e-peas AEM10300 Solar Battery Charger User Guide
- June 4, 2024
- e-peas
Table of Contents
AEM10300
Quick Start Guide EVK
AEM10300 Solar Battery Charger
FEATURES
Connectors
- 1 screw connector for the source
- 1 screw connector + 1 JST connector for the Storage Element
- 1 screw connector for the application supply
- 1 screw connector for RZMPP
Configuration
- 3 jumpers R_MPP[x] to define the MPP ratio linked to the harvester technology
- 2 jumpers T_MPP[x] to define the MPP timing
- 4 jumpers STO_CFG[x] to define the storage element protection levels
- 4 resistors footprint related to the custom mode (STO_CFG[3:0]=LHHH)
- 1 jumper to set the dual cell supercapacitor BAL feature
- 3 jumpers to enable the different modes
- 2 jumpers to enable the application output supply
Size
- 79mm x 49mm
- 4 x M2.5 Mounting holes
SUPPORT PCB
BOM around the AEM10300
Designator | Description | Quantity | Manufacturer | Link |
---|---|---|---|---|
Ul | AEM10330 – Symbol QFN 40-pin | 1 | e-peas | order at [spit-peas.com](http |
://spit-peas.com)
LDC DC| Power inductor 10 pH – 1.76A| 1| Murata| DFE252010E-100M
CINT| Ceramic Cap 10 NF, 6.3V, 20P/0, X5R 0402| 1| Murata| GRM155R601106ME15
CSRC| Ceramic Cap 15 pF, 6.3V, 20%, X5R 0402| 1| Murata| GRM155R601156MEOS
CSTO (optional)| Ceramic Cap 100 pF, 6.3V, 20%, XSR 1206| 1| TDK|
C3216X5R1A107M160AC
Footprint & Symbol: Information available on the datasheet
STEP 1: AEM10300 Configuration
T MPPIII | T_MPP[0] | Sampling duration | Sampling period |
---|---|---|---|
0 | 0 | 5.19 ms | 280 ms |
0 | 1 | 70.8 ms | 4.5 s |
1 | 0 | 280 ms | 17.87 s |
1 | 1 | 1.12 s | 71.7 s |
https://e-peas.com/types/energy-harvesting/
| Confirmation is| MPPT ratio
---|---|---
R_MPP[2]| R_MPP[1]| R_MPP[0]| VMPP/VOC
0| 0| 0| 60%
0| 0| 1| 65%
0| 1| 0| 70%
0| 1| 1| 75%
1| 0| 0| 80%
1| 0| 1| 85%
1| 1| 0| 90%
1| 1| 1| ZMPP
Confirmation pnis| Storage element threshed voltages| Typical
use
---|---|---
STO_CFG[3]| STO_CFG[2]| STO_CFG[1]| STO_CFG[0]| | | |
0| 0| 0| 0| 3.00 V| 3.50 V| 4.05 V| Li-ion battery
0| 0| 0| 1| 2.80 V| 3.10 V| 3.60 V| LiFePO4 battery
0| 0| 1| 0| 1.85 V| 2.40 V| 2.70 V| NiMH battery
0| 0| 1| 1| 0.20 V| 1.00 V| 4.65 V| Dual-cell supercapacitor
0| 1| 0| 0| 0.20V| 1.00 V| 2.60 V| Single-cell supercapacitor
0| 1| 0| 1| 1.00 V| 1.20 V| 2.95 V| Single-cell supercapacitor
0| 1| 1| 0| 1.85V| 230V| 2.60V| NGK
0| 1| 1| 1| Custom Mode
1| 0| 0| 0| 1.10 V| 1.25 V| 1.50 V| Ni-Cd 1 cells
1| 0| 0| 1| 2.20 V| 2.50 V| 3.00 V| Ni-Cd 2 cells
1| 0| 1| 0| 1.45 V| 2.00 V| 4.65 V| Dual-cell supercapacitor
1| 0| 1| 1| 1.00 V| 1.20 V| 2.60 V| Single-cell supercapacitor
1| 1| 0| 0| 2.00 V| 2.30 V| 2.60 V| ITEN / Umal Murata
1| 1| 0| 1| 3.00 V| 3.50 V| 4.35 V| Li-Po battery
1| 1| 1| 0| 2.60 V| 2.70 V| 4.00 V| Tadiran 71.11020A
1| 1| 1| 1| 2.60 V| 3.50 V| 3.90 V| Tadi ran HLC1020
STEP 2: Connect the Storage Element
STEP 3: Connect the Photovoltaic Cell
- Internal Boost efficiency Vs. input voltage in Low Power mode:
- Internal Boost efficiency Vs. input voltage in High Power mode:
STEP 4: Check the Status
Symbol | Logic Level | Low | High |
---|
Logic output pins
ST-STO| Logic output levels on the status STO pins| GND| VITO
www.e-peas.com
© 2021 e-peas S.A.
V1.0