TQMa8MPxL Embedded Single Board Computer User Manual
- June 1, 2024
- TQ
Table of Contents
- TQMa8MPxL Embedded Single Board Computer
- Product Information
- Product Usage Instructions
- FAQs
- REVISION HISTORY
- ABOUT THIS MANUAL
- BRIEF DESCRIPTION
- ELECTRONICS
- SOFTWARE
- MECHANICS
- SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS
- ENVIRONMENT PROTECTION
- APPENDIX
- References
- Read User Manual Online (PDF format)
- Download This Manual (PDF format)
TQMa8MPxL Embedded Single Board Computer
Product Information
Specifications
- Model: TQMa8MPxL
- Date: 06.05.2024
- Manufacturer: TQ-Systems GmbH
Product Usage Instructions
About This Manual
This User’s Manual provides important information about the product and its proper usage. It includes details on copyright, license expenses, registered trademarks, and disclaimers.
Copyright and License Expenses
This User’s Manual is protected by copyright and may not be copied, reproduced, translated, changed, or distributed without written consent from TQ-Systems GmbH. The drivers, utilities, BIOS, and components used are subject to their respective manufacturers’ copyrights.
Registered Trademarks
TQ-Systems GmbH respects copyrights and aims to use original or license-free graphics and texts. All brand names and trademarks mentioned in this manual are protected by current copyright and proprietary laws.
Disclaimer
TQ-Systems GmbH reserves the right to change or add content to this User’s Manual without prior notification.
FAQs
- Q: Can I make copies of this User’s Manual?
- A: No, this User’s Manual cannot be copied without written consent from TQ-Systems GmbH.
- Q: Are license expenses for the operating system included in the price?
- A: No, license expenses for the operating system and applications are not included in the price and must be calculated separately.
TQMa8MPxL User’s Manual
TQMa8MPxL UM 0105 06.05.2024
REVISION HISTORY
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page v
Rev. 0100 0101 0102 0103 0104 0105
Date
Name
Pos.
23.03.2022 Kreuzer
22.11.2022 Kreuzer Table 3
30.05.2023 Kreuzer Chapter 3.1.1.1
20.03.2024 Kreuzer Chapter 3.2.5.20
11.04.2024 Kreuzer Table 3
06.05.2024 Kreuzer Table 27
Modification First issue V_SD2 corrected to Pout Number of pads corrected to 366 Chapter references corrected CPU ball assignments corrected Table expanded
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 1
ABOUT THIS MANUAL
1.1
Copyright and license expenses
Copyright protected © 2024 by TQ-Systems GmbH.
This User’s Manual may not be copied, reproduced, translated, changed or
distributed, completely or partially in electronic, machine readable, or in
any other form without the written consent of TQ-Systems GmbH.
The drivers and utilities for the components used as well as the BIOS are
subject to the copyrights of the respective manufacturers. The licence
conditions of the respective manufacturer are to be adhered to.
Bootloader-licence expenses are paid by TQ-Systems GmbH and are included in
the price.
Licence expenses for the operating system and applications are not taken into
consideration and must be calculated / declared separately.
1.2
Registered trademarks
TQ-Systems GmbH aims to adhere to copyrights of all graphics and texts used in
all publications, and strives to use original or license-free graphics and
texts.
All brand names and trademarks mentioned in this User’s Manual, including
those protected by a third party, unless specified otherwise in writing, are
subjected to the specifications of the current copyright laws and the
proprietary laws of the present registered proprietor without any limitation.
One should conclude that brand and trademarks are rightly protected by a third
party.
1.3
Disclaimer
TQ-Systems GmbH does not guarantee that the information in this User’s Manual
is up-to-date, correct, complete or of good quality. Nor does TQ-Systems GmbH
assume guarantee for further usage of the information. Liability claims
against TQ-Systems GmbH, referring to material or non-material related damages
caused, due to usage or non-usage of the information given in this User’s
Manual, or due to usage of erroneous or incomplete information, are exempted,
as long as there is no proven intentional or negligent fault of TQ-Systems
GmbH.
TQ-Systems GmbH explicitly reserves the rights to change or add to the
contents of this User’s Manual or parts of it without special notification.
Important Notice:
Before using the Starterkit MBa8MPxL or parts of the schematics of the
MBa8MPxL, you must evaluate it and determine if it is suitable for your
intended application. You assume all risks and liability associated with such
use. TQ-Systems GmbH makes no other warranties including, but not limited to,
any implied warranty of merchantability or fitness for a particular purpose.
Except where prohibited by law, TQ-Systems GmbH will not be liable for any
indirect, special, incidental or consequential loss or damage arising from the
usage of the Starterkit MBa8MPxL or schematics used, regardless of the legal
theory asserted.
1.4
Imprint
TQ-Systems GmbH Gut Delling, Mühlstraße 2 D-82229 Seefeld
Tel: Fax: E-Mail: Web:
+49 8153 93080 +49 8153 93084223 Info@TQ-Group TQ-Group
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
1.5
Tips on safety
Improper or incorrect handling of the product can substantially reduce its life span.
Page 2
1.6
Symbols and typographic conventions
Table 1: Terms and conventions
Symbol
Meaning
This symbol represents the handling of electrostatic-sensitive modules and / or components. These components are often damaged / destroyed by the transmission of a voltage higher than about 50 V. A human body usually only experiences electrostatic discharges above approximately 3,000 V.
This symbol indicates the possible use of voltages higher than 24 V.
Please note the relevant statutory regulations in this regard.
Non-compliance with these regulations can lead to serious damage to your
health and may damage or destroy the component.
This symbol indicates a possible source of danger. Ignoring the instructions described can cause health damage, or damage the hardware.
This symbol represents important details or aspects for working with TQ- products.
Command
A font with fixed-width is used to denote commands, contents, file names, or menu items.
1.7
Handling and ESD tips
General handling of your TQ-products
The TQ-product may only be used and serviced by certified personnel who have
taken note of the information, the safety regulations in this document and all
related rules and regulations.
A general rule is not to touch the TQ-product during operation. This is
especially important when switching on, changing jumper settings or connecting
other devices without ensuring beforehand that the power supply of the system
has been switched off.
Violation of this guideline may result in damage / destruction of the
TQMa8MPxL and be dangerous to your health.
Improper handling of your TQ-product would render the guarantee invalid.
Proper ESD handling
The electronic components of your TQ-product are sensitive to electrostatic
discharge (ESD).
Always wear antistatic clothing, use ESD-safe tools, packing materials etc.,
and operate your TQproduct in an ESD-safe environment. Especially when you
switch modules on, change jumper settings, or connect other devices.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 3
1.8
Naming of signals
A hash mark (#) at the end of the signal name indicates a low-active signal. Example: RESET#
If a signal can switch between two functions and if this is noted in the name
of the signal, the low-active function is marked with a hash mark and shown at
the end.
Example: C / D#
If a signal has multiple functions, the individual functions are separated by slashes when they are important for the wiring. The identification of the individual functions follows the above conventions. Example: WE2# / OE#
1.9
Further applicable documents / presumed knowledge
· Specifications and manual of the modules used: These documents describe the
service, functionality and special characteristics of the module used (incl.
BIOS).
· Specifications of the components used: The manufacturer’s specifications of
the components used, for example CompactFlash cards, are to be taken note of.
They contain, if applicable, additional information that must be taken note of
for safe and reliable operation. These documents are stored at TQ-Systems
GmbH.
· Chip errata: It is the user’s responsibility to make sure all errata
published by the manufacturer of each component are taken note of. The
manufacturer’s advice should be followed.
· Software behaviour: No warranty can be given, nor responsibility taken for
any unexpected software behaviour due to deficient components.
· General expertise: Expertise in electrical engineering / computer
engineering is required for the installation and the use of the device.
The following documents are required to fully comprehend the following contents:
· MBa8MPxL circuit diagram · MBa8MPxL User’s Manual · i.MX 8M Plus Data Sheet · i.MX 8M Plus Reference Manual · U-Boot documentation: · PTXdist documentation: · Yocto documentation: · TQ-Support Wiki:
www.denx.de/wiki/U-Boot/Documentation www.ptxdist.de www.yoctoproject.org/docs/ Support-Wiki TQMa8MPxL
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 4
BRIEF DESCRIPTION
This User’s Manual describes the hardware of the TQMa8MPxL as of revision
0100, in combination with the MBa8MPxL as of revision 0100 and refers to some
software settings. A certain TQMa8MPxL derivative does not necessarily provide
all features described in this User’s Manual.
This User’s Manual does neither replace the i.MX 8M Plus Reference Manual (1),
nor the i.MX 8M Plus Data Sheet (2), nor any other documents from NXP.
The TQMa8MPxL is a universal Minimodule based on the NXP ARM® Cortex®-A53
based i.MX 8M CPU family, see also Table 4.
2.1
Key functions and characteristics
The TQMa8MPxL extends the TQ-Systems GmbH product range and offers an
outstanding computing performance. All essential i.MX 8M Plus signals are
routed to the TQMa8MPxL LGA pads. There are therefore no restrictions for
customers using the TQMa8MPxL with respect to an integrated customised design.
All essential components like CPU, LPDDR4, eMMC, and PMIC are already
integrated on the TQMa8MPxL. The main features of the TQMa8MPxL are:
· 64 bit NXP i.MX 8M Plus CPU, up to 4 × ARM Cortex®-A53 and 1 × Cortex®-M7 o
Plus Dual, Plus Quad 4 Lite, Plus Quad 6 Video, Plus Quad 8 ML/AI
· Up to 4 Gbyte 32-bit LPDDR4-4000 · Up to 256 Gbyte eMMC NAND Flash, eMMC
standard 5.1 · Up to 256 Mbyte QSPI NOR Flash · 64 Kbit EEPROM (optional) ·
Temperature sensor + EEPROM · RTC (optinal) · Trust Secure Element (optional)
· NXP Power Management Integrated Circuit PCA9450 · All essential i.MX 8M Plus
signals are routed to the TQMa8MPxL LGA pads · Single supply voltage 5 V
2.2
CPU block diagram
Figure 1:
Block diagram i.MX 8M Plus (Source: NXP)
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
ELECTRONICS
The information provided in this User’s Manual is only valid in connection with the tailored boot loader, which is preinstalled on the TQMa8MPxL, and the BSP provided by TQ-Systems GmbH, see also chapter 4.
Page 5
PMIC NXP PCA9450C
Supervisor
i.MX 8M Plus
LPDDR4-RAM
e-MMC 5.1 (optional)
1x QSPI-NORFlash (optional)
RTC (optional) TSE (optional) EEPROM (option.)
Temperature Sensor / EEPROM
PCIe RGMII USB3.0 UART
I2C GPIO SPI HDMI CSI DSI
5 V
5 V
366 LGA pads Figure 2: Block diagram TQMa8MPxL (simplified)
3.1
Interfaces to other systems and devices
3.1.1
Pin multiplexing
The multiple pin configurations by different i.MX 8M Plus-internal function units must be taken note of. The pin assignment in Table 3 refers to a TQMa8MPxL with i.MX 8M Plus Quad 8 ML/AI CPU in combination with the carrier board MBa8MPxL. NXP provides a tool showing the multiplexing and simplifies the selection and configuration (i.MX Pins Tool NXP Tool). The electrical and pin characteristics are to be taken from the i.MX 8M Plus and PMIC documentation, see Table 40.
Attention: Destruction or malfunction, pin multiplexing
Depending on the configuration, many i.MX 8M Plus pins can provide several
different functions. Please take note of the information concerning the
configuration of these pins in the i.MX 8M Plus Reference Manual (1), before
integration or start-up of your carrier board / Starterkit. Improper
programming by operating software can cause malfunctions, deterioration or
destruction of the TQMa8MPxL.
The descriptions given in the following tables should be taken note of: – DNC:
These pins must never be connected and have to be left open.
Please contact TQ-Support for details.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 6
3.1.1.1 Pinout TQMa8MPxL The TQMa8MPxL has a total of 366 LGA pads. The
TQMa8MPxL is soldered and thus permanently connected to the carrier board. It
is not trivial and it is not recommended to remove the TQMa8MPxL. The
following table shows the TQMa8MPxL pad-out, top view through the TQMa8MPxL.
Table 2: Pinout TQMa8MPxL, top view through TQMa8MPxL
A 22
B C D E F G H J K L M N P R T U V W Y AA AB
USB1 USB1 D_P D_N
GND
DSI DSI D1_N D1_P
GND
DSI DSI D3_N D3_P
GND
CSI1 CSI1 CLK_N CLK_P
GND
CSI2 CSI2 D0_N D0_P
GND
CSI2 CSI2 D2_N D2_P
GND
PCIE_RE PCIE_RE F_CLKN F_CLKP
22
21
USB1_ TX_N
GND
ISO_14 ISO_14 443_LB 443_LA
GND
DSI DSI CLK_N CLK_P
GND
CSI1_ D0_N
CSI1_ D0_P
GND
CSI1_ D2_N
CSI1_ D2_P
GND
CSI2_ D1_N
CSI2_ D1_P
GND
CSI2_ D3_N
CSI2_ D3_P
GND
PCIE_ TXN
PCIE_ TXP
21
20
USB1_ TX_P
USB1_ RX_N
GND
DSI_ D0_N
DSI_ D0_P
GND
DSI DSI D2_N D2_P
GND
CSI1 CSI1 D1_N D1_P
GND
CSI1 CSI1 D3_N D3_P
GND
CSI2 CSI2 CLK_N CLK_P
GND
PCIE_ RXN
PCIE_ RXP
LVDS1_ D3_P
GND
20
19 GND
USB1_ USB2 RX_P _D_N
USB2 GPIO1 USB1 _DNU _IO11 _DNU
GND
18
USB2_ TX_N
GND
USB2_ GPIO1 D_P _IO15
GND
USB1_ VBUS
USB1 _OTG _ID
USB1_ OTG _OC
ISO_78 16_CLK
GND
JTAG JTAG TDO TCK
GND
BOOT BOOT BOOT TEMP MODE3 MODE2 MODE1 EVENT#
M7_ NMI
USB1 OTG PWR
ISO_78 16_IO2
ISO_78 16_IO1
ISO_78 16_RST
GND
JTAG JTAG TMS TDI
GND
BOOT RTC MODE0 EVENT#
GND
GND
V_SD1
LVDS1_ D3_N
LVDS1_ CLK_P
19
CLK1_ IN
GND
LVDS1_ D2_P
LVDS1_ CLK_N
18
17
USB2_ TX_P
USB2_ RX_N
GND
GPIO1 USB2_ _IO14 VBUS
CLK2_ OUT
CLK1_ LVDS1 LVDS1 OUT _D1_P _D2_N
GND
17
16 GND
USB2_ GPIO3 RX_P _IO14
GND
GPIO1 _IO00
15
VSAI2 SAI3_ SPDIF
VSAI1 SAI5
GND
V_ GPIO1 LICELL _IO01
14 GND
I2C4 I2C1 SCL SCL
GND
GPIO1 _IO03
GND
CLK2_ LVDS1 IN _D1_N
GND
LVDS1_ D0_P
16
QSPI_A QSPI_A _SS0# _SCLK
GND
LVDS0_ D3_P
LVDS1_ D0_N
15
QSPI_A _DATA0
GND
LVDS0 LVDS0 CLK_P D3_N
GND
14
13
SAI3_ TXD0
I2C4_ SDA
I2C2_ SCL
I2C1_ SDA
GND
QSPI_A QSPIA LVDS0 _DATA1 _DATA2 CLK_N
GND
LVDS0_ D2_P
13
12
SAI3_ RXD0
SAI3_ TXC
I2C2_ SDA
GND
GPIO1 _IO06
UART1 QSPI_A _RXD _DATA3
GND
LVDS0_ D1_P
LVDS0_ D2_N
12
11 GND
SAI3_ TXFS
GND
GPIO1 GPIO1 _IO09 _IO07
UART1 _TXD
GND
LVDS0 LVDS0 _D0_P _D1_N
GND 11
10
GPIO4 _IO29
GND
SAI3_ MCLK
PWM3
GND
I2C6_ SCL
I2C6_ SDA
LVDS0 _D0_N
ENET _QOS _TD3
V_ENET 10
9
GPIO4 _IO28
ENET_Q OS_EVE NT2_IN
GPIO4 _IO25
GND
GPIO5 GPIO5 _IO27 _IO26
RFU
GND
GND
V_SD2
GPIO2 _IO07
UART2 UART2 _TXD _RXD
ENET _QOS _TD2
GND
ENET
_QOS 9 _TXC
8
ENET_QO GND S_EVENT GND
2_OUT
GPT2_ CLK
PMIC GND WDOG GND
OUT#
RFU
RFU
GND
GPIO2 UART3 _IO06 _RXD
ENET ENET GND QOS _QOS
TX_CTL _TD0
ENET _QOS 8 _TD1
7
GPIO4 _IO22
GND
GPIO4 _IO24
GND
RESET _IN#
RESET _OUT#
ONOFF
GND
GND
SD2_ WP
SD2_ RST#
UART3 GPIO2 _TXD _IO11
ENET _QOS _RD3
GND
ENET
_QOS 7 _RXC
6
GPIO4 _IO27
GPIO4 _IO21
GND
GND
PMIC _RST#
PMIC WDOG
IN#
UART4_ TXD
UART4_ RXD
ECSPI3_ MOSI
GND
GPIO5 GPIO5 _IO05 _IO03
GND
ECSPI2 SD2_ _SS0 CD#
GND
SD2_ CMD
GPIO2 _IO10
GND
ENET ENET QOS _QOS MDIO _RD2
GND 6
5 GND
GND
GND
GND
GND
GND
V_3V3 ECSPI3 ECSPI3 ECSPI3 GPIO5 ECSPI2 ECSPI2 ECSPI2 _SD _SS0 _MISO _SCLK _IO04 _SCLK _MISO _MOSI
GND
SD2_ DATA3
SD2_ DATA2
SD2_ DATA1
SD2_ DATA0
ENET QOS MDC
GND
ENET
_QOS 5 _RD1
4
V_5V _IN
V_5V V_5V _IN _IN
GND
GND
GND
ENET0 ENET1 _INT# _INT#
GND
ENET0 ENET1 _RST# _RST#
GND
GPIO4 ENET ENET SD2_ _IO18 RX_CTL TX_CTL CLK
GND
EARC HDMI AUX CEC
GND
ENET ENET QOS _QOS RX_CTL _RD0
4
3
V_5V _IN
V_5V V_5V _IN _IN
GND
GND
GND
GND
ENET ENET _MDC _MDIO
GND
ENET ENET _RD2 _RD3
GND
ENET ENET _TD2 _TD3
GND
HDMI HDMI TXC_N TXC_P
GND
HDMI_ HPD
GND
HDMI
DDC 3 SCL
2
GPIO3 _IO20
GND
GPIO3 GPIO3 _IO21 _IO19
GND
GPIO5 GPIO5 _IO09 _IO08
GND
ENET _RD0
ENET _RD1
GND
ENET _TD0
ENET _TD1
GND
ENET _TXC
GPIO4 _IO19
GND
HDMI_ TX0_N
HDMI_ TX0_P
HDMI_ TX2_N
HDMI_ TX2_P
HDMI DDC SDA
2
1
CAN_F CAN_F CAN_F CAN_F D1_TX D1_RX D2_TX D2_RX
GND
GPIO5 GPIO5 _IO07 _IO06
GND
ENET _RXC
GPIO4 _IO20
GND
V_1V8 V_3V3
GND
EARC_N EARC_P _HPD _UTIL
GND
HDMI HDMI TX1_N TX1_P
GND
1
A B C D E F G H J K L M N P R T U V W Y AA AB
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 7
3.1.1.2 TQMa8MPxL signals
Details about the electrical characteristics of single pins and interfaces are
to be taken from the i.MX 8M Plus documentation (1), (2), (3), as well as the
PMIC Data Sheet (4).
Table 3:
CPU-Ball
G10 F8 G8 G12 AF16 AD16 AF14 AE14 K28 K29 L28 L29 E22 D22 E18 D18 E20 D20 E24
D24 E26 D26 B23 A23 B25 A25 B24 A24 B22 A22 B21 A21 B18 A18 B16 A16 B17 A17
B19 A19 B20 A20
TQMa8MPxL, signals
Signal
BOOT_MODE0 BOOT_MODE1 BOOT_MODE2 BOOT_MODE3 CAN_FD1_RX CAN_FD1_TX CAN_FD2_RX
CAN_FD2_TX CLK1_IN CLK1_OUT CLK2_IN CLK2_OUT CSI1_CLK_N CSI1_CLK_P CSI1_D0_N
CSI1_D0_P CSI1_D1_N CSI1_D1_P CSI1_D2_N CSI1_D2_P CSI1_D3_N CSI1_D3_P
CSI2_CLK_N CSI2_CLK_P CSI2_D0_N CSI2_D0_P CSI2_D1_N CSI2_D1_P CSI2_D2_N
CSI2_D2_P CSI2_D3_N CSI2_D3_P DSI_CLK_N DSI_CLK_P DSI_D0_N DSI_D0_P DSI_D1_N
DSI_D1_P DSI_D2_N DSI_D2_P DSI_D3_N DSI_D3_P
Group
BOOT BOOT BOOT BOOT CAN CAN CAN CAN CLK CLK CLK CLK
CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI CSI
CSI DSI DSI DSI DSI DSI DSI DSI DSI DSI DSI
Dir.
Level
TQMa8MPxL-Pad
I
3.3 V
T18
I
3.3 V
T19
I
3.3 V
R19
I
3.3 V
P19
I
V_SAI1_SAI5
C1
O
V_SAI1_SAI5
B1
I
V_SAI1_SAI5
E1
O
V_SAI1_SAI5
D1
I
1.8 V
W18
O
1.8 V
W17
I
1.8 V
W16
O
1.8 V
V17
I
1.8 V
L22
I
1.8 V
M22
I
1.8 V
J21
I
1.8 V
K21
I
1.8 V
K20
I
1.8 V
L20
I
1.8 V
M21
I
1.8 V
N21
I
1.8 V
N20
I
1.8 V
P20
I
1.8 V
T20
I
1.8 V
U20
I
1.8 V
P22
I
1.8 V
R22
I
1.8 V
R21
I
1.8 V
T21
I
1.8 V
U22
I
1.8 V
V22
I
1.8 V
V21
I
1.8 V
W21
O
1.8 V
F21
O
1.8 V
G21
O
1.8 V
D20
O
1.8 V
E20
O
1.8 V
E22
O
1.8 V
F22
O
1.8 V
G20
O
1.8 V
H20
O
1.8 V
H22
O
1.8 V
J22
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.1.1.2 TQMa8MPxL signals (continued)
Table 3:
CPU AH20 AJ21 AH21 AJ22 AF6 AJ3 AD6 AH4 AJ9 AH8 AC10 AF10 AH9 AJ8 AH28 AH29
AG29 AG28 AF29 AF28 AE28 AE29 AC25 AE26 AF26 AD24 AF24 AE24 AJ14
AH16 AD10 AE10 AH10 AH12 AF12 AJ12 AJ11 AJ10 AH11 AD12 AE12 AH13 AH14
B4 –
TQMa8MPxL, signals (continued)
Signal ECSPI2_MISO ECSPI2_MOSI ECSPI2_SCLK ECSPI2_SS0 ECSPI3_MISO ECSPI3_MOSI
ECSPI3_SCLK ECSPI3_SS0 ENET0_RST# ENET0_INT# ENET1_RST# ENET1_INT# ENET_MDC
ENET_MDIO ENET_QOS_MDC ENET_QOS_MDIO ENET_QOS_RD0 ENET_QOS_RD1 ENET_QOS_RD2
ENET_QOS_RD3 ENET_QOS_RX_CTL ENET_QOS_RXC ENET_QOS_TD0 ENET_QOS_TD1
ENET_QOS_TD2 ENET_QOS_TD3 ENET_QOS_TX_CTL ENET_QOS_TXC ENET_QOS_EVENT2_OUT
ENET_QOS_EVENT2_IN ENET_RD0 ENET_RD1 ENET_RD2 ENET_RD3 ENET_RX_CTL ENET_RXC
ENET_TD0 ENET_TD1 ENET_TD2 ENET_TD3 ENET_TX_CLK ENET_TX_CTL ENET_TXC M7_NMI
RTC_EVENT# TEMP_EVENT#
Group
ECSPI ECSPI ECSPI ECSPI ECSPI ECSPI ECSPI ECSPI ENET ENET ENET ENET ENET ENET
ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET
ENET
ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET ENET Event Event
Event
Dir.
Level
I
1.8 V
O
1.8 V
O
1.8 V
O
1.8 V
I
3.3 V
O
3.3 V
O
3.3 V
O
3.3 V
O
V_SAI1_SAI5
I
V_SAI1_SAI5
O
V_SAI1_SAI5
I
V_SAI1_SAI5
O
V_SAI1_SAI5
I/O
V_SAI1_SAI5
O
V_ENET
I/O
V_ENET
I
V_ENET
I
V_ENET
I
V_ENET
I
V_ENET
I
V_ENET
I
V_ENET
O
V_ENET
O
V_ENET
O
V_ENET
O
V_ENET
O
V_ENET
O
V_ENET
O
V_SAI2_SAI3_SPDIF
I
V_SAI2_SAI3_SPDIF
I
V_SAI1_SAI5
I
V_SAI1_SAI5
I
V_SAI1_SAI5
I
V_SAI1_SAI5
I
V_SAI1_SAI5
I
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
O
V_SAI1_SAI5
I
3.3 V
O
OD
O
OD
Page 8
TQMa8MPxL N5 P5 M5 P6 J5 J6 K5 H5 K4 G4 L4 H4 H3 J3 Y5 Y6 AB4 AB5 AA6 Y7 AA4
AB7 AA8 AB8 Y9
AA10 Y8 AB9 B8 B9 J2 K2 L3 M3 P4 K1 M2 N2 P3 R3 L1 R4 R2 V19 U18 U19
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.1.1.2 TQMa8MPxL signals (continued)
Table 3:
CPU A7 E8 D6 A3 F6 B8 D8 A4 B5 U26
AA29
W25
W26 R26 AC14 AD14 AE16 AC12 AJ13 AH17
AJ16
AJ17
AH15
AJ15
AJ19
AJ18
AE18
AD18
AC18 AF20 AC20 AD20 AE20 AJ4 AE6 AJ7 AH23 AH22 AJ23 AD22 AC22 AF22 AE22 AJ25
AH25 AJ26
TQMa8MPxL, signals (continued)
Signal GPIO1_IO00 GPIO1_IO01 GPIO1_IO03 GPIO1_IO06 GPIO1_IO07 GPIO1_IO09
GPIO1_IO11 GPIO1_IO14 GPIO1_IO15 GPIO2_IO06
GPIO2_IO07
GPIO2_IO10
GPIO2_IO11 GPIO3_IO14 GPIO3_IO19 GPIO3_IO20 GPIO3_IO21 GPIO4_IO18 GPIO4_IO19
GPIO4_IO21
GPIO4_IO22
GPIO4_IO24
GPIO4_IO25
GPIO4_IO27
GPIO4_IO28
GPIO4_IO29
GPIO5_IO03
GPIO5_IO04
GPIO5_IO05 GPIO5_IO06 GPIO5_IO07 GPIO5_IO08 GPIO5_IO09 GPIO5_IO27 GPIO5_IO26
GPT2_CLK EARC_AUX EARC_N_HPD EARC_P_UTIL HDMI_CEC HDMI_DDC_SCL HDMI_DDC_SDA
HDMI_HPD HDMI_TX0_N HDMI_TX0_P HDMI_TX1_N
Group GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO
GPIO
GPIO
GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPT HDMI HDMI HDMI HDMI HDMI HDMI HDMI HDMI
HDMI HDMI
Dir.
Level
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
I/O
V_SD1
I/O
V_SD1
I/O
V_SD1
I/O
V_SD1
I/O
1.8 V
I/O
V_SAI1_SAI5
I/O
V_SAI1_SAI5
I/O
V_SAI1_SAI5
I/O
V_SAI1_SAI5
I/O
V_SAI1_SAI5
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O V_SAI2_SAI3_SPDIF
I/O
1.8 V
I/O
1.8 V
I
1.8 V
O
1.8 V
I/O
3.3 V
I/O
3.3 V
I/O
3.3 V
O
1.8 V
I
1.8 V
O
1.8 V
O
1.8 V
O
1.8 V
I/O
1.8 V
I
1.8 V
O
1.8 V
O
1.8 V
O
1.8 V
Page 9
TQMa8MPxL E16 E15 E14 E12 E11 D11 E19 D17 D18 U8 U9 V6 W7 C16 D2 A2 C2 N4 T2
B6 A7 C7 C9 A6 A9 A10 M6 L5 L6 H1 G1 G2 F2 E9 F9 D8 V4 T1 U1 W4 AB3 AB2 Y3 V2
W2 W1
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.1.1.2 TQMa8MPxL signals (continued)
Table 3: TQMa8MPxL, signals (continued)
CPU
AH26 AJ27 AH27 AJ24 AH24 AC8 AH7 AH6 AE8 AF8 AD8 Y29 Y28
G18 G16 F14 G14 G28 F29 E28 D29 F28 E29 H28 G29 J28 H29 B28 A28 B26 A26 B27
A27 C28 B29 D28 C29
Signal
HDMI_TX1_P HDMI_TX2_N HDMI_TX2_P HDMI_TXC_N HDMI_TXC_P I2C1_SCL I2C1_SDA
I2C2_SCL I2C2_SDA I2C4_SCL I2C4_SDA I2C6_SCL I2C6_SDA ISO_7816_CLK
ISO_7816_IO1 ISO_7816_IO2 ISO_7816_RST ISO_14443_LA ISO_14443_LB JTAG_TCK
JTAG_TDI JTAG_TDO JTAG_TMS LVDS0_CLK_N LVDS0_CLK_P LVDS0_D0_N LVDS0_D0_P
LVDS0_D1_N LVDS0_D1_P LVDS0_D2_N LVDS0_D2_P LVDS0_D3_N LVDS0_D3_P LVDS1_CLK_N
LVDS1_CLK_P LVDS1_D0_N LVDS1_D0_P LVDS1_D1_N LVDS1_D1_P LVDS1_D2_N LVDS1_D2_P
LVDS1_D3_N LVDS1_D3_P
Group
Dir.
HDMI
O
HDMI
O
HDMI
O
HDMI
O
HDMI
O
I2C
O
I2C
I/O
I2C
O
I2C
I/O
I2C
O
I2C
I/O
I2C
O
I2C
I/O
ISO_7816
I
ISO_7816
I/O
ISO_7816
I/O
ISO_7816
I
ISO_14443
I/O
ISO_14443
I/O
JTAG
I
JTAG
I
JTAG
O
JTAG
I
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
LVDS
O
Level
1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V V_SD1 V_SD1
3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 3.3 V 1.8 V 1.8 V 1.8 V
1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V 1.8 V
1.8 V 1.8 V 1.8 V 1.8 V
Page 10
TQMa8MPxL Y1 Y2 AA2 U3 V3 C14 D13 C13 C12 B14 B13 V10 W10 J19 K18 J18 L18 D21
C21 M19 P18 L19 N18 Y13 Y14 Y10 Y11
AA11 AA12 AB12 AB13 AA14 AA15 AB18 AB19 AB15 AB16 Y16 Y17 AA17 AA18 AA19 AA20
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.1.1.2 TQMa8MPxL signals (continued)
Table 3:
CPU E16 D16 B14 A14 B15 A15 AJ6 R25 L25 L24 N24 N25 L26
B6 AJ20 AF18 AC16 AH19 AH18 AD29 AB29 AB28 AC28 AC29 AA26 AA25 AD28 AC26
TQMa8MPxL, signals (continued)
Signal PCIE_REF_CLKN PCIE_REF_CLKP PCIE_RXN PCIE_RXP PCIE_TXN PCIE_TXP PWM3
QSPI_A_DATA0 QSPI_A_DATA1 QSPI_A_DATA2 QSPI_A_DATA3 QSPI_A_SCLK QSPI_A_SS0#
PMIC_RST# PMIC_WDOG_IN# PMIC_WDOG_OUT# RESET_IN# RESET_OUT# SAI3_MCLK
SAI3_RXD0 SAI3_TXFS SAI3_TXC SAI3_TXD0 SD2_CD# SD2_CLK SD2_CMD SD2_DATA0
SD2_DATA1 SD2_DATA2 SD2_DATA3 SD2_RST# SD2_WP
Group PCIe PCIe PCIe PCIe PCIe PCIe PWM QSPI QSPI QSPI QSPI QSPI QSPI Reset Reset Reset Reset Reset SAI SAI SAI SAI SAI SD SD SD SD SD SD SD SD SD
Dir.
Level
I/O
1.8 V
I/O
1.8 V
I
1.8 V
I
1.8 V
O
1.8 V
O
1.8 V
O
3.3 V
I/O
1.8 V
I/O
1.8 V
I/O
1.8 V
I/O
1.8 V
O
1.8 V
O
1.8 V
I
1.8 V
I
3.3 V
O
3.3 V
I
OD
O
OD
O
V_SAI2_SAI3_SPDIF
I
V_SAI2_SAI3_SPDIF
O
V_SAI2_SAI3_SPDIF
O
V_SAI2_SAI3_SPDIF
O
V_SAI2_SAI3_SPDIF
I
1.8/ 3.3 V
O
1.8/ 3.3 V
I/O
1.8/ 3.3 V
I/O
1.8/ 3.3 V
I/O
1.8/ 3.3 V
I/O
1.8/ 3.3 V
I/O
1.8/ 3.3 V
O
1.8/ 3.3 V
I
1.8/ 3.3 V
Page 11
TQMa8MPxL Y22 AA22 W20 Y20 AA21 AB21 D10 V14 V13 W13 W12 W15 V15 E6 F6 F8 E7
F7 C10 A12 B11 B12 A13 R6 T4 U6 W5 V5 U5 T5 U7 T7
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 12
3.1.1.2 TQMa8MPxL signals (continued)
Table 3:
CPU G22 W29 W28 V28 V29 U25 AA28 AJ5 AH5 E10 D10 B11 B7 A6 A5 B9 A9 B10 A10
A11 E14 D14 E12 B12 A12 B13 A13 D12
AA24 Y11 AA11 U24 –
TQMa8MPxL, signals (continued)
ONOFF
Signal
Group
Dir.
SNVS
I
Level 1.8 V
TQMa8MPxL G7
UART1_RXD
UART
I
V_SD1
V12
UART1_TXD UART2_RXD UART2_TXD UART3_RXD UART3_TXD
UART
O
V_SD1
V11
UART
I
V_SD1
W9
UART
O
V_SD1
V9
UART
I
V_SD1
V8
UART
O
V_SD1
V7
UART4_RXD
UART
I
3.3 V
H6
UART4_TXD USB1_D_N USB1_D_P USB1_DNU USB1_OTG_ID USB1_OTG_OC USB1_OTG_PWR
USB1_RX_N USB1_RX_P USB1_TX_N USB1_TX_P USB1_VBUS USB2_D_N USB2_D_P USB2_DNU
USB2_RX_N USB2_RX_P USB2_TX_N USB2_TX_P USB2_VBUS
GND
V_1V8 V_3V3 V_3V3_SD V_5V_IN V_ENET V_LICELL V_SAI1_SAI5 V_SAI2_SAI3_SPDIF
V_SD1 V_SD2 RFU
UART
O
3.3 V
G6
USB
I/O
3.3 V
C22
USB
I/O
3.3 V
B22
USB
3.3 V
F19
USB
I
3.3 V
G18
USB
I
3.3 V
H19
USB
O
3.3 V
H18
USB
I
3.3 V
B20
USB
I
3.3 V
B19
USB
O
3.3 V
A21
USB
O
3.3 V
A20
USB
P
5 V
F18
USB
I/O
3.3 V
C19
USB
I/O
3.3 V
C18
USB
3.3 V
D19
USB
I
3.3 V
B17
USB
I
3.3 V
B16
USB
O
3.3 V
A18
USB
O
3.3 V
A17
USB
P
5 V
E17
A11, A14, A16, A19, A5, A8, AA1, AA13, AA16, AA3, AA5, AA7, AA9, AB11, AB14, AB17, AB20, AB6, B10, B18, B2, B21, B5, B7, C11, C15, C17, C20, C5, C6, C8, D12, D14, D16, D22, D3, D4, D5, D6, D7, D9, E10, E13, E18, E2, E21, E3, E4, E5, E8, F1, F20, F3, F4, F5, G19, G22, G3, G8, H2, H21, H7, H9, J1, J20, J4, K19, K22, K3, K6, L2, L21, M1, M18, M20, M4, N19, N22, N3, N6, P2, P21, R1, R18, R20, R5, R7, R9, T22, T3, T6, T8, U2, U21, U4, V1, V16, V18, V20, W11, W14, W19, W22, W3, W6, W8, Y12, Y15, Y18, Y21, Y4
Power
Pout
1.8 V 1
Power
Pout
3.3 V 1
Power
Pout
3.3 V 2
Power
Pin
5 V
Power
Pin
1.8 / 3.3 V
Power
Pin
3 V
Power
Pin
1.8 / 3.3 V
Power
Pin
1.8 / 3.3 V
Power
Pin
1.8 / 3.3 V
Power
Pout
1.8 / 3.3 V
Reserved for future use. Do not connect.
N1 P1 G5 A3, A4, B3, B4, C3, C4 AB10 D15 B15 A15 Y19 T9 G9, H8, R8
1: Maximum load of 500 mA. 2: Maximum load of 400 mA.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 13
3.2
System components
3.2.1
i.MX 8M Plus
3.2.1.1 i.MX 8M Plus derivatives
Depending on the TQMa8MPxL version, one of the following i.MX 8M Plus derivatives is assembled.
Table 4: i.MX 8M Plus derivatives
TQMa8MPxL version TQMa8MPDL-XX TQMa8MPQLL-AA TQMa8MPQL-AA TQMa8MPQL-AB
i.MX 8M Plus derivative i.MX 8M Plus Dual i.MX 8M Plus Quad 4 Lite i.MX 8M Plus Quad 6 Video i.MX 8M Plus Quad 8 ML/AI
i.MX 8M Plus clocks A53: 1.6 GHz, M7: 800 MHz A53: 1.6 GHz, M7: 800 MHz A53: 1.6 GHz, M7: 800 MHz A53: 1.6 GHz, M7: 800 MHz
Temperature range 40 °C … +105 °C 40 °C … +105 °C 40 °C … +105 °C 40 °C … +105 °C
3.2.1.2 i.MX 8M Plus errata Attention: Destruction or malfunction, i.MX 8M Plus errata
Please take note of the current i.MX 8M Plus errata (5).
3.2.1.3 Boot modes
The i.MX 8M Plus has a ROM with integrated boot loader. After the release of
PMIC_POR# the System Controller (SCU) boots from the internal ROM and then
loads the program image from the selected boot device. For example, the
integrated eMMC or the optional QSPI NOR Flash can be selected as the default
boot device. The following boot sources are supported by TQMa8MPxL:
· eMMC · QSPI NOR Flash · USB OTG · SD card
Alternatively, an image can be loaded into the internal RAM using the serial
downloader. More information about the boot flow can be found in the Reference
Manual (1), and the Data Sheet (2) of i.MX 8M Plus.
3.2.1.4 Boot configuration
The i.MX 8M Plus uses four BOOT_MODE signals available on the TQMa8MPxL’s LGA
pads. These require pull-up/pull-down wiring to 3.3 V and Ground. The exact
boot behaviour depends on the BT_FUSE_SEL register value. Booting from USDHC1
is only possible on the i.MX 8M Plus after burning the eFuses. The following
table shows the behaviour in dependence of BT_FUSE_SEL and selected boot mode:
Table 5: Boot configuration i.MX 8M Plus
Boot source
Boot from eFuse USB Serial Downloader Boot from USDHC3 (eMMC) Boot from USDHC2
(SD card) Boot from NAND (not supported) Boot from QSPI (3 Byte Read) Boot
from QSPI (Hyperflash) (not supported) Boot from eCSPI (not supported)
(Reserved)
BOOT_MODE3 0 0 0 0 0 0
0
1 1
BOOT_MODE2 0 0 0 0 1 1
1
0 0
BOOT_MODE1 0 0 1 1 0 1
1
0 0
BOOT_MODE0 0 1 0 1 x 0
1
0 1
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 14
3.2.2
Memory
3.2.2.1 LPDDR4 SDRAM
The memory interface of the i.MX 8M Plus supports DDR4 and LPDDR4 memory (32 bit bus) with a maximum clock rate of 2.0 GHz, which meets JEDEC LPDDR4-4000 standard. The TQMa8MPxL exclusively uses LPDDR4. A maximum of 8 Gbyte of LPDDR4 SDRAM is supported.
3.2.2.2 eMMC
An eMMC is provided on the TQMa8MPxL for boot loader, operating system and
application software. It is connected to the i.MX 8M Plus via USDHC3.
1,8 V 3,3 V
i.MX8M Plus NAND_WE# NAND_WP#
NAND_DATA[7;4] NAND_RE#
NAND_CE2# NAND_CE3#
NAND_CLE NAND_READY#
NAND_CE1#
e-MMC 5.1
VCC VCCQ
CLK CMD DATA[3:0] DATA4 DATA5 DATA6 DATA7 RST# STROBE
Figure 3: Block diagram eMMC
The i.MX 8M Plus supports transfer modes up to the current eMMC standard v5.1
according to JESD84-B51. In DDR mode (HS400) data rates of up to 400 Mbyte/s
can be achieved. The boot configuration is described in chapter 3.2.1.3
3.2.2.3 QSPI NOR Flash
QSPI NOR flash can optionally be assembled on the TQMa8MPxL. If no QSPI NOR
Flash is populated on the TQMa8MPxL, the LGA pads of the interface can be
used. Since it is not possible to separate the signal paths, these LGA pads
must not be wired when the NOR Flash is equipped.
3.2.2.4 EEPROM 24LC64T
A serial EEPROM, controlled by the I2C1 bus, is assembled. Write-Protection
(WP) is not supported. A 64 Kbit EEPROM 24LC64T is assembled by default on the
TQMa8MPxL.
i.MX 8M Plus
I2C1_SCL I2C1_SDA
EEPROM
SCL SDA
Figure 4: Block diagram EEPROM The EEPROM has I2C address 0x57 / 101 0111b
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 15
3.2.2.5 EEPROM with temperature sensor SE97BTP
A serial EEPROM including temperature sensor type SE97BTP, controlled by the
I2C1 bus, is assembled on the TQMa8MPxL. The lower 128 bytes (address 00h to
7Fh) can be set to Permanent Write-Protected mode (PWP) or to Reversible
Write-Protected mode (RWP) by software. The upper 128 bytes (address 80h to
FFh) cannot be write-protected and are available for general data storage. The
overtemperature output of the SE97BTP is connected as open drain to TQMa8MPxL
LGA pad U19 (TEMP_EVENT#). This requires a pull-up to 3.3 V (maximum 5.5 V) on
the carrier board. The device is assembled on the top side of the TQMa8MPxL,
see component D12, Figure 22.
The device provides the following I2C addresses:
o EEPROM (Normal Mode): o EEPROM (Protection Mode): o Temperature sensor:
0x53 / 101 0011b 0x33 / 011 0011b 0x1B / 001 1011b
3.2.3
Trust Secure Element SE050
An NXP Trust Secure Element SE050 is available on the TQMa8MPxL as an assembly option. When equipped, the chip provides two interfaces according to ISO 7816 and ISO 14443. Among other things, antennas can be connected to these.
i.MX 8M Plus
I2C1_SCL I2C1_SDA
SE050
I2C_SCL I2C_SDA
ISO_7816_IO1 ISO_7816_IO2 ISO_7816_CLK ISO_7816_RST
ISO_14443_LA ISO_14443_LB
LGA pads
V_3V3_IN
ISO_7816_IO1 ISO_7816_IO2 ISO_7816_CLK ISO_7816_RST
ISO_14443_LA ISO_14443_LB
The SE050 is controlled by the I2C1 bus. More details can be found in (8). The Trust Secure Element has I2C address 0x48 / 100 1000b
3.2.4
RTC
The TQMa8MPxL provides an i.MX 8M Plus-internal RTC or a discrete RTC PCF85063A.
3.2.4.1 i.MX 8M Plus internal RTC
The i.MX 8M Plus provides an RTC, which has its own power domain (V_1V8_SNVS).
The RTC power domain SNVS of the i.MX 8M Plus is supplied by the PMIC. The
PMIC is supplied by the TQMa8MPxL input voltage of V_5V_IN. The quartz used to
clock the RTC has a standard frequency tolerance of ±20 ppm @ +25 °C.
5 V
LGA pads
V_5V_IN
PMIC PCA9450
INL1
LDO1
i.MX 8M Plus
VDD_SNVS_1P8
Figure 5: Block diagram RTC supply (TQMa8MPxL without discrete RTC)
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 16
Note: RTC power supply
The CPU internal RTC can be used in regular operation. If the TQMa8MPxL supply
(5 V) fails, it is no longer available, since the i.MX 8M Plus’s SNVS rail is
no longer supplied.
3.2.4.2 Discrete RTC PCF85063A
In addition to the i.MX 8M Plus internal RTC the TQMa8MPxL provides a discrete
RTC PCF85063A as an assembly option, which is controlled by the I2C1 bus. The
quartz used to clock the RTC has a standard frequency tolerance of ±20 ppm @
+25 °C. The discrete RTC has an interrupt output which provides the open-drain
signal RTC_EVENT# at LGA pad U18. This pin requires a pull-up to 3.3 V
(maximum 3.6 V) on the carrier board. The RTC PCF85063A is only directly
supplied by V_LICELL when the PMIC or the TQMa8MPxL supply is switched off.
During normal operation of the TQMa8MPxL, the PMIC supplies 3.3 V.
Power supply
Protection
LGA pads
V_5V_IN
PMIC
INL1 BUCK4
Coin Cell (typ. 3 V)
Protection
V_LICELL
PCF85063A
VDD
Figure 6: Block diagram RTC supply (TQMa8MPxL with discrete RTC) The discrete RTC has I2C address 0x51 / 101 0001b
Note: RTC power supply
The SNVS functions of the i.MX 8M Plus can only be used if the TQMa8MPxL is
supplied with 5 V. Since the SNVS rail is not supplied when the TQMa8MPxL is
not powered-up, we recommend using the optional RTC PCF85063A.
3.2.5
Interfaces
3.2.5.1 Overview
The following interfaces or signals are not available on the TQMa8MPxL LGA pads and are used on the TQMa8MPxL. Table 6: TQMa8MPxL-internal interfaces
Interface USDHC3 SDRAM GPIO1_IO04 / SD2_VSELECT GPIO1_IO08 / IRQ# POR# PMIC_ON_REQ PMIC_STBY_REQ RTC_XTALO
Chapter 3.2.2.2 3.2.2.1 3.2.5.20
Remark eMMC, 8 bit LPDDR4, 32 bit 100 k PU on TQMa8MPxL 100 k PU on TQMa8MPxL, signal from CPU to PMIC Signal from CPU to PMIC Signal from CPU to PMIC 100 k PU on TQMa8MPxL
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 17
3.2.5.2 CAN FD
The i.MX 8M Plus provides two CAN FD interfaces, CAN FD1 and CAN FD2. Both are
multiplexed to SAI5 pins in the standard configuration and specified according
to the CAN 2.0B protocol. The supply voltage is set via TQMa8MPxL LGA pad
V_SAI1_SAI5.
Table 7: CAN FD signals
Signal CAN_FD1_TX CAN_FD1_RX CAN_FD2_TX CAN_FD2_RX
i.MX 8M Plus AD16 AF16 AE14 AF14
TQMa8MPxL B1 C1 D1 E1
Power group V_SAI1_SAI5
3.2.5.3 PWM The i.MX 8M Plus provides up to four PWM signals which can be
multipexed via various pins. In the default configuration one PWM signal
(PWM3) is provided at the TQMa8MPxL LGA pad D10.
3.2.5.4 GPT The i.MX 8M Plus provides up to three General Purpose Timers
(GPT). These always use a part of the UART res. I2C pins of the CPU. Therefore
only the GPT2 interface (GPT2_CLK) is provided by the TQMa8MPxL pad D8.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 18
3.2.5.5 Ethernet
The i.MX 8M Plus provides two Gigabit Ethernet interfaces, which support
transfer rates of 10/100 and 1000 Mbps as well as fulland half-duplex. By
default the ENET interface is configured as RGMII. The second Ethernet
interface is provided at the SAI1 pins. The supply voltage must be set
externally to 1.8 V or 3.3 V, with LGA pads V_ENET and V_SAI1_SAI5, see also
chapter 3.2.8.6. The differential signals are length matched on the TQMa8MPxL
and routed with a differential impedance of 100 . On the carrier board they
have to be connected according to RGMII specifications.
The following table shows the signals used in RGMII mode.
Table 8: ENET signals in RGMII mode
Signal
ENET_QOS_RX_CTL ENET_QOS_RXC ENET_QOS_RD0 ENET_QOS_RD1 ENET_QOS_RD2
ENET_QOS_RD3 ENET_QOS_TX_CTL ENET_QOS_TXC ENET_QOS_TD0 ENET_QOS_TD1
ENET_QOS_TD2 ENET_QOS_TD3 ENET_QOS_MDC ENET_QOS_MDIO ENET_QOS_EVENT2_OUT
ENET_QOS_EVENT2_IN ENET1_RST# ENET1_INT# ENET0_RST# ENET0_INT# ENET_MDC
ENET_MDIO ENET_RD0 ENET_RD1 ENET_RD2 ENET_RD3 ENET_RXC ENET_TD0 ENET_TD1
ENET_TD2 ENET_TD3 ENET_TX_CTL ENET_TXC ENET_RX_CTL
Ethernet
ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1 ENET1
ENET1 ENET1 ENET1 ENET1 ENET1 ENET0 ENET0 ENET0 ENET0 ENET0 ENET0 ENET0 ENET0
ENET0 ENET0 ENET0 ENET0 ENET0 ENET0 ENET0 ENET0
Direction
I I I I I I O O O O O O O I/O O I O O O I O I/O I I I I I O O O O O O I
i.MX 8M Plus
AE28 AE29 AG29 AG28 AF29 AF28 AF24 AE24 AC25 AE26 AF26 AD24 AH28 AH29 AJ14
AH16 AC10 AF10 AJ9 AH8 AH9 AJ8 AD10 AE10 AH10 AH12 AJ12 AJ11 AJ10 AH11 AD12
AH13 AH14 AF12
TQMa8MPxL
AA4 AB7 AB4 AB5 AA6 Y7 Y8 AB9 AA8 AB8 Y9 AA10 Y5 Y6 B8 B9 L4 H4 K4 G4 H3 J3 J2
K2 L3 M3 K1 M2 N2 P3 R3 R4 R2 P4
Power group V_ENET
V_SAI2_SAI3_SPDIF V_SAI1_SAI5
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.2.5.6 I2C Four I2C interfaces provided by the i.MX 8M Plus are routed to
TQMa8MPxL LGA pads. All I2C devices on the TQMa8MPxL are controlled by the
I2C1 bus.
The following table shows the signals used by the I2C interfaces.
Page 19
I2C1
i.MX 8M Plus
PCA9450
PCF85063
3.3 V
SE050
SE97BTP
I2C1
24LC64T
LGA pads
I2C2
I2C2
I2C4
I2C4
SD1_DATA[1:0]
I2C6
Figure 7: Block diagram I2C
Table 9:
Signal I2C1_SCL I2C1_SDA I2C2_SCL I2C2_SDA I2C4_SCL I2C4_SDA I2C6_SCL I2C6_SDA
I2C signals
Direction O I/O O I/O O I/O O I/O
i.MX 8M Plus AC8 AH7 AH6 AE8 AF8 AD8 Y29 Y28
TQMa8MPxL C14 D13 C13 C12 B14 B13 V10 W10
Power group 3.3 V V_SD1
Remark 4.7 k PU to 3.3 V on TQMa8MPxL 4.7 k PU to 3.3 V on TQMa8MPxL No PU on TQMa8MPxL No PU on TQMa8MPxL No PU on TQMa8MPxL No PU on TQMa8MPxL No PU on TQMa8MPxL No PU on TQMa8MPxL
The following table shows the I2C devices controlled by the I2C1 bus on the TQMa8MPxL.
Table 10: Address assignment I2C1 bus
Component
Function
PCA9450 24LC64T PCF85063A
SE97BTP
SE050
PMIC EEPROM (optional) RTC (optional) EEPROM (Normal Mode) EEPROM (Protection Mode) Temperature sensor in EEPROM Trust Secure Element (optional)
7-bit address 0x25 / 010 0101b 0x57 / 101 0111b 0x51 / 101 0001b 0x53 / 101 0011b 0x33 / 011 0011b 0x1B / 001 1011b 0x48 / 100 1000b
If more devices are connected to the I2C1 bus on the carrier board, the maximum capacitive bus load according to the I2C standard has to be taken note of. Additional pull-ups should be provided at the I2C bus on the carrier board, if required.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 20
3.2.5.7 JTAG
The processor provides a JTAG interface that can be used to debug the programs
executed on the processor. A corresponding hardware tool is required for this.
The interface can also be configured for Boundary Scan.
i.MX 8M Plus
JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_MOD
GND
LGA pads
JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS
Figure 8: Block diagram JTAG interface
The following table shows the signals used by the JTAG interface. An external circuit on the mainboard has not to be provided.
Table 11:
Signal JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_MOD
JTAG signals
Direction I I O I I
i.MX 8M Plus G18 G16 F14 G14 G20
TQMa8MPxL M19 P18 L19 N18
Remark 10 k PD on TQMa8MPxL
Power group 3.3 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 21
3.2.5.8 GPIO
Except for the dedicated differential signals, e.g., MIPI DSI/CSI, and USB,
all CPU signals routed to the TQMa8MPxL LGA pads can be configured as GPIO.
The electrical characteristics of the GPIOs are to be taken from the i.MX 8M
Plus Data Sheet (2). The following table shows the GPIO signals primarily
configured as GPIO.
Table 12: GPIO signals
Signal GPIO1_IO00 GPIO1_IO01 GPIO1_IO03 GPIO1_IO06 GPIO1_IO07 GPIO1_IO09
GPIO3_IO14 GPIO2_IO06 GPIO2_IO07 GPIO2_IO10 GPIO2_IO11 GPIO3_IO19 GPIO3_IO20
GPIO3_IO21 GPIO4_IO18 GPIO4_IO19 GPIO4_IO20 GPIO4_IO28 GPIO4_IO27 GPIO4_IO21
GPIO4_IO22 GPIO4_IO24 GPIO4_IO25 GPIO4_IO29 GPIO5_IO04 GPIO5_IO05 GPIO5_IO03
GPIO5_IO27 GPIO5_IO26 GPIO5_IO07 GPIO5_IO06 GPIO5_IO09 GPIO5_IO08
i.MX 8M Plus A7 E8 D6 A3 F6 B8 R26 U26
AA29 W25 W26 AC14 AD14 AE16 AC12 AJ13 AE12 AJ19 AJ15 AH17 AJ16 AJ17 AH15 AJ18
AD18 AC18 AE18 AJ4 AE6 AC20 AF20 AE20 AD20
TQMa8MPxL E16 E15 E14 E12 E11 D11 C16 U8 U9 V6 W7 D2 A2 C2 N4 T2 L1 A9 A6 B6 A7 C7 C9 A10 L5 L6 M6 E9 F9 G1 H1 F2 G2
Power group
V_SD1
V_SAI1_SAI5
V_SAI2_SAI3_SPDIF
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 22
3.2.5.9 MIPI CSI
The i.MX 8M Plus provides two MIPI-CSI camera interfaces with four data pairs
each. When using one camera interface, the maximum image format is 4K at 45
fps or 12MP at 30 fps. When using both camera interfaces, up to 1080p at 80
fps is supported. The maximum bit rate is 1.5 Gbps. The differential signals
are length matched on the TQMa8MPxL and routed with a differential impedance
of 100 .
i.MX 8M Plus
MIPI_CSI[2:1]_CLK_N/P MIPI_CSI[2:1]_D[3:0]_N/P
LGA pads
MIPI_CSI[2:1]_CLKN/P MIPI_CSI[2:1]_DN/P[3:0]
Figure 9: Block diagram MIPI CSI
The following table shows the signals used by the MIPI CSI interface. Table 13: MIPI CSI signals
Signal
i.MX 8M Plus
CSI1_D1_N
E20
CSI1_D1_P
D20
CSI1_D3_N
E26
CSI1_D3_P
D26
CSI1_CLK_N
E22
CSI1_CLK_P
D22
CSI1_D0_N
E18
CSI1_D0_P
D18
CSI1_D2_N
E24
CSI1_D2_P
D24
CSI2_D1_N
B24
CSI2_D1_P
A24
CSI2_D3_N
B21
CSI2_D3_P
A21
CSI2_CLK_N
B23
CSI2_CLK_P
A23
CSI2_D0_N
B25
CSI2_D0_P
A25
CSI2_D2_N
B22
CSI2_D2_P
A22
TQMa8MPxL K20 L20 N20 P20 L22 M22 J21 K21 M21 N21 R21 T21 V21 W21 T20 U20 P22 R22 U22 V22
Power group 1.8 V
3.2.5.10 MIPI DSI
The i.MX 8M Plus provides a DSI interface with four data pairs to output
serial display data at up to 1.5 Gbps. The MIPI-DSI PHY supports resolutions
up to 1920×1200 @ 60 fps. The differential signals are length matched on the
TQMa8MPxL and routed with a differential impedance of 100 .
i.MX 8M Plus
MIPI_DSI1_D[3:0]_P/N MIPI_DSI1_CLK_P/N
LGA pads
MIPI_DSI_DN/P[3:0] MIPI_DSI_CLKN/P
Figure 10: Block diagram MIPI DSI
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
The following table shows the signals used by the MIPI DSI interface.
Table 14: MIPI DSI signals
Signal DSI_CLK_N DSI_CLK_P DSI_D0_N DSI_D0_P DSI_D1_N DSI_D1_P DSI_D2_N
DSI_D2_P DSI_D3_N DSI_D3_P
i.MX 8M Plus B18 A18 B16 A16 B17 A17 B19 A19 B20 A20
TQMa8MPxL F21 G21 D20 E20 E22 F22 G20 H20 H22 J22
Page 23
Power group 1.8 V
3.2.5.11 HDMI
The i.MX 8M Plus provides an HDMI interface according to the display specification “HDMI 2.0a” incl. eARC. The maximum resolutions are 3840×2160 @ 30 fps or 1920×1080 @ 120 fps. The interface operates with 1.8 V. The differential signals are length matched on the TQMa8MPxL and routed with a differential impedance of 100 .
Table 15: HDMI signals
Signal EARC_AUX EARC_N_HPD EARC_P_UTIL HDMI_CEC HDMI_TXC_N HDMI_TXC_P
HDMI_DDC_SCL HDMI_DDC_SDA HDMI_HPD HDMI_TX0_N HDMI_TX0_P HDMI_TX1_N HDMI_TX1_P
HDMI_TX2_N HDMI_TX2_P
i.MX 8M Plus AH23 AH22 AJ23 AD22 AJ24 AH24 AC22 AF22 AE22 AJ25 AH25 AJ26 AH26 AJ27 AH27
TQMa8MPxL V4 T1 U1 W4 U3 V3 AB3 AB2 Y3 V2 W2 W1 Y1 Y2 AA2
Power group 1.8 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 24
3.2.5.12 LVDS
In addition to MIPI-DSI and HDMI, the CPU provides an LVDS interface. The CPU
only offers one PHY, but supports up to two channels with up to four data
lanes each. The maximum resolution is 1920 x 1200 at 60 fps. The interface
operates with 1.8 V. The differential signals are length matched on the
TQMa8MPxL and routed with a differential impedance of 100 .
i.MX 8M Plus
LVDS[1:0]_D[3:0]_N/P LVDS[1:0]_CLK_N/P
Figure 11: Block diagram LVDS
Table 16: LVDS signals
Signal LVDS0_D0_N LVDS0_D0_P LVDS0_D1_N LVDS0_D1_P LVDS0_D2_N LVDS0_D2_P
LVDS0_D3_N LVDS0_D3_P LVDS0_CLK_N LVDS0_CLK_P LVDS1_D0_N LVDS1_D0_P LVDS1_D1_N
LVDS1_D1_P LVDS1_D2_N LVDS1_D2_P LVDS1_D3_N LVDS1_D3_P LVDS1_CLK_N LVDS1_CLK_P
i.MX 8M Plus E28 D29 F28 E29 H28 G29 J28 H29 G28 F29 B26 A26 B27 A27 C28 B29 D28 C29 B28 A28
LGA pads
LVDS[1:0]_D[3:0]_N/P LVDS[1:0]_CLK_N/P
TQMa8MPxL Y10 Y11 AA11 AA12 AB12 AB13 AA14 AA15 Y13 Y14 AB15 AB16 Y16 Y17 AA17 AA18 AA19 AA20 AB18 AB19
Power group 1.8 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 25
3.2.5.13 PCIe
The i.MX 8M Plus provides a PCIe Gen3 interface with one (x1) lane. The 100
MHz reference clock can be generated on the TQMa8MPxL and output to
PCIE_REF_CLKN/P for the PCIe card. Alternatively, the reference clock can be
provided from an external source to PCIE_REF_CLKN/P. In general, NXP
recommends the use of an external source for accuracy reasons. The series
capacitors required by the PCIe standard must be provided on the carrier
board. The differential signals are length matched on the TQMa8MPxL and routed
with a differential impedance of 85 . The signals must be terminated on the
carrier board according to the PCIe specification.
i.MX 8M Plus PCIE_RESREF
PCIE_REF_PAD_CLK_P/N PCIE_RXN_P/N PCIE_TXN_P/N
Figure 12: Block diagram PCIe
LGA pads
GND
PCIE_REF_CLKP/N PCIE_RXP/N PCIE_TXP/N
Table 17: PCIe signals
Signal PCIE_REF_CLKN PCIE_REF_CLKP PCIE_RXN PCIE_RXP PCIE_TXN PCIE_TXP PCIE_RESREF
Direction I/O I O I
i.MX 8M Plus E16 D16 B14 A14 B15 A15 F16
TQMa8MPxL Y22 AA22 W20 Y20 AA21 AB21
Power group 1.8 V
8.2 k PD on TQMa8MPxL
Attention: Accelerated aging of PCI Express PHY
Due to an erratum of the i.MX 8M Plus the PCI Express PHY is subject to
accelerated aging in lower power states. In the i.MX 8M Plus errata (5), NXP
describes a workaround that must be followed to avoid the aging impact to the
PCI Express PHY.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 26
3.2.5.14 SAI
The i.MX 8M Plus provides several SAI interfaces with different bus widths.
The 8-bit SAI1 is not available since it is multiplexed as Ethernet interface.
Modules from Rev.02xx use only the SAI3 interface. The supply voltage has to
be set to 1.8 V or 3.3 V on the carrier board with LGA pad V_SAI2_SAI3_SPDIF.
Clock pins can be used as input or output.
i.MX 8M Plus
SAI3_MCLK SAI3_TXFS
SAI3_TXC SAI3_TXD SAI3_RXD
LGA pads
SAI3_MCLK SAI3_TXFS SAI3_TXC SAI3_TXD0 SAI3_RXD0
Figure 13: Block diagram SAI1
The following table lists all SAI signals provided by the TQMa8MPxL:
Table 18:
Signal SAI3_TXFS SAI4_RXD SAI3_TXc SAI3_TXD SAI3_MCLK
SAI signals
Direction O I O O O
i.MX 8M Plus AC16 AF18 AH19 AH18 AJ20
TQMa8MPxL B11 A12 B12 A13 C10
Power group V_SAI2_SAI3_SPDIF
3.2.5.15 SPDIF
The i.MX 8M Plus has an SPDIF interface that is not used natively. Instead,
the pins are multiplexed as GPIOs by default. This configuration can be
changed if necessary, for example using the LGA pads shown in the following
figure:
i.MX 8M Plus
SPDIF_RX SPDIF_TX SPDIF_EXT_CLK
LGA pads
GPIO5_IO04 GPIO5_IO03 GPIO5_IO05
Figure 14: Block diagram SPDIF
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 27
3.2.5.16 QSPI / NAND
The NOR flash signals are routed to the TQMa8MPxL LGA pads. The NOR flash
signals use a part of the NAND pins of the i.MX 8M Plus. All other NAND pins
of the i.MX 8M Plus are used TQMa8MPxL-internally for the eMMC as uSDHC3 boot
source. These LGA pads cannot be used if the QSPI NOR flash is equipped! For
more information regarding QSPI see chapter 3.2.2.3.
Table 19: QSPI signals
Signal
Direction
QSPI_A_DATA3
I/O
QSPI_A_DATA2
I/O
QSPI_A_DATA1
I/O
QSPI_A_DATA0
I/O
QSPI_A_SS0#
O
QSPI_A_SCLK
O
i.MX 8M Plus N24 L24 L25 R25 L26 N25
TQMa8MPxL W12 W13 V13 V14 V15 W15
Power group 1.8 V
3.2.5.17 ECSPI
The full-duplex SPI interfaces of the i.MX 8M Plus support both master and
slave modes with data rates of up to 52 Mbit/s. All SPI interfaces provide one
chip select each and are directly routed to the TQMa8MPxL LGA pads. ECSPI2 is
supplied with 1.8 V. ECSPI3, which is multiplexed with the UART signals, is
supplied with 3.3 V.
i.MX 8M Plus ECSPI2_SS0
ECSPI2_MOSI ECSPI2_MISO ECSPI2_SCLK
UART2_TXD UART1_TXD UART2_RXD UART1_RXD
Figure 15: Block diagram ECSPI
LGA pads
ECSPI2_CS0 ECSPI2_SDO ECSPI2_SDI ECSPI2_SCK
ECSPI3_CS0 ECSPI3_SDO ECSPI3_SDI ECSPI3_SCK
The following table shows the signals used by the ECSPI interface.
Table 20:
Signal ECSPI2_MOSI ECSPI2_MISO ECSPI2_SCLK ECSPI2_SS0 ECSPI3_MOSI ECSPI3_MISO
ECSPI3_SCLK ECSPI3_SS0
ECSPI signals
Direction O I O O O I O O
i.MX 8M Plus
AJ21 AH20 AH21 AJ22 AJ3 AF6 AD6 AH4
TQMa8MPxL
P5 N5 M5 P6 J6 J5 K5 H5
Power group 1.8 V
3.3 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.2.5.18 UART
The i.MX 8M Plus provides four UART interfaces, which are all routed to
TQMa8MPxL LGA pads. The voltage supply for UART1, UART2 and UART3 must be
externally set to 1.8 V or 3.3 V via LGA pad Y19, V_SD1. UART4 is fixed
supplied with 3.3 V.
i.MX 8M Plus
SD1_CLK SD1_CMD SD1_DATA6 SD1_DATA7 UART4_TX UART4_RX SD1_DATA2 SD1_DATA3
LGA pads
UART1_TX UART1_RX UART3_TX UART3_RX UART4_TX UART4_RX UART2_TX UART2_RX
Page 28
Figure 16: Block diagram UART interfaces
The following table shows the signals used by the UART interfaces.
Table 21:
Signal UART1_TXD UART1_RXD UART2_TXD UART2_RXD UART3_TXD UART3_RXD UART4_TXD
UART4_RXD
UART signals
Direction O I O I O I O I
i.MX 8M Plus W28 W29 V29 V28 AA28 U25 AH5 AJ5
TQMa8MPxL V11 V12 V9 W9 V7 V8 G6 H6
Power group V_SD1 3.3 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 29
3.2.5.19 USB
The i.MX 8M Plus provides two USB 3.0 interfaces with integrated PHYs via USB1
and USB2. These support Super-Speed (5 Gbit/s), High-Speed (480 Mbit/s), Full-
Speed (12 Mbit/s), as well as Low-Speed (1.5 Mbit/s) and offer host, device
and OTG 2.0 functionalities. The OTG signals are provided via GPIO1 pins. All
signals have 3.3 V level. Up to 5 V can be applied to the VBUS pins. The 30 k
resistors required by NXP are already provided on the module. The differential
signals are length matched on the TQMa8MPxL and routed with a differential
impedance of 90 .
i.MX 8M Plus
USB1_VBUS USB1_DN/DP USB1_RX_N/RX_P USB1_TX_N/TX_P
GPIO1_IO13 GPIO1_IO12 GPIO1_IO10 USB1_DNU
USB2_VBUS USB2_DN/DP USB2_RX_N/RX_P USB2_TX_N/TX_P
GPIO1_IO15 GPIO1_IO14 GPIO1_IO11 USB2_DNU
LGA pads
USB1_VBUS USB1_DN/DP USB1_RXN/RXP USB1_TXN/TXP USB1_OTG_OC USB1_OTG_PWR
USB1_OTG_ID USB1_ID
USB2_VBUS USB2_DN/DP USB2_RXN/RXP USB2_TXN/TXP GPIO1_IO15 (USB2_OTG_OC)
GPIO1_IO14 (USB2_OTG_PWR) GPIO1_IO11 (USB2_OTG_ID) USB2_ID
Figure 17: Block diagram USB interfaces
Table 22: USB signals
Signal
USB1_VBUS USB1_OTG_OC USB1_OTG_PWR USB1_OTG_ID USB1_ID USB1_DN USB1_DP
USB1_RXN USB1_RXP USB1_TXN USB1_TXP
USB2_VBUS USB2_OTG_OC USB2_OTG_PWR USB2_OTG_ID USB2_ID USB2_DN USB2_DP
USB2_RXN USB2_RXP USB2_TXN USB2_TXP
Direction
P I O I I I/O I/O I I O O
P I O I I I/O I/O I I O O
i.MX 8M Plus
A11 A6 A5 B7 B11 E10 D10 B9 A9 B10 A10
D12 B5 A4 D8 E12 E14 D14 B12 A12 B13 A13
TQMa8MPxL
F18 H19 H18 G18 F19 C22 B22 B20 B19 A21 A20
E17 D18 D17 E19 D19 C19 C18 B17 B16 A18 A17
Power group 5 V tolerant
3.3 V
5 V tolerant
3.3 V
Note
NXP: Do not use
Multiplexed as GPIO1_IO15 Multiplexed as GPIO1_IO14 Multiplexed as GPIO1_IO11
NXP: Do not use
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 30
3.2.5.20 uSDHC The i.MX 8M Plus provides three uSDHC interfaces: uSDHC1,
uSDHC2 and uSDHC3. uSDHC1 is configured as UART and I2C, see chapters 3.2.5.18
and 3.2.5.6. All three interfaces support the SD standard up to version 3.0,
the MMC standard up to version 5.1, and 1.8 V and 3.3 V operation. uSDHC1 and
uSDHC3 provide 8-bit wide interfaces, uSDHC2 provides a 4-bit wide interface.
uSDHC1 The voltage level of uSDHC1 can be set to 1.8 V or 3.3 V by TQMa8MPxL
LGA pad V_SD1, Y19. Since all essential i.MX 8M Plus signals are routed to
TQMa8MPxL LGA pads, an eMMC can be connected on the carrier board. In this
case the supply voltage must be set to 1.8 V. Booting from uSDHC1 is only
possible after burning boot fuses and is therefore not supported by default.
uSDHC2
An SD card can be connected to the uSDHC2 interface. All i.MX 8M Plus signals
required are routed to TQMa8MPxL LGA pads. SD2_VSELECT (GPIO1_IO04) is used to
control the SD card supply voltage and is not routed to a TQMa8MPxL LGA pad.
The signal SD2_RESET_B can be ignored if the SD card is supplied by the
TQMa8MPxL. The voltage V_SD2 is provided for external pull-ups.
i.MX 8M Plus
SD2_CLK SD2_CMD SD2_DATA[3:0] SD2_CD_B
SD2_WP SD2_RESET_B SD2_VSELECT
NVCC_SD2
LGA pads
SD2_CLK SD2_CMD SD2_DATA[3:0] SD2_CD_B SD2_WP SD2_RESET_B V_3V3_SD V_SD2
PMIC PCA9450
LDO5 SD_VSEL
SW_EN SWOUT
Figure 18: Block diagram SD card interface
Table 23:
Signal SD2_DATA3 SD2_DATA2 SD2_DATA1 SD2_DATA0 SD2_CLK SD2_CD# SD2_CMD SD2_WP
SD2_RST# 3
USDHC2 signals
Direction I/O I/O I/O I/O O I I/O I O
i.MX 8M Plus AA25 AA26 AC29 AC28 AB29 AD29 AB28 AC26 AD28
TQMa8MPxL T5 U5 V5 W5 T4 R6 U6 T7 U7
uSDHC3 The uSDHC3 interface uses a part of the NAND pins, on the TQMa8MPxL the eMMC is connected to it.
3: 4.7 k PU on TQMa8MPxL.
Power group SD2_VSELECT
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.2.5.21 External clock sources
The i.MX 8M Plus has the option to use two external oscillators as clock
sources. All four i.MX 8M Plus signals provided for this purpose are routed to
TQMa8MPxL LGA pads. The following table shows these clock signals.
Table 24: CLK signals
Signal CLK1_IN CLK2_IN CLK1_OUT CLK2_OUT
i.MX 8M Plus K28 L28 K29 L29
TQMa8MPxL W18 W16 W17 V17
Page 31
Power group 1.8 V
3.2.6
Unspecific signals
The following table lists all signals that are not assigned to a specific group. ISO_7816 and ISO_14443 signals are only available with assembled Trust Secure Element, see chapter 3.2.3.
Table 25: Unspecific signals
Signal PMIC_WDOG_OUT# PMIC_WDOG_IN# M7_NMI TEMP_EVENT# RTC_EVENT# ISO_7816_CLK ISO_7816_RST ISO_7816_IO1 ISO_7816_IO2 ISO_14443_LA ISO_14443_LB
Direction O I I OOD OOD I I I/O I/O I/O I/O
i.MX 8M Plus B6 B4
TQMa8MPxL F8 F6 V19 U19 U18 J19 L18 K18 J18 D21 C21
Remark 3.3 V 3.3 V, 100 k PU on TQMa8MPxL 3.3 V active high 0.9 V to 3.6 V 0.7
V to 5.5 V
Use with populated Trust Secure Element
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.2.7
Reset
Reset inputs or outputs are available at the TQMa8MPxL LGA pads. The following block diagram shows the wiring of the reset signals.
Page 32
LGA pads
RESET_IN# ONOFF
PMIC_RST# RESET_OUT#
Figure 19: Block diagram Reset
1.8 V SYS_RST#
i.MX 8M Plus
ONOFF POR_B
PCA9450
PMIC_RST# POR_B
The following table describes the reset signals available at the TQMa8MPxL LGA pads:
Table 26: Reset signals
Signal
Direction TQMa8MPxL
RESET_IN#
I
E7
RESET_OUT#
O
F7
Power group 3.3 V
Remark
· Activates RESET (POR_B) of the i.MX 8M Plus; low-active. · External pull-up
to 3.3 V required. · Pull to GND to activate.
· Open drain output; low-active. · Activates RESET of carrier board
components. · External pull-up required (max. 5.5 V).
PMIC_RST#
I
E6
1.8 V
· No pull-up on carrier board required; low-active. · Programmable PMIC response (warm reset, cold reset).
ONOFF
· ON/OFF function of the i.MX 8M Plus (see CPU data sheet (2)).
I
G7
1.8 V
· No pull-up on carrier board required; low-active.
· Pull to GND for 5 s to activate.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 33
3.2.8
Power
3.2.8.1 Power supply
The TQMa8MPxL requires a supply voltage of 5 V ±5 %. The characteristics and functions of a certain pin or signal is to be taken from the PMIC Data Sheet (4), and the i.MX 8M Plus Data Sheet (2).
3.2.8.2 Power consumption
The given power consumption has to be seen as an approximate value. The
TQMa8MPxL power consumption strongly depends on the application, the mode of
operation and the operating system. For more information on power consumption
and savings options, see NXP Application Note AN12410 (6).
The following table shows TQMa8MPxL (with i.MX 8M Plus Quad) power supply (V_5V_IN) and power consumption parameters:
Table 27: Power consumption
Mode of operation Theoretical calculated peak (worst case) U-Boot prompt
Linux-Idle Linux with 100 % CPU load Reset Suspend to RAM mode
Current @ 5 V 3.625 A 0.36 A
341.7 mA 716.1 mA 0.140 mA 25.60 mA
Power consumption @ 5 V 18.1 W 1.8 W 1.7 W 3.6 W 0.7 mW
128 mW
3.2.8.3 Voltage monitoring The TQMa8MPxL features a supervisor which monitors
the input voltage (VIN). If the input voltage drops below 4.38 V, a Reset is
triggered and the TQMa8MPxL is held in reset until the input voltage is in the
permitted range again.
Attention: Destruction or malfunction, supply voltage exceedance
The voltage monitoring does not detect an exceedance of the permitted input
voltage. An exceedance of the permitted input voltage may cause malfunction,
destruction or accelerated ageing of the TQMa8MPxL.
3.2.8.4 Other supply voltages USBx_VBUS: The voltage inputs USB1_VBUS and
USB2_VBUS are used to detect the USB-VBUS voltage and are usually connected to
the VBUS voltage switched by USB[2:1]_PWR. Protective circuitry on the
TQMa8MPxL permits up to 5 V to be applied to these LGA pads. It is recommended
to provide one 220 nF capacitor (10 V) each between USBx_VBUS and Ground on
the carrier board.
V_LICELL: A coin cell can be connected to the TQMa8MPxL LGA pad D15, V_LICELL,
to supply the optional discrete RTC. See chapter 3.2.4.2 for information on
the LICELL or RTC options.
Note: RTC power supply
If a discrete RTC is supplied by a coin cell, the CPU-internal RTC is not
reset in case of a supply voltage failure.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 34
3.2.8.5 Supply outputs The TQMa8MPxL provides three voltages that can be used on the carrier board.
Table 28:
Voltage V_1V8 V_3V3 V_3V3_SD
Voltages provided by TQMa8MPxL
TQMa8MPxL N1 P1 G5
Usage General usage on carrier board General usage on carrier board SD card supply
Max. load 500 mA 500 mA 400 mA
The voltage V_3V3 can be used as Power-Good signal for the supply of circuitry on the carrier board.
Attention: Destruction or malfunction, current exceedance
A load of up to 500 mA at V_1V8 or V_3V3, as well as up to 400 mA at V_3V3_SD
causes an increased power consumption of the TQMa8MPxL and thus a higher self-
heating. These three voltages are outputs and must never be supplied from
external sources! Furthermore the outputs are not short-circuit proof.
Overloading the voltage outputs can damage the TQMa8MPxL.
3.2.8.6 Configurable voltages
The TQMa8MPxL provides four LGA pads that define the I/O voltages for specific
rails of the CPU. These are listed in the following table and must be defined
on the carrier board. If not defined, the corresponding I/O signals are not
supplied with voltage. For this purpose the outgoing voltages V_1V8 or V_3V3
can be used.
Table 29: Configurable voltages
Signal
TQMa8MPxL
V_ENET
AB10
V_SAI1_SAI5
B15
Permitted voltages 1.8 V or 3.3 V 1.8 V or 3.3 V
Remark RGMII: 1.8 V RMII: 1.8 V or 3.3 V
V_SAI2_SAI3_SPDIF
A15
1.8 V or 3.3 V
V_SD1
Y19
1.8 V or 3.3 V
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 35
3.2.8.7 Power-Up sequence TQMa8MPxL / carrier board
Since the TQMa8MPxL operates with 5 V and the I/O voltages of the CPU signals
are generated on the TQMa8MPxL, there are timing requirements for the carrier
board design with respect to the voltages generated on the carrier board:
After power up of the 5V supply for the TQMa8MPxL, the PMIC power-up sequence
starts. External TQMa8MPxL inputs driven by the carrier board may only be
switched on after the power-up of V_3V3. LGA pad P1 (V_3V3) can be used as
feedback.
VIN
TQMa8MPxL
5 V
V_5V_IN
V_3V3
Carrier board
VIN
VOUT 3.3 V / 1.8 V / …
DC/DC 3V3 Start-up < 4 ms
ENABLE
Figure 20: Block diagram power supply carrier board
Attention: Destruction or malfunction, Power-Up sequence
To avoid cross-supply and errors in the power-up sequence, no I/O pins may be
driven by external components until the power-up sequence has been completed.
The end of the power-up sequence is indicated by a high level of signal V_3V3,
LGA pad P1.
3.2.8.8 Standby and SNVS
In standby mode, several voltage controllers on the TQMa8MPxL are switched
off. The rails V_1V8_SNVS and V_0V8_SNVS remain active, which ensures the
correct function of the RTC.
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
3.2.8.9 PMIC The characteristics and functions of all pins and signals have to
be taken from the i.MX 8M Plus Reference Manual (1) and the PMIC Data Sheet
(4). The PMIC is controlled by the I2C1 bus.
The PMIC has I2C address 0x25 / 010 0101b
Page 36
The following PMIC and power management signals are available on the TQMa8MPxL LGA pads
Table 30: Signal
PMIC signals Direction
PMIC_WDOG_IN#
IPU
PMIC_RST#
I
RESET_OUT#
OOD
TQMa8MPxL F6 E6 F7
Power group V_3V3
V_1V8_SNVS 1.8 V
Remark · Low-ctive PMIC Reset input · Triggers Cold Reset · Deactivated by
default
· Low-active PMIC Rest input with internal PU · Triggers Cold Reset by default
· Low-active output · Connected to PMIC POR# · Can signal a TQMa8MPxL reset
SD_VSEL
· See chapter 3.2.5.20
Attention: Destruction or malfunction, PMIC programming
Improper programming of the PMIC may result in the i.MX 8M Plus or periphery
being operated outside its specification. This may lead to malfunctions,
accelerated aging or destruction of the TQMa8MPxL.
3.2.9
Impedances
By default, all single-ended signals have a nominal impedance of 50 ±10 %. However, some interfaces on the TQMa8MPxL are routed with different impedances, depending on the signal requirements.
The following table is taken from the Hardware Developer’s Guide (3) and shows the respective interfaces:
Table 31: Impedances
Signal / Interface DDR DQS/CLK; PCIe CLK, TX/RX data pairs Differential USB
signals Differential MIPI (CSI, DSI), HDMI, EARC, LVDS signals Differential
RGMII signals
Impedance on TQMa8MPxL 85 , differential 90 , differential
100 , differential 100 , differential
Recommendation for carrier board 85 ±10 %, differential 90 ±10 %, differential
100 ±10 %, differential 100 ±10 %, differential
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
SOFTWARE
The TQMa8MPxL is delivered with a preinstalled boot loader U-Boot. The BSP provided by TQ-Systems GmbH is configured for the combination of TQMa8MPxL and MBa8MPxL. The boot loader U-Boot provides TQMa8MPxL-specific as well as board- specific settings, e.g.:
· i.MX 8M Plus configuration · PMIC configuration · SDRAM configuration · eMMC configuration · Multiplexing · Clocks · Pin configuration · Driver strengths
Further information can be found in the https://support.tq- group.com/TQMa8MPxL. If another bootloader is used, this data must be adapted. Contact TQ-Support for detailed information.
Page 37
MECHANICS
5.1
Dimensions
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 38
Figure 21: TQMa8MPxL dimensions, side view
Table 32: TQMa8MPxL heights
Dim.
Value
A
0.125 mm
Tolerance
+0.075 mm 0.025 mm
B
1.6 mm
±0.16 mm
TQMa8MPxL LGA pads height PCB without solder resist
Remark
C
1.43 mm
±0.16 mm Height CPU
C1
1.17 mm
±0.1 mm Height of eMMC and NOR flash
D
0.57 mm
±0.2 mm Highest component, bottom side
E
3.18 mm
±0.23 mm Top edge CPU above carrier board, with soldered TQMa8MPxL
Figure 22: TQMa8MPxL dimensions, top view
Figure 23: TQMa8MPxL dimensions, top through view
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
5.2
Component placement
Page 39
Figure 24: TQMa8MPxL, component placement top
The labels on the TQMa8MPxL show the following information:
Table 33:
Label AK1 AK2 AK3
Labels on TQMa8MPxL
TQMa8MPxL version and revision Serial number MAC address
Content
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
B22 C22 D22 E22 F22 G22 H22 J22 K22 L22 M22 N22 P22 R22 T22 U22 V22 W22 Y22 AA22
A21 B21 C21 D21 E21 F21 G21 H21 J21 K21 L21 M21 N21 P21 R21 T21 U21 V21 W21 Y21 AA21 AB21
A20 B20 C20 D20 E20 F20 G20 H20 J20 K20 L20 M20 N20 P20 R20 T20 U20 V20 W20 Y20 AA20 AB20
A19 B19 C19 D19 E19 F19 G19 H19 J19 K19 L19 M19 N19 P19 R19 T19 U19 V19 W19 Y19 AA19 AB19
A18 B18 C18 D18 E18 F18 G18 H18 J18 K18 L18 M18 N18 P18 R18 T18 U18 V18 W18 Y18 AA18 AB18
A17 B17 C17 D17 E17
V17 W17 Y17 AA17 AB17
A16 B16 C16 D16 E16
V16 W16 Y16 AA16 AB16
A15 B15 C15 D15 E15
V15 W15 Y15 AA15 AB15
A14 B14 C14 D14 E14
V14 W14 Y14 AA14 AB14
A13 B13 C13 D13 E13
V13 W13 Y13 AA13 AB13
A12 B12 C12 D12 E12
V12 W12 Y12 AA12 AB12
A11 B11 C11 D11 E11
V11 W11 Y11 AA11 AB11
A10 B10 C10 D10 E10
V10 W10 Y10 AA10 AB10
A9 B9 C9 D9 E9 F9 G9 H9
R9 T9 U9 V9 W9 Y9 AA9 AB9
A8 B8 C8 D8 E8 F8 G8 H8
R8 T8 U8 V8 W8 Y8 AA8 AB8
A7 B7 C7 D7 E7 F7 G7 H7
R7 T7 U7 V7 W7 Y7 AA7 AB7
A6 B6 C6 D6 E6 F6 G6 H6 J6 K6 L6 M6 N6 P6 R6 T6 U6 V6 W6 Y6 AA6 AB6
A5 B5 C5 D5 E5 F5 G5 H5 J5 K5 L5 M5 N5 P5 R5 T5 U5 V5 W5 Y5 AA5 AB5
A4 B4 C4 D4 E4 F4 G4 H4 J4 K4 L4 M4 N4 P4 R4 T4 U4 V4 W4 Y4 AA4 AB4
A3 B3 C3 D3 E3 F3 G3 H3 J3 K3 L3 M3 N3 P3 R3 T3 U3 V3 W3 Y3 AA3 AB3
A2 B2 C2 D2 E2 F2 G2 H2 J2 K2 L2 M2 N2 P2 R2 T2 U2 V2 W2 Y2 AA2 AB2
B1 C1 D1 E1 F1 G1 H1 J1 K1 L1 M1 N1 P1 R1 T1 U1 V1 W1 Y1 AA1
A B C D E F G H J K L M N P R T U V W Y AA AB
Figure 25: TQMa8MPxL, LGA pad numbering scheme, top through view
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
5.3
Adaptation to the environment
The TQMa8MPxL has overall dimensions (length × width) of 38 mm × 38 mm (± 0,1 mm). The TQMa8MPxL has a maximum height above the carrier board of approximately 3.18 mm. The TQMa8MPxL has 366 LGA pads with a diameter of 1.0 mm and a grid of 1.7 mm. The TQMa8MPxL weighs approximately 10 g.
Page 40
5.4
Protection against external effects
The TQMa8MPxL does not provide protection against dust, external impact and contact (IP00). Adequate protection has to be guaranteed by the surrounding system.
5.5
Thermal management
To cool the TQMa8MPxL, noteTable 28. The power dissipation originates
primarily in the i.MX 8M Plus, the LPDDR4 SDRAM and the PMIC.
The power dissipation also depends on the software used and can vary according
to the application.
See NXP documents (6) and (7) for further information.
Attention: Destruction or malfunction, TQMa8MPxL cooling
The i.MX 8M Plus belongs to a performance category in which a cooling system
is essential.
It is the user’s sole responsibility to define a suitable heat sink (weight
and mounting position) depending on the specific mode of operation (e.g.,
dependence on clock frequency, stack height, airflow, and software).
Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA
package, thermal pad, heatsink) as well as the maximum pressure on the i.MX 8M
Plus must be taken into consideration when connecting the heat sink, see (6).
The i.MX 8M Plus is not necessarily the highest component.
Inadequate cooling connections can lead to overheating of the TQMa8MPxL and
thus malfunction, deterioration or destruction.
5.6
Structural requirements
The TQMa8MPxL has to be soldered on the carrier board. To ensure a high-
quality connection of the LGA pads during reflow soldering of the TQMa8MPxL,
the LGA pads must be free of grease and dirt.
Please contact TQ-Support for soldering instructions (11).
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 41
SAFETY REQUIREMENTS AND PROTECTIVE REGULATIONS
6.1
EMC
The TQMa8MPxL was developed according to the requirements of electromagnetic
compatibility (EMC). Depending on the target system, anti-interference
measures may still be necessary to guarantee the adherence to the limits for
the overall system. Following measures are recommended:
· Robust ground planes (adequate ground planes) on the printed circuit board
· A sufficient number of blocking capacitors in all supply voltages
· Fast or permanently clocked lines (e.g., clock signals) should be kept
short; avoid interference of other signals by distance and/or shielding, also
pay attention to frequencies and signal rise times
· Filtering of all signals, which can be connected externally (also “slow
signals” and DC can radiate RF indirectly)
· Direct signal routing without stubs
6.2
ESD
In order to avoid interspersion on the signal path from the input to the protection circuit in the system, the protection against electrostatic discharge should be arranged directly at the inputs of a system. As these measures always have to be implemented on the carrier board, no special preventive measures were planned on the TQMa8MPxL.
Following measures are recommended for a carrier board:
· Generally applicable:
Shielding of inputs (shielding connected well to ground / housing on both ends)
· Supply voltages:
Suppressor diode(s)
· Slow signals:
RC filtering, Zener diode(s)
· Fast signals:
Protection components, e.g., suppressor diode arrays
6.3
Shock and Vibration
Table 34: Shock resistance
Shock Shock form Acceleration Residence time Number of shocks Excitation axes
Parameter
Table 35: Vibration resistance
Parameter Oscillation, sinusoidal Frequency ranges Wobble rate Excitation axes
Acceleration
Details According to DIN EN 60068-2-27 Half sine 30 g 10 ms 3 shocks per direction 6X, 6Y, 6Z
Details
According to DIN EN 60068-2-6
2 ~ 9 Hz, 9 ~ 200 Hz, 200 ~ 500 Hz
1.0 octaves / min
X Y Z axis
2 Hz to 9 Hz: 9 Hz to 200 Hz: 200 Hz to 500 Hz:
3.5 m/s² 10 m/s² 15 m/s²
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 42
6.4
Climate and operational conditions
The TQMa8MPxL is available in three different variants (Consumer, Extended and
Industrial) with different ambient temperature ranges. The operating
temperature range for the TQMa8MPxL strongly depends on the installation
situation (heat dissipation by heat conduction and convection); hence, no
fixed value can be given for the TQMa8MPxL.
In general, a reliable operation is given when following conditions are met:
Table 36: Climate and operational conditions
Parameter
Ambient temperature TQMa8MPxL
Consumer Extended Industrial
TJ temperature i.MX 8M Plus TJ temperature PMIC Case temperature LPDDR4
Case temperature other ICs
Consumer Extended Industrial
Storage temperature TQMa8MPxL
Relative humidity (operating / storage)
Range 0 °C to +85 °C 25 °C to +85 °C 40 °C to +85 °C 40 °C to +105 °C 40 °C to +125 °C 40 °C to +95 °C 0 °C to +85 °C 25 °C to +85 °C 40 °C to +85 °C 40 °C to +85 °C 10 % to 90 %
Remark
Not condensing
Detailed information concerning the i.MX 8M Plus thermal characteristics is to be taken from NXP documents (6) and (7).
Attention: Destruction or malfunction, TQMa8MPxL cooling
The i.MX 8M Plus belongs to a performance category in which a cooling system
is essential.
It is the user’s sole responsibility to define a suitable heat sink (weight
and mounting position) depending on the specific mode of operation (e.g.,
dependence on clock frequency, stack height, airflow, and software).
Particularly the tolerance chain (PCB thickness, board warpage, BGA balls, BGA
package, thermal pad, heatsink) as well as the maximum pressure on the i.MX 8M
Plus must be taken into consideration when connecting the heat sink, see (6).
The i.MX 8M Plus is not necessarily the highest component.
Inadequate cooling connections can lead to overheating of the TQMa8MPxL and
thus malfunction, deterioration or destruction.
6.5
Intended Use
TQ DEVICES, PRODUCTS AND ASSOCIATED SOFTWARE ARE NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE OR RESALE FOR THE OPERATION IN NUCLEAR FACILITIES, AIRCRAFT OR OTHER TRANSPORTATION NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL SYSTEMS, LIFE SUPPORT MACHINES, WEAPONS SYSTEMS, OR ANY OTHER EQUIPMENT OR APPLICATION REQUIRING FAIL-SAFE PERFORMANCE OR IN WHICH THE FAILURE OF TQ PRODUCTS COULD LEAD TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. (COLLECTIVELY, “HIGH RISK APPLICATIONS”)
You understand and agree that your use of TQ products or devices as a component in your applications are solely at your own risk. To minimize the risks associated with your products, devices and applications, you should take appropriate operational and design related protective measures.
You are solely responsible for complying with all legal, regulatory, safety and security requirements relating to your products. You are responsible for ensuring that your systems (and any TQ hardware or software components incorporated into your systems or products) comply with all applicable requirements. Unless otherwise explicitly stated in our product related documentation, TQ devices are not designed with fault tolerance capabilities or features and therefore cannot be considered as being designed, manufactured or otherwise set up to be compliant for any implementation or resale as a device in high risk applications. All application and safety information in this document (including application descriptions, suggested safety precautions, recommended TQ products or any other materials) is for reference only. Only trained personnel in a suitable work
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 43
area are permitted to handle and operate TQ products and devices. Please follow the general IT security guidelines applicable to the country or location in which you intend to use the equipment.
6.6
Export Control and Sanctions Compliance
The customer is responsible for ensuring that the product purchased from TQ is not subject to any national or international export/import restrictions. If any part of the purchased product or the product itself is subject to said restrictions, the customer must procure the required export/import licenses at its own expense. In the case of breaches of export or import limitations, the customer indemnifies TQ against all liability and accountability in the external relationship,irrespective of the legal grounds. If there is a transgression or violation, the customer will also be held accountable for any losses, damages or fines sustained by TQ. TQ is not liable for any delivery delays due to national or international export restrictions or for the inability to make a delivery as a result of those restrictions. Any compensation or damages will not be provided by TQ in such instances.
The classification according to the European Foreign Trade Regulations (export list number of Reg. No. 2021/821 for dual-usegoods) as well as the classification according to the U.S. Export Administration Regulations in case of US products (ECCN according to the U.S. Commerce Control List) are stated on TQ´s invoices or can be requested at any time. Also listed is the Commodity code (HS) in accordance with the current commodity classification for foreign trade statistics as well as the country of origin of the goods requested/ordered.
6.7
Warranty
TQ-Systems GmbH warrants that the product, when used in accordance with the contract, fulfills the respective contractually agreed specifications and functionalities and corresponds to the recognized state of the art.
The warranty is limited to material, manufacturing and processing defects. The manufacturer’s liability is void in the following cases:
·
Original parts have been replaced by non-original parts.
·
Improper installation, commissioning or repairs.
·
Improper installation, commissioning or repair due to lack of special equipment.
·
Incorrect operation
·
Improper handling
·
Use of force
·
Normal wear and tear
6.8
Operational safety and personal security
Due to the occurring voltages (5 V DC), tests with respect to the operational and personal safety have not been carried out.
6.9
Reliability and service life
The MTBF calculated for the TQMa8MPxL is 1,192,246 hours with a constant error rate @ +40 °C, Ground Benign. The TQMa8MPxL is designed to be insensitive to shock and vibration. The TQMa8MPxL must be assembled in accordance with the processing instructions provided by TQ-Systems GmbH. Detailed information concerning the i.MX 8M Plus service life under different operational conditions is to be taken from the NXP Application Note (7).
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 44
ENVIRONMENT PROTECTION
7.1
RoHS
The TQMa8MPxL is manufactured RoHS compliant. All components, assemblies and soldering processes are RoHS compliant.
7.2
WEEE®
The final distributor is responsible for compliance with the WEEE® regulation. Within the scope of the technical possibilities, the TQMa8MPxL was designed to be recyclable and easy to repair.
7.3
REACH®
The EU-chemical regulation 1907/2006 (REACH® regulation) stands for registration, evaluation, certification and restriction of substances SVHC (Substances of very high concern, e.g., carcinogen, mutagen and/or persistent, bio accumulative and toxic). Within the scope of this juridical liability, TQ- Systems GmbH meets the information duty within the supply chain with regard to the SVHC substances, insofar as suppliers inform TQ-Systems GmbH accordingly.
7.4
Statement on California Proposition 65
California Proposition 65, formerly known as the Safe Drinking Water and Toxic
Enforcement Act of 1986, was enacted as a ballot initiative in November 1986.
The proposition helps protect the state’s drinking water sources from
contamination by approximately 1,000 chemicals known to cause cancer, birth
defects, or other reproductive harm (“Proposition 65 Substances”) and requires
businesses to inform Californians about exposure to Proposition 65 Substances.
The TQ device or product is not designed or manufactured or distributed as
consumer product or for any contact with endconsumers. Consumer products are
defined as products intended for a consumer’s personal use, consumption, or
enjoyment. Therefore, our products or devices are not subject to this
regulation and no warning label is required on the assembly.
Individual components of the assembly may contain substances that may require
a warning under California Proposition 65. However, it should be noted that
the Intended Use of our products will not result in the release of these
substances or direct human contact with these substances. Therefore you must
take care through your product design that consumers cannot touch the product
at all and specify that issue in your own product related documentation.
TQ reserves the right to update and modify this notice as it deems necessary
or appropriate.
7.5
EuP
The Energy using Products (EuP) is applicable for end user products with an annual quantity of >200,000. Thus the TQMa8MPxL always has to be considered in combination with the complete system. The compliance regarding EuP directive is basically possible for the TQMa8MPxL on account of available Standby or Sleep-Modes of the components on the TQMa8MPxL.
7.6
Battery
No batteries are assembled on the TQMa8MPxL.
7.7
Packaging
The TQMa8MPxL is delivered in reusable packaging.
7.8
Other entries
By environmentally friendly processes, production equipment and products, we
contribute to the protection of our environment. To be able to reuse the
TQMa8MPxL, it is produced in such a way (a modular construction) that it can
be easily repaired and disassembled. The energy consumption of the TQMa8MPxL
is minimised by suitable measures.
Because currently there is still no technical equivalent alternative for
printed circuit boards with bromine-containing flame protection (FR-4
material), such printed circuit boards are still used.
No use of PCB containing capacitors and transformers (polychlorinated
biphenyls).
These points are an essential part of the following laws:
· The law to encourage the circular flow economy and assurance of the
environmentally acceptable removal of waste as at 27.9.94 (Source of
information: BGBl I 1994, 2705)
· Regulation with respect to the utilization and proof of removal as at 1.9.96
(Source of information: BGBl I 1996, 1382, (1997, 2860))
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
· Regulation with respect to the avoidance and utilization of packaging waste
as at 21.8.98 (Source of information: BGBl I 1998, 2379)
· Regulation with respect to the European Waste Directory as at 1.12.01
(Source of information: BGBl I 2001, 3379)
This information is to be seen as notes. Tests or certifications were not
carried out in this respect.
Page 45
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
APPENDIX
8.1
Acronyms and definitions
The following acronyms and abbreviations are used in this document:
Table 37: Acronyms
Acronym
ARM® BGA BIOS BSP CAN CAN-FD CPU CSI DDR DIN DNC DSI EARC ECSPI EEPROM EMC
eMMC EN ESD EuP FR-4 Gbps GPIO GPT HDMI I I/O I2C IP00 IPU JEDEC JTAG® LGA
LPDDR4 LVDS MAC MIPI ML/AI MMC MTBF
Meaning
Advanced RISC Machine Ball Grid Array Basic Input/Output System Board Support
Package Controller Area Network CAN with Flexible Data-Rate Central Processing
Unit CMOS Sensor Interface Double Data Rate Deutsche Industrienorm (German
industry standard) Do Not Connect Display Serial Interface Enhanced Audio
Return Channel Enhanced Configurable SPI Electrically Erasable Programmable
Read-Only Memory Electromagnetic Compatibility embedded Multimedia Card
(Flash) Europäische Norm (European standard) Electrostatic Discharge Energy
using Products Flame Retardant 4 Gigabit per second General Purpose
Input/Output General-Purpose Timer High-Definition Multimedia Interface Input
Input/Output Inter-Integrated Circuit Ingress Protection 00 Input with Pull-Up
Joint Electronic Device Engineering Council Joint Test Action Group Land Grid
Array Low Power DDR4 Low-Voltage Differential Signaling Media Access Control
Mobile Industry Processor Interface Machine Learning / Artificial Intelligence
Multimedia Card Mean operating Time Between Failures
Page 46
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
8.1
Acronyms and definitions (continued)
Table 37: Acronyms (continued)
Acronym
NAND NOR O OD OOD OTG P PCB PCIe PCMCIA PD PHY PMIC PU PWM PWP QSPI RAM RC
REACH® RF RGMII RMII RoHS ROM RTC RWP SAI SCU SD SDRAM SNVS SPDIF SPI SVHC TBD
TSE UART UM USB uSDHC WEEE® WP
Meaning
Not-And Not-Or Output Open Drain Output with Open Drain On-The-Go Power
Printed Circuit Board Peripheral Component Interconnect Express People Can’t
Memorize Computer Industry Acronyms Pull-Down (resistor) Physical (layer of
the OSI model) Power Management Integrated Circuit Pull-Up (resistor) Pulse-
Width Modulation Permanent Write Protected Quad Serial Peripheral Interface
Random Access Memory Resistor-Capacitor Registration, Evaluation,
Authorisation (and restriction of) Chemicals Radio Frequency Reduced Gigabit
Media Independent Interface Reduced Media Independent Interface Restriction of
(the use of certain) Hazardous Substances Read-Only Memory Real-Time Clock
Reversible Write Protection Serial Audio Interface System Control Unit Secure
Digital Synchronous Dynamic Random Access Memory Secure Non-Volatile Storage
Sony-Philips Digital Interface Format Serial Peripheral Interface Substances
of Very High Concern To Be Determined Trust Secure Element Universal
Asynchronous Receiver/Transmitter User’s Manual Universal Serial Bus Ultra-
Secured Digital Host Controller Waste Electrical and Electronic Equipment
Write-Protection
Page 47
User’s Manual l TQMa8MPxL UM 0105 l © 2024, TQ-Systems GmbH
Page 48
8.2
References
Table 38: Further applicable documents
No.
Name
(1) i.MX 8M Plus Applications Processor Reference Manual
(2) i.MX 8M Plus Applications Processors Data Sheet
(3) i.MX 8M Plus Hardware Developer’s Guide
(4) PMIC PCA9450 Data Sheet
(5) i.MX 8M Plus Mask Set Errata for Mask P33A
(6) i.MX 8M Plus Power Consumption Measurement, AN12410
(7) i.MX 8M Plus Product Lifetime Usage, AN12468
(8) SE050 Trust Secure Element Data Sheet
(9) MBa8MPxL User’s Manual
(10) TQMa8MPxL Support-Wiki
(11) TQMa8MPxL Processing instructions
Rev., Date Rev. 1, Jun 2021 Rev 1, Aug 2021 Rev 0, Mar 2021 Rev 2.2, Sep 2021
Rev. 2, Oct 2021 Rev. 0, 14 Apr 2019 Rev.0, 23 Jun 2019 Rev. 3.1, Dec 2020
current current current
Company NXP NXP NXP NXP NXP NXP NXP NXP TQ-Systems TQ-Systems TQ-Systems
TQ-Systems GmbH Mühlstraße 2 l Gut Delling l 82229 Seefeld Info@TQ-Group | TQ- Group
References
- The U-Boot Documentation — Das U-Boot unknown version documentation
- PTXdist - Embedded Linux Build System | PTXdist
- Welcome to the Yocto Project Documentation — The Yocto Project ® 5.0.999 documentation
- The U-Boot Documentation — Das U-Boot unknown version documentation
- Electronic products & electronic services | TQ
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>