration remains between you and the data.
- You can make selections using the UP and DOWN arrows and the pressing ENTER to proceed to that menu or setting.
- From any menu, press the ESC button to go back one menu.
- To change a value, use the UP and DOWN arrows to set each digit and the ENTER button to move the cursor left.
- Once each digit has been set, hit ENTER a final time to return to the previous menu.
- To abandon changes at any time, you may hit ESC.
- From any screen, press the ENTER button to access the settings menu.
Setup Registers and Parameters
Setup registers and parameters are available in 6 groups in the settings menu using the display or they may also be accessed using Modbus communications.
Settings
Settings are available in the following groups on the display. A parameter
list is provided in the following sections.
- Metering – Adjust metering parameters such as voltage and current scaling, phase sequencing, and display units.
- Pulse Output – Adjust the units, duration, and source of the two pulse outputs.
- Communications – Set communications parameters such as protocol, baud rate, parity, and addressing.
- Alarms – Enable or disable alarms and set trip points.
- Passcode – Choose a passcode to lock device.
- Advanced – View firmware versions or initiate a factory reset
The following sections detail how to adjust settings over the Mod bus interface. All setting are stored in non-volatile memory. Stored values will not be lost if the meter experiences a power loss.
- R/W:
- R = Readable Only
- R/W = Read and writeable
- Type, Min, Max:
- Ul 6 = UINT16 16-bit unsigned integer; min/max values listed
- Scale :
- Values must be multiplied by this scale factor to be read correctly. 15 * 0.1 = 1.5. When writing the value should be divided by the scale before being written. 1.5 / 0.1 = 15.
- Modbus Function Codes:
- The EMX setting registers support the following Mod bus function codes:
- 0x03 Read Holding Registers
- 0x04 Read Input Register
- 0x06 Read Single Holding Register
- 0xl 0 Write Multiple Holding Registers
Metering
Description| Reg.| R/W| Min| Max| Default|
Scale| Units
---|---|---|---|---|---|---|---
Phase| 1-ABCN,| 2000| R/W| 0| 3| 1| N/A| N/A
Configuration| 2-ABC,| | | | | | |
| 3-ABN,| | | | | | |
| 4-AB,| | | | | | |
Current Element| 1- Current Transformer, 2- Rogowski Coil| 2001| R/W| 0|
1| 1| N/A| N/A
Current Scale| See note 1| 2002| R/W| 10| 60000| 10| 0.1| Amps per 0.333
Volts
Current| For phases A, B, C:| 2003| R/W| 0| 7| 1| N/A| N/A
Orientation| 1- +, +, +| | | | | | |
| 2- +, +, –| | | | | | |
| 3- +, -, +| | | | | | |
| 4- +, -, –| | | | | | |
| 5- -, +, +| | | | | | |
| 6- -, +, –| | | | | | |
| 7- -, -, +| | | | | | |
| 8- -, -, –| | | | | | |
Voltage Scale| See note 2| 2004| R/W| 1| 32000| 100| 0.01| Volts per
Volt
Display Units| 1-IEC Units, 2-IEEE Units| 2005| R/W| 0| 1| 1| N/A| N/A
- Current scale is the primary side current of a 0.333V CT. CTs with an output voltage exceeding 0.333V should not be used. For a CT ratio of 20A / 0.333 V this will be 20.0 10 = 200. If a Rogowski coil is installed this value will need to be calculated from the coils mV/1000A rating. Rogowski conversion is calculated by (333.33 mV / x mV )1000A * 10(scale).
- Voltage scale is the PT ratio expressed as a decimal, and multiplied by 100. A potential transformer of 25:10 would give a ratio of 25 / 10 = 2.5, appropriately scaled it would be 2.5*100 = 250.
Pulse Output
Description | Reg. | R/W | Min | Max | Default |
---|---|---|---|---|---|
Description | Reg. | R/W | Min | Max | Default |
--- | --- | --- | --- | --- | --- |
Pulse Out 1 Source |
- Import Wh
- Export Wh
- Import VARh
- Export VARh
- Mirror Input 1
- Mirror Input 2
- Alarm Normally Open
- Alarm Normally Closed
- Phase Loss Normally Open
- Phase Loss Normally Closed
| 2006| R/W| 0| 9| 1
Pulse Out 1 Wh| Wh per pulse 2-10 Wh per pulse 3-100 Wh per pulse
4-1000 Wh per pulse 5-10000 Wh per pulse| 2007| R/W| 0| 4| 1
Pulse Out 1 Duration|
- 1-10ms 2-25ms 3-50ms 4-100ms
- 5-250ms
- 6-500ms
| 2008| R/W| 0| 5| 1
Pulse Out 2 Source|
- Import Wh
- Export Wh
- Import VARh
- Export VARh
- Mirror Input 1
- Mirror Input 2
- Alarm Normally Open 8-Alarm Normally Closed
- Phase Loss Normally Open
- Phase Loss Normally Closed
| 2009| R/W| 0| 9| 1
Pulse Out 2 Wh|
- 1-1 Wh per pulse 2-10 Wh per pulse
- 3-100 Wh per pulse 4-1000 Wh per pulse
- 5-10000 Wh per pulse
| 2010| R/W| 0| 4| 1
Pulse Out 2 Duration|
- 1-10ms 2-25ms 3-50ms 4-100ms
- 5-250ms
- 6-500ms
| 2011| R/W| 0| 5| 1
Communications
Description | Reg. | R/W | Min | Max | Default |
---|---|---|---|---|---|
Communications Protocol | 1-Modbus 2-Bacnet | 2012 | R/W | 0 | 1 |
Communications | 1-9600 | 2013 | R/W | 0 | 5 |
Baud Rate | 2-19200 | ||||
3-38400 | |||||
4-57600 | |||||
5-76800 | |||||
6-115200 | |||||
Communications | 1-Even parity 1 | 2014 | R/W | 0 | 3 |
Parity & Stop | stop bit | ||||
2-Odd parity 1 stop | |||||
3-No parity 2 stop | |||||
bits | |||||
4-No parity 1 stop | |||||
bit | |||||
Communications Modbus Address | Modbus client (slave) address | 2015 | |||
R/W | 1 | 247 | 247 |
Warning adjusting any of these values via the communications interface will cause the device to apply the setting immediately. Communications parameters of the host will need to change in order to re-establish communications.
Alarms
Description| Reg.| R/W| Min| Max| Default|
Scale| Units
---|---|---|---|---|---|---|---
Alarm – Voltage Out of Range
Enable
| 1-Disable 2-Enable| 2016| R/W| 0| 1| 1| N/A| N/A
Alarm – Voltage Out of Range Nominal| Set nominal L-L voltage for out of
range alarm, least
significant digit is 1/10th of a Volt.
| 2017| R/W| 10| 60000| 2400| 0.1| Volts
Alarm – Voltage Out of Range Threshold| The percent above or below the
nominal voltage setting (2017) at which a
fault will trigger.
| 2018| R/W| 1| 20| 10| 1| %
Alarm – Current
Out of Range Enable
| 0-Disable 1-Enable| 2019| R/W| 0| 1| 0| N/A| N/A
Alarm – Current Out of Range Nominal| Set nominal current for out of
range alarm, least significant digit is
1/10th of an Amp.
| 2020| R/W| 10| 60000| 50| 0.1| Amps
Alarm – Current Out of Range Threshold| The percent above or below the
nominal current setting (2020) at which a
fault will trigger.
| 2021| R/W| 1| 20| 10| 1| %
Alarm Ground Current Out of| 0-Disable 1-Enable| 2022| R/W| 0| 1| 0|
N/A| N/A
Description| Reg.| R/W| Min| Max| Default|
Scale| Units
---|---|---|---|---|---|---|---
Range Enable| | | | | | | |
Alarm Ground Current Out of Range Nominal| Set nominal ground current
for out of range alarm, least significant digit is
1/10th of an Amp.
| 2023| R/W| 10| 60000| 50| 0.1| Amps
Alarm Ground Current Out of Range Threshold| The percent above the
nominal ground current setting
(2023) which a fault will trigger.
| 2024| R/W| 1| 20| 10| 1| %
Alarm Frequency Out of Range Enable| 0-Disable 1-Enable| 2025| R/W|
0| 1| 1| N/A| N/A
Alarm Frequency Out of Range Nominal| Set nominal frequency for out
of range alarm, least significant digit is
1/100th of a Hertz.
| 2026| R/W| 450| 650| 600| 0.1| Hz
Alarm Frequency Out of Range Threshold| The percent above or below
the nominal frequency setting
(2026) at which a fault will trigger.
| 2027| R/W| 1| 20| 10| 1| %
Alarm Voltage Phase Loss Enable| 0-Disable 1-Enable| 2028| R/W| 0| 1| 1|
N/A| N/A
Alarm Voltage Phase Loss Threshold| A phase-to-phase comparison of L-N
voltages is performed. If any phase’s L-N voltage is below the others by the
threshold amount, a fault will trigger. Only applicable to 3Φ configurations
(ABC or ABCN). Single phase installations will power off during
phase loss event.
| 2029| R/W| 1| 20| 10| 1| %
Alarm Voltage Phase Imbalance
Enable
| 0-Disable, 1-Enable| 2030| R/W| 0| 1| 1| N/A| N/A
Alarm Voltage Phase Imbalance Threshold| The percent of phase-to-phase
imbalance above which a fault will trigger. For a three- phase Y system, both
VL-L and VL-N
are examined. For a
| 2031| R/W| 1| 20| 10| 1| %
Description| Reg.| R/W| Min| Max| Default|
Scale| Units
---|---|---|---|---|---|---|---
| three-phase delta, only VL-L measurements are compared. In a single split-
phase,
only VL-N are compared.
| | | | | | |
Alarm Power Factor Low Enable| 0-Disable 1-Enable| 2032| R/W| 0| 1| 1|
N/A| N/A
Alarm Power Factor Low Threshold| Set the (unitless) PF value, below
which a fault will trigger.| 2033| R/W| 1| 99| 50| 0.01| Unitless
Advanced
Description | Reg. | R/W | Min | Max | Default | |
---|---|---|---|---|---|---|
Reset Wh | Writing 1 will reset all of the stored Wh, VAh and VARh |
values.
| 2034| R/W| 0| 1| 0
Count of Wh Resets| Number of times the Wh has been reset.| 2035| R| 0|
65535| 0
Reset Run time| Writing 1 will reset the system run time (61 and 62),
but not the system power on time (59 and 60).| 2036| R/W| 0| 1| 0
Count of run time Resets| Number of times the system run time has been
reset.| 2037| R| 0| 65535| 0
Reset Pulse Counts| Writing 1 will reset the pulse input counters (63
through 66).| 2038| R/W| 0| 1| 0
Firmware Major version| Firmware version number| 2039| R| 0| 255| 0
Firmware Minor version| Firmware version number| 2040| R| 0| 255| 0
Firmware Patch version| Firmware version number| 2041| R| 0| 255| 0
Metering Register:
The following table describes each of the power and energy readings provided over Mod bus from the device.
-
R/W:
-
R = Read Only
-
R/W = Read and Write
-
Type, Min, Max:
-
116 = INT16
-
Ul 6 = UINT16
-
16-bit integer; -32768 to 32767, unless otherwise noted
-
16-bit unsigned integer; 0 to 65535 (0xFFFF), unless otherwise noted
-
ENUM = UINT16 16-bit unsigned integer that maps to a defined list of values
-
U32 = UINT32 32-bit unsigned integer; Oto 4294967295 (0xFFFFFFFF), unless
-
otherwise noted
-
U64 = UINT64 64-bit unsigned integer; Oto 18.466e+ 18
-
164 = I NT64 64-bit signed integer; -9.233e+ 18 to 9.233e+ 18
-
Scale:
Values must be multiplied by this scale factor to be read correctly. For some power, current, and voltage readings, the scale factor will be automatically set based on the user settings for voltage and current scale. These multipliers can be read in registers 030-032. -
Store:
Values marked “yes” will be stored in non-volatile memory. Stored values will not be lost if the meter experiences a power loss.
Modbus Function Codes:
The EMX metering registers support the following Mod bus function codes:
- 0x03 Read Holding Registers
- 0x04 Read Input Register
- Some registers span multiple Mod bus address. Two consecutive registers defined as
- XXX/YYY indicates a pair of aligned registers, that must be merged into a 32 bit value.
- Four consecutive registers require merging the results into a 64 bit value.
Description| Reg.| R/ W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
V-LN Average| 001| R| | | V-scale| V(rms)| No
V-LL Average| 002| R| | | V-scale| V(rms)| No
Current Average| 003| R| | | I-scale| A(rms)| No
Current Sum| 004| R| | | I-scale| A(rms)| No
Real power total| 005| R| | | P-scale| W| No
Reactive power total| 006| R| | | P-scale| VAR| No
Apparent power total| 007| R| | | P-scale| VA| No
V-LN Phase A| 008| R| | | V-scale| V(rms)| No
V-LN Phase B| 009| R| | | V-scale| V(rms)| No
V-LN Phase C| 010| R| | | V-scale| V(rms)| No
V-LL Phase A-B| 011| R| | | V-scale| V(rms)| No
V-LL Phase B-C| 012| R| | | V-scale| V(rms)| No
V-LL Phase C-A| 013| R| | | V-scale| V(rms)| No
Current Phase A| 014| R| | | I-scale| A(rms)| No
Current Phase B| 015| R| | | I-scale| A(rms)| No
Current Phase C| 016| R| | | I-scale| A(rms)| No
Power Factor Phase A| 017| R| -100| 100| 0.01| NA| No
Power Factor Phase B| 018| R| -100| 100| 0.01| NA| No
Power Factor Phase C| 019| R| -100| 100| 0.01| NA| No
Frequency (Phase A)| 020| R| 480| 620| 0.1| Hz| No
Real power Phase A| 021| R| | | P-scale| W| No
Real power Phase B| 022| R| | | P-scale| W| No
Real power Phase C| 023| R| | | P-scale| W| No
Reactive power Phase A| 024| R| | | P-scale| VAR| No
Reactive power Phase B| 025| R| | | P-scale| VAR| No
Reactive power Phase C| 026| R| | | P-scale| VAR| No
Apparent power Phase A| 027| R| | | P-scale| VA| No
Apparent power Phase B| 028| R| | | P-scale| VA| No
Apparent power Phase C| 029| R| | | P-scale| VA| No
Voltage Scale Factor (V-scale)|
- 3:0.001
- -2:0.01
- -1:0.1
- 0:1
- 1:10
- 2:100
- 3:1000
- 4:10000
- 5:100000
- 6:1000000
|
030
|
R
|
-2
|
2
|
1
|
N/A
|
No
Current Scale
Factor (I-scale)
|
031
|
R
|
-3
|
1
|
1
|
N/A
|
No
Power Scale Factor (P-scale)|
032
|
R
|
-3
|
6
|
1
|
N/A
|
No
Description| Reg.| R/ W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
Alarm Status Bitfield
|
- Bit 0: Pulse configuration error Bit 1: Pulse overrun error
- Bit 2: Voltage out of range
- Bit 3: Current out of range
- Bit 4: Current sum (ground current) out of range
- Bit 5: Freq. out of rangeBit 6: Voltage phase loss
Bit 7: Voltage phase unbalance
Bit 8: Power factor low
Bit 9 – 15: Reserved
|
033
|
R
|
0
|
0xFFFF
|
1
|
N/A
|
No
Load Status| 0: No load detected 1: Load above threshold|
034
|
R
|
0
|
1
|
1
|
N/A
|
No
System power on time| 035
036
| R| 0| 429496729
5
| 1| Second s| No
System run time| 037
038
| R| 0| 429496729
5
| 1| Second s| Yes
Power Reset Count| 039
040
| R| 0| 429496729
5
| 1| N/A| Yes
Pulse Count 1| 041
042
| R| 0| 429496729
5
| 1| N/A| Yes
Pulse Count 2| 043
044
| R| 0| 429496729
5
| 1| N/A| Yes
Real Net Energy total
| 045
046
047
048
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Net Energy Phase A
| 049
050
051
052
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Net Energy Phase B
| 053
054
055
056
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Net Energy Phase C| 057
058
059
060
| R| 0| 65535| 0.00000001| Wh|
Yes
Reactive Net Energy total| 061
062
063
064
| R| 0|
65535
| 0.00000001| VARh| Yes
Description| Reg.| R/ W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
Reactive Net Energy Phase A| 065
066
067
068
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Net Energy Phase B| 069
070
071
072
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Net Energy Phase C| 073
074
075
076
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Apparent Net Energy total
| 077
078
079
080
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Net Energy Phase A| 081
082
083
084
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Net Energy Phase B| 085
086
087
088
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Net Energy Phase C| 089
090
091
092
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Real Import Energy total
| 093
094
095
096
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Import Energy Phase A| 097
098
099
100
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Import Energy Phase B| 101
102
103
104
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Import Energy Phase C| 105
106
107
108
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Reactive Import Energy total| 109
110
111
112
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Import Energy Phase A| 113
114
115
116
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Description| Reg.| R/ W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
Reactive Import Energy Phase B| 117
118
119
120
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Import Energy Phase C| 121
122
123
124
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Apparent Import Energy total| 125
126
127
128
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Import Energy Phase A| 129
130
131
132
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Import Energy Phase B| 133
134
135
136
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Import Energy Phase C| 137
138
139
140
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Real Export Energy total
| 141
142
143
144
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Export Energy Phase A| 145
146
147
148
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Export Energy Phase B| 149
150
151
152
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Real Export Energy Phase C| 153
154
155
156
|
R
|
0
|
65535
|
0.00000001
|
Wh
|
Yes
Reactive Export Energy total| 157
158
159
160
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Export Energy Phase A| 161
162
163
164
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Reactive Export Energy Phase B| 165
166
167
168
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Description| Reg.| R/ W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
Reactive Export Energy Phase C|
- 169
- 170
- 171
- 172
|
R
|
0
|
65535
|
0.00000001
|
VARh
|
Yes
Apparent Export Energy total|
- 173
- 174
- 175
- 176
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Export Energy Phase A|
- 177
- 178
- 179
- 180
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Export Energy Phase B|
- 181
- 182
- 183
- 184
|
R
|
0
|
65535
|
0.00000001
|
VAh
|
Yes
Apparent Export Energy Phase C|
- 185
- 186
- 187
- 188
| R| 0| 65535| 0.00000001| VAh| Yes
Real Time Clock Registers
Description| Reg.| R/W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
RTC – Set Year| 4000| R/W| 2022| 2060| 1| N/A| No
RTC – Set Month| 4001| R/W| 1| 12| 1| N/A| No
RTC – Set Day of Moth| 4002| R/W| 1| 31| 1| N/A| No
RTC – Set Day of Week| 4003| R/W| 0| 6| 1| N/A| No
RTC – Set Hours| 4004| R/W| 0| 23| 1| Hrs| No
RTC – Set Minutes| 4005| R/W| 0| 59| 1| Mins| No
RTC – Set Seconds| 4006| R/W| 0| 23| 1| Secs| No
RTC – Commit time| 4007| R/W| 0| 1| 1| N/A| Yes
RTC – Current Year| 4100| R| 2022| 2060| 1| N/A| Yes
RTC – Current Month| 4101| R| 1| 12| 1| N/A| Yes
RTC – Current Day of Month| 4102| R| 1| 31| 1| N/A| Yes
RTC – Current Day of Week| 0 = Sunday
6 = Saturday
| 4103| R| 0| 6| 1|
N/A
| Yes
RTC – Current AM/PM Flag, or 0
| If in 24 hour mode, will return 0, if in 12 hour mode: 1 = AM, 2 = PM|
4104| R| 0| 2| 1| N/A| Yes
RTC – Current Hours| 4105| R| 0| 0| 1| Hrs| Yes
RTC – Current Minutes| 4106| R| 0| 0| 1| Mins| Yes
RTC – Current Seconds| 4107| R| 0| 0| 1| Secs| Yes
Logging Registers
- EMX Logging:
- Logging on the EMX is only available on models with firmware 2.0 or greater.
- Log Source 1 – Log source 12 set the source for the logging. Write the Modbus register 1-188 to the desired source to log that point. If a Modbus register has multiple register all registers need to be set. For example, if Real Net Energy total is desired to be logged all four registers need to be set.
- To trigger a log event Logging – Trigger Source needs to be set to the desired trigger mode, by default it is set to be disabled. Logging can be triggered with the timer, set on Modbus point 5001 in seconds from 15-3600. Triggering can be set over COMMS by writing point 5015 a 1, or Pulse In 1 or 2 can be set to trigger a log whenever a pulse isa detected
Description| Reg.| R/W| Min| Max| Scale|
Units| Store
---|---|---|---|---|---|---|---
Logging – Trigger Source|
- 0 = Disabled
- 1 = Timer
- 2 = Comms
- 3 = Pulse In 1
- 4 = Pulse in 2
| 5000| R/W| 0| 3| 1| N/A| Yes
Logging – Trigger Interval| 5001| R/W| 15| 3600| 1| Secs| Yes
Logging – Mode Select|
- “Continuous” continue logging and overwrite old entries, sequentially
- “One Shot” – log until EEPROM is full, then stop logging and throw alarm
| 5002| R/W| 0| 2| 1| N/A| Yes
Logging – Log Source 1| 5003| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 2| 5004| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 3| 5005| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 4| 5006| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 5| 5007| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 6| 5008| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 7| 5009| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 8| 5010| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 9| 5011| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 10| 5012| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 11| 5013| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 12| 5014| R/W| 0| 188| 1| N/A| Yes
Logging – Trigger log creation| 5015| R/W| 0| 1| 1| N/A| Yes
Logging – Read log at index| 5016| R| 0| 4096| 1| N/A| Yes
Logging – Oldest Index| 5100| R| 0| 4096| 1| N/A| Yes
Logging – Count of log entries| 5101| R| 0| 4096| 1| N/A| Yes
Logging – Current Index| 5102| R| 0| 65535| 1| N/A| Yes
Logging – Log data 1| 5103| R| 0| 65535| 1| N/A| Yes
Logging – Log data 2| 5104| R| 0| 65535| 1| N/A| Yes
Logging – Log data 3| 5105| R| 0| 65535| 1| N/A| Yes
Logging – Log data 4| 5106| R| 0| 65535| 1| N/A| Yes
Logging – Log data 5| 5107| R| 0| 65535| 1| N/A| Yes
---|---|---|---|---|---|---|---
Logging – Log data 6| 5108| R| 0| 65535| 1| N/A| Yes
Logging – Log data 7| 5109| R| 0| 65535| 1| N/A| Yes
Logging – Log data 8| 5110| R| 0| 65535| 1| N/A| Yes
Logging – Log data 9| 5111| R| 0| 65535| 1| N/A| Yes
Logging – Log data 10| 5112| R| 0| 65535| 1| N/A| Yes
Logging – Log data 11| 5113| R| 0| 65535| 1| N/A| Yes
Logging – Log data 12| 5114| R| 0| 59| 1| N/A| Yes
Logging – Log time stamp seconds| 5115| R| 0| 59| 1| N/A| Yes
Logging – Log time stamp minutes| 5116| R| 0| 23| 1| N/A| Yes
Logging – Log time stamp hours| 5117| R| 0| 31| 1| N/A| Yes
Logging – Log time stamp day of month| 5118| R| 0| 12| 1| N/A| Yes
Logging – Log time stamp month| 5119| R| 0| 256| 1| N/A| Yes
Logging – Log time stamp year| 5120| R| 0| 65535| 1| N/A| Yes
Logging – CRC| 5121| R| 0| 4096| 1| N/A| Yes
Modbus Functions
- The EMX supports the following functions of the Modbus Application Protocol Specification, vl .1 b3.
- Examples are intended to be representative; refer to the full specification for questions or clarification.
Notes:
- The device address defaults to 247 (OxF7).
- EMX device supports Modbus RTU encoding only (not ASCII).
- Refer to the Modbus standard for CRC/LRC calculation procedures
Data Types
Natively, Mod bus holding register functions only support the UINT16 type (2
bytes). The meter constructs additional types from two or more consecutive
registers. Client interface software must support the same construction for
proper communication:
UINT32 data always occupies two registers (4 bytes) in network byte order {MSB
first). Read and write
operations should address both registers.
The following examples show UINT32 encodings in a Mod bus PDU beginning at
byte [n], register [r]:
0x03 Read Holding Registers
Returns one or more registers in a contiguous block: Successful reads return
the contents of the requested registers:
Example 1: Read the line frequency of <DA (026).
0x04 Read Input Register
Reads one or more read only registers in a contiguous block:
Ox06 Write Single Register
Writes a value to a single register Ox1 O Write Multiple Registers
Writes one or more registers in a contiguous block:
MODBUS Exception Codes
If many cases when the Modbus interface encounters an error it will return an
exception code. The most common errors are described in the table below.
Additional information about exception codes may be found in the reference
document.
Reference: https://modbus.org_/docs/Modbus_Application_protocol_V1 1
b.pdf
MODBUS Exception Codes
Code
| ****
Name
| ****
Meaning
01
| ****
ILLEGAL FUNCTION
| The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to return register values.
02
| ****
ILLEGAL DATA ADDRESS
| The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 “Illegal Data Address” since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register
with address 100.
03
| ****
ILLEGAL DATA VALUE
| ****
A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the MODBUS protocol is unaware of the significance of any particular value of any particular register.
Data Type Conversions
-
The following sections provide information on how to convert from the standard U 16 registers that Mod bus provides into other formats. Some controllers or Modbus interfaces provide these conversions, in which case the user should utilize those methods, instead of the following conversions.
-
U 16 to 116 Conversion
-
Conversion from a signed requires checking if the value is value returned (VAIUE) is greater than the maximum for an 16 bit integer (32767), if the value is greater then the value
-
65536 must be subtracted off to calculate a negative value.
-
If VALUE > 32767
-
Then : VALUE= VALUE – 65536
-
Otherwise : VALUE= VALUE (do nothing)
-
Example:
-
Reading register 005 (Real power total) the device responds with 64536. This value is greater than 32767, which means it must be adjusted. By subtracting 65536 we get 64536 – 65536 = -1000, which is the correct value for the real power. Please note that in practice a scale value will need to be determined and applied to this output in order to get the value into watts or whatever units are applicable.
-
U 16 to U32 Conversion
-
Conversion from two unsigned 16 bit registers into a 32 bit value can be done by reading the two necessary registers and multiplying the first (lower register address) register by 32678 and adding the second register.
VALUE= (REGISTER_LOW * 65536) + REGISTER_HIGH -
Example :
Reading registers 035 and 036 which together are the system power on time. Register 035 has a value
(REGISTER_LOW) of 6, register 036 (REGISTER_HIGH) has a value of 38784. Using the calculation we get (6 65536) + 38784 = 432000. This corresponds to the time in seconds that the device has been powered on. 5 Days = 5 24 60 60 = 432000 seconds. -
U 16 to U64 Conversion
Conversion from 4 unsigned 16 bit registers to a 64 bit register is necessary for using the energy accumulators on the EMX. This is done to maintain system accuracy over long operating durations, and to avoid conditions where the energies appear to cease updating. This follows a similar pattern as the U32 conversion. All four registers must be read, preferably simultaneously with a multi-register read operation. The lowest address register is REG 1, the highest is REG 4.
VALUE= REG_ 1 2″48 + REG_2 2″32 + REG3 * 2″ 16 + REG 4
Or without the power notation
VALUE= REG_ 1 281,474,976,710,656 + REG_2 4,294,967,296 + REG3 * 65536 + REG 4 -
Example :
-
Reading registers 091 /092/093/094 which correspond to the Real Import Energy Total (how much energy has been consumed by downstream devices). Register 091 (REG_ 1) reads 0, register 092 (REG_2) reads 13, register 093 (REG3) reads 63559 and register 094 (REG 4) reads 22528. The calculation is 0 281,474,976,710,656 + 13 4,294,967,296 + 63559 * 65536 + 22528 = 60000000000 when scaled down by the scale of 0.00000001 given in the table it’s 600.0 which is the number of Watt Hours of energy that the device has metered at that point.
-
U 16 to 164 Conversion
All of the net energy registers are signed values. A negative sign indicates that net power has been exported, a positive sign indicates that net power has been imported (consumed). To convert from four U 16 registers to an 164 register first perform a conversion as described above. Next perform the following step: -
If VALUE > (2A63 )- 1
-
Then VALUE= VALUE- 2A64
-
Otherwise VALUE= VALUE (do nothing).
Appendix D: Hex and ASCIl Conversions
HEX DEC ASCII | 0x41 | 65 | A | 0x83 | 131 | ƒ | 0xC5 | 197 | Å |
---|---|---|---|---|---|---|---|---|---|
0x00 | 0 | NULL | 0x42 | 66 | B | 0x84 | 132 | „ | 0xC6 |
0x01 | 1 | 0x43 | 67 | C | 0x85 | 133 | … | 0xC7 | |
0x02 | 2 | 0x44 | 68 | D | 0x86 | 134 | † | 0xC8 | |
0x03 | 3 | 0x45 | 69 | E | 0x87 | 135 | ‡ | 0xC9 | |
0x04 | 4 | 0x46 | 70 | F | 0x88 | 136 | ˆ | 0xCA | |
0x05 | 5 | 0x47 | 71 | G | 0x89 | 137 | ‰ | 0xCB | |
0x06 | 6 | 0x48 | 72 | H | 0x8A | 138 | Š | 0xCC | |
0x07 | 7 | 0x49 | 73 | I | 0x8B | 139 | ‹ | 0xCD | |
0x08 | 8 | 0x4A | 74 | J | 0x8C | 140 | Œ | 0xCE | |
0x09 | 9 | 0x4B | 75 | K | 0x8D | 141 | 0xCF | ||
0x0A | 10 | 0x4C | 76 | L | 0x8E | 142 | Ž | 0xD0 | |
0x0B | 11 | 0x4D | 77 | M | 0x8F | 143 | 0xD1 | ||
0x0C | 12 | 0x4E | 78 | N | 0x90 | 144 | 0xD2 | ||
0x0D | 13 | 0x4F | 79 | O | 0x91 | 145 | ‘ | 0xD3 | |
0x0E | 14 | 0x50 | 80 | P | 0x92 | 146 | ’ | 0xD4 | |
0x0F | 15 | 0x51 | 81 | Q | 0x93 | 147 | “ | 0xD5 | |
0x10 | 16 | 0x52 | 82 | R | 0x94 | 148 | ” | 0xD6 | |
0x11 | 17 | 0x53 | 83 | S | 0x95 | 149 | • | 0xD7 | |
0x12 | 18 | 0x54 | 84 | T | 0x96 | 150 | – | 0xD8 | |
0x13 | 19 | 0x55 | 85 | U | 0x97 | 151 | — | 0xD9 | |
0x14 | 20 | 0x56 | 86 | V | 0x98 | 152 | ˜ | 0xDA | |
0x15 | 21 | 0x57 | 87 | W | 0x99 | 153 | ™ | 0xDB | |
0x16 | 22 | 0x58 | 88 | X | 0x9A | 154 | š | 0xDC | |
0x17 | 23 | 0x59 | 89 | Y | 0x9B | 155 | › | 0xDD | |
0x18 | 24 | 0x5A | 90 | Z | 0x9C | 156 | œ | 0xDE | |
0x19 | 25 | 0x5B | 91 | [ | 0x9D | 157 | 0xDF | ||
0x1A | 26 | 0x5C | 92 | | 0x9E | 158 | ž | 0xE0 | 224 | |
0x1B | 27 | 0x5D | 93 | ] | 0x9F | 159 | Ÿ | 0xE1 | |
0x1C | 28 | 0x5E | 94 | ^ | 0xA0 | 160 | 0xE2 | ||
0x1D | 29 | 0x5F | 95 | _ | 0xA1 | 161 | ¡ | 0xE3 | |
0x1E | 30 | 0x60 | 96 | ` | 0xA2 | 162 | ¢ | 0xE4 | |
0x1F | 31 | 0x61 | 97 | a | 0xA3 | 163 | £ | 0xE5 | |
0x20 | 32 | 0x62 | 98 | b | 0xA4 | 164 | ¤ | 0xE6 | |
0x21 | 33 | ! | 0x63 | 99 | c | 0xA5 | 165 | ¥ | 0xE7 |
0x22 | 34 | “ | 0x64 | 100 | d | 0xA6 | 166 | ¦ | 0xE8 |
0x23 | 35 | # | 0x65 | 101 | e | 0xA7 | 167 | § | 0xE9 |
0x24 | 36 | $ | 0x66 | 102 | f | 0xA8 | 168 | ¨ | 0xEA |
0x25 | 37 | % | 0x67 | 103 | g | 0xA9 | 169 | © | 0xEB |
0x26 | 38 | & | 0x68 | 104 | h | 0xAA | 170 | ª | 0xEC |
0x27 | 39 | ‘ | 0x69 | 105 | i | 0xAB | 171 | « | 0xED |
0x28 | 40 | ( | 0x6A | 106 | j | 0xAC | 172 | ¬ | 0xEE |
0x29 | 41 | ) | 0x6B | 107 | k | 0xAD | 173 | – | 0xEF |
0x2A | 42 | * | 0x6C | 108 | l | 0xAE | 174 | ® | 0xF0 |
0x2B | 43 | + | 0x6D | 109 | m | 0xAF | 175 | ¯ | 0xF1 |
0x2C | 44 | , | 0x6E | 110 | n | 0xB0 | 176 | ° | 0xF2 |
0x2D | 45 | – | 0x6F | 111 | o | 0xB1 | 177 | ± | 0xF3 |
0x2E | 46 | . | 0x70 | 112 | p | 0xB2 | 178 | ² | 0xF4 |
0x2F | 47 | / | 0x71 | 113 | q | 0xB3 | 179 | ³ | 0xF5 |
0x30 | 48 | 0 | 0x72 | 114 | r | 0xB4 | 180 | ´ | 0xF6 |
0x31 | 49 | 1 | 0x73 | 115 | s | 0xB5 | 181 | µ | 0xF7 |
0x32 | 50 | 2 | 0x74 | 116 | t | 0xB6 | 182 | ¶ | 0xF8 |
0x33 | 51 | 3 | 0x75 | 117 | u | 0xB7 | 183 | · | 0xF9 |
0x34 | 52 | 4 | 0x76 | 118 | v | 0xB8 | 184 | ¸ | 0xFA |
0x35 | 53 | 5 | 0x77 | 119 | w | 0xB9 | 185 | ¹ | 0xFB |
0x36 | 54 | 6 | 0x78 | 120 | x | 0xBA | 186 | º | 0xFC |
0x37 | 55 | 7 | 0x79 | 121 | y | 0xBB | 187 | » | 0xFD |
0x38 | 56 | 8 | 0x7A | 122 | z | 0xBC | 188 | ¼ | 0xFE |
0x39 | 57 | 9 | 0x7B | 123 | { | 0xBD | 189 | ½ | 0xFF |
0x3A | 58 | : | 0x7C | 124 | 0xBE | 190 | ¾ | ||
0x3B | 59 | ; | 0x7D | 125 | } | 0xBF | 191 | ¿ | |
0x3C | 60 | < | 0x7E | 126 | ~ HEX DEC LATIN-1 | ||||
0x3D | 61 | = | 0x7F | 127 | 0xC0 192 À | ||||
0x3E | 62 | > HEX DEC LATIN-1 | 0xC1 | 193 | Á | ||||
0x3F | 63 | ? 0x80 128 € | 0xC2 | 194 | Â | ||||
HEX DEC ASCII | 0x81 | 129 | 0xC3 | 195 | Ã | ||||
0x40 64 @ | 0x82 | 130 | ‚ | 0xC4 | 196 | Ä |
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>