SENVA 154-0040-0C EMX True RMS Energy Meter User Guide

June 16, 2024
SENVA

SENVA-logo

SENVA 154-0040-0C EMX True RMS Energy Meter

Product Information

Specifications

  • Description : Phase Configuration
  • Current Element : Current Scale Current Orientation
  • Voltage Scale : Display Units
  • Reg. R/W Min Max Default Scale Units

Product Usage Instructions

  • Phase Configuration
    The phase configuration allows you to select the current element and orientation for each phase.

  • Current Element

  • For phases A, B, C:

    • 1-ABCN
    • 2-ABC
    • 3-ABN
    • 4-AB
  • Current Scale
    The current scale determines the scale for measuring current. It is expressed in Amps per Volt.

  • Transformer

    • Scale : 10 – 60000
  • Rogowski Coil
    Scale:
    To be calculated based on the coils mV/1000A rating.

  • Voltage Scale
    The voltage scale determines the scale for measuring voltage. It is expressed as a decimal.

  • Scale
    1-32000

  • Description

    • Pulse Out 1 Source
  • Pulse Out 1 Wh

    • Reg. R/W Min Max Default : 0-9
  • Pulse Out 1 Duration

    • Reg. R/W Min Max Defaul t: 0-5
  • Pulse Out 2 Source

    • Reg. R/W Min Max Default: 0-9
  • Pulse Out 2 Wh

    • Reg. R/W Min Max Default: 0-9
  • Pulse Out 2 Duration

    • Reg. R/W Min Max Default : 0-5
  • Communications

    • Protocol: Modbus (1) or Bacnet (2)
  • Baud Rate

    • 1-9600, 2-19200, 3-38400, 4-57600, 5-76800, 6-115200
  • Parity & Stop bits

    • 1-Even parity 1 stop bit, 2-Odd parity 1 stop bit, 3-No parity 2 stop bits, 4-No parity 1 stop bit
  • Modbus Address (slave) address

    • Reg. R/W Min Max Default: 1-247
  • Alarm – Voltage

    • Enable or disable voltage alarms.
  • Out of Range

    • 1-Disable, 2-Enable
  • Nominal Voltage

    • Reg. R/W Min Max Default : 10-60000
  • Threshold

    • Reg. R/W Min Max Default: 1-20
  • Alarm – Current

    • Enable or disable current alarms.
  • Out of Range

    • 0-Disable, 1-Enable

FAQ

  1. Q: What is the current scale for a CT ratio of 20A / 0.333V?
    A: The current scale will be 20.0 * 10 = 200.

  2. Q: How do I calculate the current scale for a Rogowski coil?
    A: The current scale for a Rogowski coil can be calculated using the formula: (333.33 mV / x mV) 1000A 10(scale).

  3. Q: How do I calculate the voltage scale for a potential transformer of 25:10?
    A: The voltage scale can be calculated by dividing the PT ratio (25 / 10) and multiplying it by 100. In this case, the voltage scale would be 2.5 * 100 =

  4. Q: What are the available options for pulse out 1 source?
    A: The available options for pulse out 1 source are: Import W
    (1), Export Wh (2), Import VARh (3), Export VARh (4), Mirror Input 1 (5), Mirror Input 2 (6), Alarm Normally Open (7), Alarm Normally Closed (8), Phase Loss Normally Open (9), Phase Loss Normally Closed (10).

  5. Q: What is the default baud rate?
    A: The default baud rate is 9600.

  6. Q: What is the default Modbus address?
    A: The default Modbus address is 1.

  7. Q: How do I enable or disable voltage alarms?
    A: You can enable or disable voltage alarms by selecting the “Enable” or “Disable” option for the “Out of Range” setting.

  8. Q: What is the default nominal voltage for out of range alarms?
    A: The default nominal voltage for out of range alarms is 2400.

  9. Q: What is the default threshold for voltage alarms?
    A: The default threshold for voltage alarms is 10.

  10. Q: How do I enable or disable current alarms?
    A: You can enable or disable current alarms by selecting the “Enable” or “Disable” option for the “Out of Range” setting.

  11. Q: What is the default scale for the current element?
    A: The default scale for the current element is N/A.

User’s Manual – Modbus
EMX- User Interface and Modbus

  • Communications Guide
  • Senva Sensors
  • 9290 SW Nimbus Ave
  • Beaverton, OR 97008

1 54-0040-0C

SENVA-154-0040-0C-EMX-True-RMS-Energy-Meter-image-3

Copyright ©2023. All rights reserved. This document contains Senva Sensors proprietary information, and may not be reproduced or distributed without written permission.

See Also: 152-0390 EMX Installation Instructions

154-0041 EMX BACnet Protocol Guide
Display Navigation

Congratulations on installing your new Senva EMX energy meter! This Modbus Protocol Guide assumes the first stage of installation is complete, with the meter and any CTs connected and powered. The OLEO display should show the home screen when any button is pressed. If not, refer to the separate Installation Instructions before continuing. Now, only the network configuration remains between you and the data.

  •  You can make selections using the UP and DOWN arrows and the pressing ENTER to proceed to that menu or setting.
  • From any menu, press the ESC button to go back one menu. SENVA-154-0040-0C-EMX-True-RMS-Energy-Meter-image-1
  • To change a value, use the UP and DOWN arrows to set each digit and the ENTER button to move the cursor left.
    • Once each digit has been set, hit ENTER a final time to return to the previous menu.
    • To abandon changes at any time, you may hit ESC.
    • From any screen, press the ENTER button to access the settings menu.SENVA-154-0040-0C-EMX-True-RMS-Energy-Meter-image-2

Setup Registers and Parameters

Setup registers and parameters are available in 6 groups in the settings menu using the display or they may also be accessed using Modbus communications.

Settings
Settings are available in the following groups on the display. A parameter list is provided in the following sections.

  • Metering – Adjust metering parameters such as voltage and current scaling, phase sequencing, and display units.
  • Pulse Output – Adjust the units, duration, and source of the two pulse outputs.
  • Communications – Set communications parameters such as protocol, baud rate, parity, and addressing.
  • Alarms – Enable or disable alarms and set trip points.
  • Passcode – Choose a passcode to lock device.
  • Advanced – View firmware versions or initiate a factory reset

The following sections detail how to adjust settings over the Mod bus interface. All setting are stored in non-volatile memory. Stored values will not be lost if the meter experiences a power loss.

  • R/W:
  • R = Readable Only
  • R/W = Read and writeable
  • Type, Min, Max:
  • Ul 6 = UINT16 16-bit unsigned integer; min/max values listed
  • Scale :
    • Values must be multiplied by this scale factor to be read correctly. 15 * 0.1 = 1.5. When writing the value should be divided by the scale before being written. 1.5 / 0.1 = 15.
  • Modbus Function Codes:
  • The EMX setting registers support the following Mod bus function codes:
    • 0x03 Read Holding Registers
    • 0x04 Read Input Register
    • 0x06 Read Single Holding Register
    • 0xl 0 Write Multiple Holding Registers

Metering

Description| Reg.| R/W| Min| Max| Default| Scale| Units
---|---|---|---|---|---|---|---
Phase| 1-ABCN,| 2000| R/W| 0| 3| 1| N/A| N/A
Configuration| 2-ABC,| | | | | | |
| 3-ABN,| | | | | | |
| 4-AB,| | | | | | |
Current Element| 1- Current Transformer, 2- Rogowski Coil| 2001| R/W| 0| 1| 1| N/A| N/A
Current Scale| See note 1| 2002| R/W| 10| 60000| 10| 0.1| Amps per 0.333 Volts
Current| For phases A, B, C:| 2003| R/W| 0| 7| 1| N/A| N/A
Orientation| 1-  +, +, +| | | | | | |
| 2-  +, +, –| | | | | | |
| 3-  +, -, +| | | | | | |
| 4-  +, -, –| | | | | | |
| 5-  -, +, +| | | | | | |
| 6-  -, +, –| | | | | | |
| 7-  -, -, +| | | | | | |
| 8-  -, -, –| | | | | | |
Voltage Scale| See note 2| 2004| R/W| 1| 32000| 100| 0.01| Volts per Volt
Display Units| 1-IEC Units, 2-IEEE Units| 2005| R/W| 0| 1| 1| N/A| N/A

  1. Current scale is the primary side current of a 0.333V CT. CTs with an output voltage exceeding 0.333V should not be used. For a CT ratio of 20A / 0.333 V this will be 20.0 10 = 200. If a Rogowski coil is installed this value will need to be calculated from the coils mV/1000A rating. Rogowski conversion is calculated by (333.33 mV / x mV )1000A * 10(scale).
  2. Voltage scale is the PT ratio expressed as a decimal, and multiplied by 100. A potential transformer of 25:10 would give a ratio of 25 / 10 = 2.5, appropriately scaled it would be 2.5*100 = 250.

Pulse Output

Description Reg. R/W Min Max Default
Description Reg. R/W Min Max Default
--- --- --- --- --- ---
Pulse Out 1 Source
  1. Import Wh
  2. Export Wh
  3. Import VARh
  4. Export VARh
  5. Mirror Input 1
  6. Mirror Input 2
  7. Alarm Normally Open
  8. Alarm Normally Closed
  9. Phase Loss Normally Open
  10. Phase Loss Normally Closed

| 2006| R/W| 0| 9| 1
Pulse Out 1 Wh|  Wh per pulse 2-10 Wh per pulse 3-100 Wh per pulse 4-1000 Wh per pulse 5-10000 Wh per pulse| 2007| R/W| 0| 4| 1
Pulse Out 1 Duration|

  • 1-10ms 2-25ms 3-50ms 4-100ms
  • 5-250ms
  • 6-500ms

| 2008| R/W| 0| 5| 1
Pulse Out 2 Source|

  1. Import Wh
  2. Export Wh
  3. Import VARh
  4. Export VARh
  5. Mirror Input 1
  6. Mirror Input 2
  7. Alarm Normally Open 8-Alarm Normally Closed
  8. Phase Loss Normally Open
  9. Phase Loss Normally Closed

| 2009| R/W| 0| 9| 1
Pulse Out 2 Wh|

  • 1-1 Wh per pulse 2-10 Wh per pulse
  • 3-100 Wh per pulse 4-1000 Wh per pulse
  • 5-10000 Wh per pulse

| 2010| R/W| 0| 4| 1
Pulse Out 2 Duration|

  • 1-10ms 2-25ms 3-50ms 4-100ms
  • 5-250ms
  • 6-500ms

| 2011| R/W| 0| 5| 1

Communications

Description Reg. R/W Min Max Default
Communications Protocol 1-Modbus 2-Bacnet 2012 R/W 0 1
Communications 1-9600 2013 R/W 0 5
Baud Rate 2-19200
3-38400
4-57600
5-76800
6-115200
Communications 1-Even parity 1 2014 R/W 0 3
Parity & Stop stop bit
2-Odd parity 1 stop
3-No parity 2 stop
bits
4-No parity 1 stop
bit
Communications Modbus Address Modbus client (slave) address 2015
R/W 1 247 247

Warning adjusting any of these values via the communications interface will cause the device to apply the setting immediately. Communications parameters of the host will need to change in order to re-establish communications.

Alarms

Description| Reg.| R/W| Min| Max| Default| Scale| Units
---|---|---|---|---|---|---|---
Alarm – Voltage Out of Range

Enable

| 1-Disable 2-Enable| 2016| R/W| 0| 1| 1| N/A| N/A
Alarm – Voltage Out of Range Nominal| Set nominal L-L voltage for out of range alarm, least

significant digit is 1/10th of a Volt.

| 2017| R/W| 10| 60000| 2400| 0.1| Volts
Alarm – Voltage Out of Range Threshold| The percent above or below the nominal voltage setting (2017) at which a

fault will trigger.

| 2018| R/W| 1| 20| 10| 1| %
Alarm – Current

Out of Range Enable

| 0-Disable 1-Enable| 2019| R/W| 0| 1| 0| N/A| N/A
Alarm – Current Out of Range Nominal| Set nominal current for out of range alarm, least significant digit is

1/10th of an Amp.

| 2020| R/W| 10| 60000| 50| 0.1| Amps
Alarm – Current Out of Range Threshold| The percent above or below the nominal current setting (2020) at which a

fault will trigger.

| 2021| R/W| 1| 20| 10| 1| %
Alarm Ground Current Out of| 0-Disable 1-Enable| 2022| R/W| 0| 1| 0| N/A| N/A
Description| Reg.| R/W| Min| Max| Default| Scale| Units
---|---|---|---|---|---|---|---
Range Enable| | | | | | | |
Alarm Ground Current Out of Range Nominal| Set nominal ground current for out of range alarm, least significant digit is

1/10th of an Amp.

| 2023| R/W| 10| 60000| 50| 0.1| Amps
Alarm Ground Current Out of Range Threshold| The percent above the nominal ground current setting

(2023) which a fault will trigger.

| 2024| R/W| 1| 20| 10| 1| %
Alarm Frequency Out of Range Enable| 0-Disable 1-Enable| 2025| R/W| 0| 1| 1| N/A| N/A
Alarm Frequency Out of Range Nominal| Set nominal frequency for out of range alarm, least significant digit is

1/100th of a Hertz.

| 2026| R/W| 450| 650| 600| 0.1| Hz
Alarm Frequency Out of Range Threshold| The percent above or below the nominal frequency setting

(2026) at which a fault will trigger.

| 2027| R/W| 1| 20| 10| 1| %
Alarm Voltage Phase Loss Enable| 0-Disable 1-Enable| 2028| R/W| 0| 1| 1| N/A| N/A
Alarm Voltage Phase Loss Threshold| A phase-to-phase comparison of L-N voltages is performed. If any phase’s L-N voltage is below the others by the threshold amount, a fault will trigger. Only applicable to 3Φ configurations (ABC or ABCN). Single phase installations will power off during

phase loss event.

| 2029| R/W| 1| 20| 10| 1| %
Alarm Voltage Phase Imbalance

Enable

| 0-Disable, 1-Enable| 2030| R/W| 0| 1| 1| N/A| N/A
Alarm Voltage Phase Imbalance Threshold| The percent of phase-to-phase imbalance above which a fault will trigger. For a three- phase Y system, both VL-L and VL-N

are examined. For a

| 2031| R/W| 1| 20| 10| 1| %
Description| Reg.| R/W| Min| Max| Default| Scale| Units
---|---|---|---|---|---|---|---
| three-phase delta, only VL-L measurements are compared. In a single split- phase,

only VL-N are compared.

| | | | | | |
Alarm Power Factor Low Enable| 0-Disable 1-Enable| 2032| R/W| 0| 1| 1| N/A| N/A
Alarm Power Factor Low Threshold| Set the (unitless) PF value, below which a fault will trigger.| 2033| R/W| 1| 99| 50| 0.01| Unitless

Advanced

Description Reg. R/W Min Max Default
Reset Wh Writing 1 will reset all of the stored Wh, VAh and VARh

values.

| 2034| R/W| 0| 1| 0
Count of Wh Resets| Number of times the Wh has been reset.| 2035| R| 0| 65535| 0
Reset Run time| Writing 1 will reset the system run time (61 and 62), but not the system power on time (59 and 60).| 2036| R/W| 0| 1| 0
Count of run time Resets| Number of times the system run time has been reset.| 2037| R| 0| 65535| 0
Reset Pulse Counts| Writing 1 will reset the pulse input counters (63 through 66).| 2038| R/W| 0| 1| 0
Firmware Major version| Firmware version number| 2039| R| 0| 255| 0
Firmware Minor version| Firmware version number| 2040| R| 0| 255| 0
Firmware Patch version| Firmware version number| 2041| R| 0| 255| 0

Metering Register:

The following table describes each of the power and energy readings provided over Mod bus from the device.

  • R/W:

  • R = Read Only

  • R/W = Read and Write

  • Type, Min, Max:

  • 116 = INT16

  • Ul 6 = UINT16

  • 16-bit integer; -32768 to 32767, unless otherwise noted

  • 16-bit unsigned integer; 0 to 65535 (0xFFFF), unless otherwise noted

  • ENUM = UINT16 16-bit unsigned integer that maps to a defined list of values

  • U32 = UINT32 32-bit unsigned integer; Oto 4294967295 (0xFFFFFFFF), unless

  • otherwise noted

  • U64 = UINT64 64-bit unsigned integer; Oto 18.466e+ 18

  • 164 = I NT64 64-bit signed integer; -9.233e+ 18 to 9.233e+ 18

  • Scale:
    Values must be multiplied by this scale factor to be read correctly. For some power, current, and voltage readings, the scale factor will be automatically set based on the user settings for voltage and current scale. These multipliers can be read in registers 030-032.

  • Store:
    Values marked “yes” will be stored in non-volatile memory. Stored values will not be lost if the meter experiences a power loss.

Modbus Function Codes:
The EMX metering registers support the following Mod bus function codes:

  • 0x03 Read Holding Registers
  • 0x04 Read Input Register
  • Some registers span multiple Mod bus address. Two consecutive registers defined as
  • XXX/YYY indicates a pair of aligned registers, that must be merged into a 32 bit value.
  • Four consecutive registers require merging the results into a 64 bit value.

Description| Reg.| R/ W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
V-LN Average| 001| R| | | V-scale| V(rms)| No
V-LL Average| 002| R| | | V-scale| V(rms)| No
Current Average| 003| R| | | I-scale| A(rms)| No
Current Sum| 004| R| | | I-scale| A(rms)| No
Real power total| 005| R| | | P-scale| W| No
Reactive power total| 006| R| | | P-scale| VAR| No
Apparent power total| 007| R| | | P-scale| VA| No
V-LN Phase A| 008| R| | | V-scale| V(rms)| No
V-LN Phase B| 009| R| | | V-scale| V(rms)| No
V-LN Phase C| 010| R| | | V-scale| V(rms)| No
V-LL Phase A-B| 011| R| | | V-scale| V(rms)| No
V-LL Phase B-C| 012| R| | | V-scale| V(rms)| No
V-LL Phase C-A| 013| R| | | V-scale| V(rms)| No
Current Phase A| 014| R| | | I-scale| A(rms)| No
Current Phase B| 015| R| | | I-scale| A(rms)| No
Current Phase C| 016| R| | | I-scale| A(rms)| No
Power Factor Phase A| 017| R| -100| 100| 0.01| NA| No
Power Factor Phase B| 018| R| -100| 100| 0.01| NA| No
Power Factor Phase C| 019| R| -100| 100| 0.01| NA| No
Frequency (Phase A)| 020| R| 480| 620| 0.1| Hz| No
Real power Phase A| 021| R| | | P-scale| W| No
Real power Phase B| 022| R| | | P-scale| W| No
Real power Phase C| 023| R| | | P-scale| W| No
Reactive power Phase A| 024| R| | | P-scale| VAR| No
Reactive power Phase B| 025| R| | | P-scale| VAR| No
Reactive power Phase C| 026| R| | | P-scale| VAR| No
Apparent power Phase A| 027| R| | | P-scale| VA| No
Apparent power Phase B| 028| R| | | P-scale| VA| No
Apparent power Phase C| 029| R| | | P-scale| VA| No
Voltage Scale Factor (V-scale)|

  • 3:0.001
  • -2:0.01
  • -1:0.1
  • 0:1
  • 1:10
  • 2:100
  • 3:1000
  • 4:10000
  • 5:100000
  • 6:1000000

|

030

|

R

|

-2

|

2

|

1

|

N/A

|

No

Current Scale

Factor (I-scale)

|

031

|

R

|

-3

|

1

|

1

|

N/A

|

No

Power Scale Factor (P-scale)|

032

|

R

|

-3

|

6

|

1

|

N/A

|

No

Description| Reg.| R/ W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---

Alarm Status Bitfield

|

  • Bit 0: Pulse configuration error Bit 1: Pulse overrun error
  • Bit 2: Voltage out of range
  • Bit 3: Current out of range
  • Bit 4: Current sum (ground current) out of range
  • Bit 5: Freq. out of rangeBit 6: Voltage phase loss

Bit 7: Voltage phase unbalance

Bit 8: Power factor low

Bit 9 – 15: Reserved

|

033

|

R

|

0

|

0xFFFF

|

1

|

N/A

|

No

Load Status| 0: No load detected 1: Load above threshold|

034

|

R

|

0

|

1

|

1

|

N/A

|

No

System power on time| 035

036

| R| 0| 429496729

5

| 1| Second s| No
System run time| 037

038

| R| 0| 429496729

5

| 1| Second s| Yes
Power Reset Count| 039

040

| R| 0| 429496729

5

| 1| N/A| Yes
Pulse Count 1| 041

042

| R| 0| 429496729

5

| 1| N/A| Yes
Pulse Count 2| 043

044

| R| 0| 429496729

5

| 1| N/A| Yes

Real Net Energy total

| 045

046

047

048

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Net Energy Phase A

| 049

050

051

052

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Net Energy Phase B

| 053

054

055

056

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Net Energy Phase C| 057

058

059

060

| R| 0| 65535| 0.00000001| Wh|

Yes

Reactive Net Energy total| 061

062

063

064

| R| 0|

65535

| 0.00000001| VARh| Yes
Description| Reg.| R/ W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
Reactive Net Energy Phase A| 065

066

067

068

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Net Energy Phase B| 069

070

071

072

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Net Energy Phase C| 073

074

075

076

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Apparent Net Energy total

| 077

078

079

080

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Net Energy Phase A| 081

082

083

084

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Net Energy Phase B| 085

086

087

088

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Net Energy Phase C| 089

090

091

092

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Real Import Energy total

| 093

094

095

096

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Import Energy Phase A| 097

098

099

100

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Import Energy Phase B| 101

102

103

104

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Import Energy Phase C| 105

106

107

108

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Reactive Import Energy total| 109

110

111

112

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Import Energy Phase A| 113

114

115

116

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Description| Reg.| R/ W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
Reactive Import Energy Phase B| 117

118

119

120

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Import Energy Phase C| 121

122

123

124

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Apparent Import Energy total| 125

126

127

128

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Import Energy Phase A| 129

130

131

132

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Import Energy Phase B| 133

134

135

136

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Import Energy Phase C| 137

138

139

140

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Real Export Energy total

| 141

142

143

144

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Export Energy Phase A| 145

146

147

148

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Export Energy Phase B| 149

150

151

152

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Real Export Energy Phase C| 153

154

155

156

|

R

|

0

|

65535

|

0.00000001

|

Wh

|

Yes

Reactive Export Energy total| 157

158

159

160

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Export Energy Phase A| 161

162

163

164

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Reactive Export Energy Phase B| 165

166

167

168

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Description| Reg.| R/ W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
Reactive Export Energy Phase C|

  • 169
  • 170
  • 171
  • 172

|

R

|

0

|

65535

|

0.00000001

|

VARh

|

Yes

Apparent Export Energy total|

  • 173
  • 174
  • 175
  • 176

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Export Energy Phase A|

  • 177
  • 178
  • 179
  • 180

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Export Energy Phase B|

  • 181
  • 182
  • 183
  • 184

|

R

|

0

|

65535

|

0.00000001

|

VAh

|

Yes

Apparent Export Energy Phase C|

  • 185
  • 186
  • 187
  • 188

| R| 0| 65535| 0.00000001| VAh| Yes

Real Time Clock Registers

Description| Reg.| R/W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
RTC – Set Year| 4000| R/W| 2022| 2060| 1| N/A| No
RTC – Set Month| 4001| R/W| 1| 12| 1| N/A| No
RTC – Set Day of Moth| 4002| R/W| 1| 31| 1| N/A| No
RTC – Set Day of Week| 4003| R/W| 0| 6| 1| N/A| No
RTC – Set Hours| 4004| R/W| 0| 23| 1| Hrs| No
RTC – Set Minutes| 4005| R/W| 0| 59| 1| Mins| No
RTC – Set Seconds| 4006| R/W| 0| 23| 1| Secs| No
RTC – Commit time| 4007| R/W| 0| 1| 1| N/A| Yes
RTC – Current Year| 4100| R| 2022| 2060| 1| N/A| Yes
RTC – Current Month| 4101| R| 1| 12| 1| N/A| Yes
RTC – Current Day of Month| 4102| R| 1| 31| 1| N/A| Yes
RTC – Current Day of Week| 0 = Sunday

6 = Saturday

| 4103| R| 0| 6| 1|

N/A

| Yes

RTC – Current AM/PM Flag, or 0

| If in 24 hour mode, will return 0, if in 12 hour mode: 1 = AM, 2 = PM| 4104| R| 0| 2| 1| N/A| Yes
RTC – Current Hours| 4105| R| 0| 0| 1| Hrs| Yes
RTC – Current Minutes| 4106| R| 0| 0| 1| Mins| Yes
RTC – Current Seconds| 4107| R| 0| 0| 1| Secs| Yes

Logging Registers

  • EMX Logging:
  • Logging on the EMX is only available on models with firmware 2.0 or greater.
  • Log Source 1 – Log source 12 set the source for the logging. Write the Modbus register 1-188 to the desired source to log that point. If a Modbus register has multiple register all registers need to be set. For example, if Real Net Energy total is desired to be logged all four registers need to be set.
  • To trigger a log event Logging – Trigger Source needs to be set to the desired trigger mode, by default it is set to be disabled. Logging can be triggered with the timer, set on Modbus point 5001 in seconds from 15-3600. Triggering can be set over COMMS by writing point 5015 a 1, or Pulse In 1 or 2 can be set to trigger a log whenever a pulse isa detected

Description| Reg.| R/W| Min| Max| Scale| Units| Store
---|---|---|---|---|---|---|---
Logging – Trigger Source|

  • 0 = Disabled
  • 1 = Timer
  • 2 = Comms
  • 3 = Pulse In 1
  • 4 = Pulse in 2

| 5000| R/W| 0| 3| 1| N/A| Yes
Logging – Trigger Interval| 5001| R/W| 15| 3600| 1| Secs| Yes
Logging – Mode Select|

  • “Continuous”  continue logging and overwrite old entries, sequentially
  • “One Shot” – log until EEPROM is full, then stop logging and throw alarm

| 5002| R/W| 0| 2| 1| N/A| Yes
Logging – Log Source 1| 5003| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 2| 5004| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 3| 5005| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 4| 5006| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 5| 5007| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 6| 5008| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 7| 5009| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 8| 5010| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 9| 5011| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 10| 5012| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 11| 5013| R/W| 0| 188| 1| N/A| Yes
Logging – Log Source 12| 5014| R/W| 0| 188| 1| N/A| Yes
Logging – Trigger log creation| 5015| R/W| 0| 1| 1| N/A| Yes
Logging – Read log at index| 5016| R| 0| 4096| 1| N/A| Yes
Logging – Oldest Index| 5100| R| 0| 4096| 1| N/A| Yes
Logging – Count of log entries| 5101| R| 0| 4096| 1| N/A| Yes
Logging – Current Index| 5102| R| 0| 65535| 1| N/A| Yes
Logging – Log data 1| 5103| R| 0| 65535| 1| N/A| Yes
Logging – Log data 2| 5104| R| 0| 65535| 1| N/A| Yes
Logging – Log data 3| 5105| R| 0| 65535| 1| N/A| Yes
Logging – Log data 4| 5106| R| 0| 65535| 1| N/A| Yes
Logging – Log data 5| 5107| R| 0| 65535| 1| N/A| Yes
---|---|---|---|---|---|---|---
Logging – Log data 6| 5108| R| 0| 65535| 1| N/A| Yes
Logging – Log data 7| 5109| R| 0| 65535| 1| N/A| Yes
Logging – Log data 8| 5110| R| 0| 65535| 1| N/A| Yes
Logging – Log data 9| 5111| R| 0| 65535| 1| N/A| Yes
Logging – Log data 10| 5112| R| 0| 65535| 1| N/A| Yes
Logging – Log data 11| 5113| R| 0| 65535| 1| N/A| Yes
Logging – Log data 12| 5114| R| 0| 59| 1| N/A| Yes
Logging – Log time stamp seconds| 5115| R| 0| 59| 1| N/A| Yes
Logging – Log time stamp minutes| 5116| R| 0| 23| 1| N/A| Yes
Logging – Log time stamp hours| 5117| R| 0| 31| 1| N/A| Yes
Logging – Log time stamp day of month| 5118| R| 0| 12| 1| N/A| Yes
Logging – Log time stamp month| 5119| R| 0| 256| 1| N/A| Yes
Logging – Log time stamp year| 5120| R| 0| 65535| 1| N/A| Yes
Logging – CRC| 5121| R| 0| 4096| 1| N/A| Yes

Modbus Functions

  • The EMX supports the following functions of the Modbus Application Protocol Specification, vl .1 b3.
  • Examples are intended to be representative; refer to the full specification for questions or clarification.

Notes:

  • The device address defaults to 247 (OxF7).
  • EMX device supports Modbus RTU encoding only (not ASCII).
  • Refer to the Modbus standard for CRC/LRC calculation procedures

Data Types
Natively, Mod bus holding register functions only support the UINT16 type (2 bytes). The meter constructs additional types from two or more consecutive registers. Client interface software must support the same construction for proper communication:SENVA-154-0040-0C-EMX-True-RMS-Energy-Meter-
image-6

UINT32 data always occupies two registers (4 bytes) in network byte order {MSB first). Read and write
operations should address both registers.
The following examples show UINT32 encodings in a Mod bus PDU beginning at byte [n], register [r]:SENVA-154-0040-0C-EMX-True-RMS-Energy-Meter-
image-7

0x03 Read Holding Registers
Returns one or more registers in a contiguous block: Successful reads return the contents of the requested registers:

Example 1: Read the line frequency of <DA (026).

0x04 Read Input Register
Reads one or more read only registers in a contiguous block:

Ox06 Write Single Register
Writes a value to a single register Ox1 O Write Multiple Registers
Writes one or more registers in a contiguous block:

MODBUS Exception Codes

If many cases when the Modbus interface encounters an error it will return an exception code. The most  common errors are described in the table below. Additional information about exception codes may be found in the reference document.
Reference: https://modbus.org_/docs/Modbus_Application_protocol_V1 1 b.pdf


MODBUS Exception Codes



Code

| ****

Name

| ****

Meaning




01

| ****


ILLEGAL FUNCTION

| The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to return register values.






02

| ****




ILLEGAL DATA ADDRESS

| The data address received in the query is not an allowable address for the server (or slave). More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 “Illegal Data Address” since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register

with address 100.




03

| ****


ILLEGAL DATA VALUE

| ****

A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the MODBUS protocol is unaware of the significance of any particular value of any particular register.

Data Type Conversions

  • The following sections provide information on how to convert from the standard U 16 registers that Mod bus provides into other formats. Some controllers or Modbus interfaces provide these conversions, in which case the user should utilize those methods, instead of the following conversions.

  • U 16 to 116 Conversion

  • Conversion from a signed requires checking if the value is value returned (VAIUE) is greater than the maximum for an 16 bit integer (32767), if the value is greater then the value

  • 65536 must be subtracted off to calculate a negative value.

  • If VALUE > 32767

  • Then : VALUE= VALUE – 65536

  • Otherwise : VALUE= VALUE (do nothing)

  • Example:

  • Reading register 005 (Real power total) the device responds with 64536. This value is greater than 32767, which means it must be adjusted. By subtracting 65536 we get 64536 – 65536 = -1000, which is the correct value for the real power. Please note that in practice a scale value will need to be determined and applied to this output in order to get the value into watts or whatever units are applicable.

  • U 16 to U32 Conversion

  • Conversion from two unsigned 16 bit registers into a 32 bit value can be done by reading the two necessary registers and multiplying the first (lower register address) register by 32678 and adding the second register.
    VALUE= (REGISTER_LOW * 65536) + REGISTER_HIGH

  • Example :
    Reading registers 035 and 036 which together are the system power on time. Register 035 has a value
    (REGISTER_LOW) of 6, register 036 (REGISTER_HIGH) has a value of 38784. Using the calculation we get (6 65536) + 38784 = 432000. This corresponds to the time in seconds that the device has been powered on. 5 Days = 5 24 60 60 = 432000 seconds.

  • U 16 to U64 Conversion
    Conversion from 4 unsigned 16 bit registers to a 64 bit register is necessary for using the energy accumulators on the EMX. This is done to maintain system accuracy over long operating durations, and to avoid conditions where the energies appear to cease updating. This follows a similar pattern as the U32 conversion. All four registers must be read, preferably simultaneously with a multi-register read operation. The lowest address register is REG 1, the highest is REG 4.
    VALUE= REG_ 1 2″48 + REG_2 2″32 + REG3 * 2″ 16 + REG 4
    Or without the power notation
    VALUE= REG_ 1 281,474,976,710,656 + REG_2 4,294,967,296 + REG3 * 65536 + REG 4

  • Example :

  • Reading registers 091 /092/093/094 which correspond to the Real Import Energy Total (how much energy has been consumed by downstream devices). Register 091 (REG_ 1) reads 0, register 092 (REG_2) reads 13, register 093 (REG3) reads 63559 and register 094 (REG 4) reads 22528. The calculation is 0 281,474,976,710,656 + 13 4,294,967,296 + 63559 * 65536 + 22528 = 60000000000 when scaled down by the scale of 0.00000001 given in the table it’s 600.0 which is the number of Watt Hours of energy that the device has metered at that point.

  • U 16 to 164 Conversion
    All of the net energy registers are signed values. A negative sign indicates that net power has been exported, a positive sign indicates that net power has been imported (consumed). To convert from four U 16 registers to an 164 register first perform a conversion as described above. Next perform the following step:

  • If VALUE > (2A63 )- 1

  • Then VALUE= VALUE- 2A64

  • Otherwise VALUE= VALUE (do nothing).

Appendix D: Hex and ASCIl Conversions

HEX DEC   ASCII 0x41 65 A 0x83 131 ƒ 0xC5 197 Å
0x00 0 NULL 0x42 66 B 0x84 132 0xC6
0x01 1 0x43 67 C 0x85 133 0xC7
0x02 2 0x44 68 D 0x86 134 0xC8
0x03 3 0x45 69 E 0x87 135 0xC9
0x04 4 0x46 70 F 0x88 136 ˆ 0xCA
0x05 5 0x47 71 G 0x89 137 0xCB
0x06 6 0x48 72 H 0x8A 138 Š 0xCC
0x07 7 0x49 73 I 0x8B 139 0xCD
0x08 8 0x4A 74 J 0x8C 140 Œ 0xCE
0x09 9 0x4B 75 K 0x8D 141 0xCF
0x0A 10 0x4C 76 L 0x8E 142 Ž 0xD0
0x0B 11 0x4D 77 M 0x8F 143 0xD1
0x0C 12 0x4E 78 N 0x90 144 0xD2
0x0D 13 0x4F 79 O 0x91 145 0xD3
0x0E 14 0x50 80 P 0x92 146 0xD4
0x0F 15 0x51 81 Q 0x93 147 0xD5
0x10 16 0x52 82 R 0x94 148 0xD6
0x11 17 0x53 83 S 0x95 149 0xD7
0x12 18 0x54 84 T 0x96 150 0xD8
0x13 19 0x55 85 U 0x97 151 0xD9
0x14 20 0x56 86 V 0x98 152 ˜ 0xDA
0x15 21 0x57 87 W 0x99 153 0xDB
0x16 22 0x58 88 X 0x9A 154 š 0xDC
0x17 23 0x59 89 Y 0x9B 155 0xDD
0x18 24 0x5A 90 Z 0x9C 156 œ 0xDE
0x19 25 0x5B 91 [ 0x9D 157 0xDF
0x1A 26 0x5C 92 | 0x9E 158 ž 0xE0 224
0x1B 27 0x5D 93 ] 0x9F 159 Ÿ 0xE1
0x1C 28 0x5E 94 ^ 0xA0 160 0xE2
0x1D 29 0x5F 95 _ 0xA1 161 ¡ 0xE3
0x1E 30 0x60 96 ` 0xA2 162 ¢ 0xE4
0x1F 31 0x61 97 a 0xA3 163 £ 0xE5
0x20 32 0x62 98 b 0xA4 164 ¤ 0xE6
0x21 33 ! 0x63 99 c 0xA5 165 ¥ 0xE7
0x22 34 0x64 100 d 0xA6 166 ¦ 0xE8
0x23 35 # 0x65 101 e 0xA7 167 § 0xE9
0x24 36 $ 0x66 102 f 0xA8 168 ¨ 0xEA
0x25 37 % 0x67 103 g 0xA9 169 © 0xEB
0x26 38 & 0x68 104 h 0xAA 170 ª 0xEC
0x27 39 0x69 105 i 0xAB 171 « 0xED
0x28 40 ( 0x6A 106 j 0xAC 172 ¬ 0xEE
0x29 41 ) 0x6B 107 k 0xAD 173 0xEF
0x2A 42 * 0x6C 108 l 0xAE 174 ® 0xF0
0x2B 43 + 0x6D 109 m 0xAF 175 ¯ 0xF1
0x2C 44 , 0x6E 110 n 0xB0 176 ° 0xF2
0x2D 45 0x6F 111 o 0xB1 177 ± 0xF3
0x2E 46 . 0x70 112 p 0xB2 178 ² 0xF4
0x2F 47 / 0x71 113 q 0xB3 179 ³ 0xF5
0x30 48 0 0x72 114 r 0xB4 180 ´ 0xF6
0x31 49 1 0x73 115 s 0xB5 181 µ 0xF7
0x32 50 2 0x74 116 t 0xB6 182 0xF8
0x33 51 3 0x75 117 u 0xB7 183 · 0xF9
0x34 52 4 0x76 118 v 0xB8 184 ¸ 0xFA
0x35 53 5 0x77 119 w 0xB9 185 ¹ 0xFB
0x36 54 6 0x78 120 x 0xBA 186 º 0xFC
0x37 55 7 0x79 121 y 0xBB 187 » 0xFD
0x38 56 8 0x7A 122 z 0xBC 188 ¼ 0xFE
0x39 57 9 0x7B 123 { 0xBD 189 ½ 0xFF
0x3A 58 : 0x7C 124 0xBE 190 ¾
0x3B 59 ; 0x7D 125 } 0xBF 191 ¿
0x3C 60 < 0x7E 126 ~             HEX    DEC LATIN-1
0x3D 61 = 0x7F 127 0xC0    192     À
0x3E 62 >             HEX    DEC LATIN-1 0xC1 193 Á
0x3F 63 ?             0x80    128     € 0xC2 194 Â
HEX DEC   ASCII 0x81 129 0xC3 195 Ã
0x40    64      @ 0x82 130 0xC4 196 Ä

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals