KAVAN F3RES High Performance Thermal Glider Instruction Manual

June 13, 2024
KAVAN

KAVAN logo MIRAI
Instruction Manual

F3RES High Performance Thermal Glider

KAVAN F3RES High Performance Thermal Glider F3RES/F5RES High Performance Thermal Glider

PRECAUTIONS:

This R/C model is not a toy. Use it with care and stricktly following the instructions in this manual.
Assemble this model following stricktly these instructions. DO NOT modify or alter the model. Failure to do so, the warranty will lapse automatically. Follow the instructions in order to obtain a safe and solid model at the end of the assembly.
Children under the age of 14 must operate the model under the supervision of an adult.
Assure that the model is in perfect conditions before every flight, taking care that all the equipment works correctly and that the model is undamaged in its structure.
Fly only in days with light breeze and in a safe place away from any obstacles.

MIRAI Kit
F3-RES/F5-RES High Performance Thermal Glider / Electric Glider
Designed and manufactured in the Czech Republic

Specification

Wingspan: 1995 mm
Length: 1210 mm
All-up Weight: 420g plus
Wing Section: Special RES HB
CG Position: 80 mm
Controls: udder, elevator, airbrake, (motor)

Recommended RC Equipment

  • Rudder and Elevator Servo: Hitec HS-53 2x
  • Spoiler Servo: Hitec HS-65MG, Dymond D47
  • Rudder and Elevator Servo: Hitec HS-53 2x

Recommended Glues

Unless stated otherwise, use medium cyanoacrylate (CA) glue (KAV9952 KAVAN CA Medium). D-box sheeting and wing ribs are better to be glued using a water resistant white aliphatic resin, like our KAV9960 KAVAN White Glue (alternatively, you can use this sort of glue for most of wood-to-wood joints). The highly loaded parts (wing roots, wing main spars, firewall etc.)
should be glued together using 30 minute (or slower) epoxy (like KAV9967 Epoxy 30min) offering high strength and enough time for the correct positioning.

Tools and Accessories

  • Very sharp modeller’s knife (e.g. Excel 16001 with No. 11 blades)
  • Scissors
  • Electric drill with drill bits
  • Wire cutter
  • Long nose pliers
  • Screwdrivers
  •  Razor saw
  • Sandpaper No. 80, 100, 180, 360-400
  • Needle files
  • Soldering iron and solder
  • Clothing pegs
  • Modeller’s pins
  • Epoxy mixing stick and vessel
  • Masking tape, clear sticky tape
  • Rubbing alcohol (for cleaning up excessive epoxy)
  • Paper tissue or soft cloth (for cleaning up excessive epoxy)
  • Straightedge with scale
  • Square edge
  • Thin clear plastic film (for protecting the building plan)
  • Permanent marker
  • Modeller’s sealing iron, heat gun (for covering)
  • Lightweight balsa filler

Warning!

This RC model you will build and fly is not a toy! Although it may seem to be light and slow in flight it is capable of serious bodily harm and property damage. It is your responsibility and yours alone – to build this model correctly, properly install  RCequipment  and motor and to test the model and fly in accordance with all safety standards (and common sense) as set down in Safety Codes valid in your country.
If you are just starting RC modelling, consult your local hobby shop or an experienced modeller in your local RC club to find a good instructor.

Precautions

You must build the model according to the instructions. Do not alter or modify the model, as doing so may result in an unsafe of unflyable model. Take time to build straight, true and strong. Use proper radio and other equipment that is in first class condition, properly install all the components and test their correct operation before first and any further flight. Fly the model only with competent help from a well experienced modeller if you are not already an experienced RC pilot.
Note: We, as the kit manufacturer, can provide you with a top quality kit and instructions, but ultimately the quality and flyability of your finished model depends on how you build it; therefore we cannot in any way guarantee the performance of your completed model, and no representations are expressed or implied as to the performance or safety of your completed model.

MODEL ASSEMBLY

Tail Surfaces

Everything has been designed extremely light; yet strong enough. The tail feathers are removable for easy transport/storage.

  • Trial fit the parts of the horizontal stabilizer, elevator, fin and rudder – no glue yet! Sand as necessary to obtain perfect fit. (Fig. 1)
  • Please note the opening for the fin fixing plate R10 is slightly offset to the left in R13, T4 and T8 parts. You can turn the parts upside down having  the opening offset to the right; but whatever you choose, the offset of all three parts HAS TO MATCH.
  • Tack glue the plastic tubes R9 into the fin with a few drops of CA.
  • Roughen the surface of the 3×0.5mm R12 carbon spar using No. 150 sandpaper and glue it with medium CA to the trailing edge of the fin. Glue the T9 reinforcement strip to the centre part of the trailing edge of the horizontal stabilizer in the same way.
  • Glue together all the balsa parts using medium CA or aliphatic resin.
  • Glue the fin root rib R13 (1.2 mm plywood); do not forget the opening for the R10 fin fixing plate is supposed to be offset to the left. Use the R11 carbon rods inserted into the R9 tubes as alignment pins for the R13 root rib. Double check the root rib was straight and square to the fin. Take care the R11 were not glued in to the fin in this step. (Fig. 2)
  • Put the tail surfaces aside for now; they will be finished after the tailplane seat is installed to the tail boom.

Fuselage (Glider Version)

  • Trial fit the parts of the fuselage– no glue yet! Sand as necessary to obtain perfect fit (Fig. 3)
  • Glue the liteply reinforcement plates F3 and F5L to the inner side of the F17L fuselage side (with the large opening for the F16 hatch); glue the plates F3 and F5R to the inner side of the F17R fuselage side (without the hatch opening). (Fig. 4)
  • Glue the F6 locking plate to the front of the F16 hatch; the locking plate has to match the position of a notch in the F5L reinforcement plate and the hatch matched the opening in the F17L fuselage side. The pair of F21 magnets will be epoxied into the F16 hatch and F5L plate only after the fuselage is covered – otherwise the high temperature of your sealing iron might de-magnetize the magnets. (Fig. 14)
  • Epoxy together the tail boom holder consisting of the liteply part F13 and plywood parts F10 and F14. Attach the F9 wing bolt plate with the M5 aluminium captive nut epoxied in place. Insert the entire assembly of the tail boom holder between the fuselage sides. Now you can start gluing the fuselage from the rear to the nose. (Fig. 6)
  • Glue together the nose part of the fuselage; do not forget bevelling the edges of the fuselage formers and F18 and F19 liteply braces as required. (Fig. 9)
  • Epoxy the F9 wing bolt plate and the tail boom holder assembly in place.
  • Bevel the F1 nose blocks and glue in place.
  • Partially cut (ca 1 mm deep) and crack the fuselage sides along the front edge of the F2 fuselage former and glue them to the F1 blocks (the cut line is to be soaked with thin CA before the final sanding).
  • Epoxy the tow hook plate F15 in place. Glue the F20 carbon ballast tube into the holes in F7 and F8 formers. (Fig. 10)
  • Glue the upper and lower 2.5 mm balsa sheeting to the fuselage. Slide the tail boom tube F22 onto the tail boom holder – do not glue yet. Fit and glue the balsa fairing plates F11 and F12 in place. Carefully match all the parts so the tail boom had a tight fit  but remained still easily detachable. (Fig. 11) (Fig. 12)
  • Sand the entire front part of fuselage; take care all the parts including the F11/F12 fairing created a smooth transition between the fuselage and the tail boom. (Fig. 14)
  • Insert the R11 carbon rods into the pre-drilled holes in the tail boom; glue them in place. The bottom ends or the rods should stick out by 1-2 mm from the tail boom (the upper side of the tail boom is slightly flattened in order to accommodate the tailplane seat). Slide the T8 tailplane seat onto the R11 rods and epoxy it to the tail boom square to the rods. (Fig. 15)
  • Epoxy the M3 aluminium captive nut R16 to the pre-drilled hole in the right side of the tail boom.

Fuselage (Electric Version)

  • The building sequence of the electric version fuselage is basically the same as with the glider version except for the firewall, nose and servo tray; also the F20 ballast tube is not to be used.
  • Instead of liteply F3 reinforcement plates, glue the balsa triangular sticks E4 along the edges of fuselage sides F17L and F17R. (Fig. 5) (Fig 7) ◊ Epoxy the E3 servo tray behind the F7 fuselage former.
  • Epoxy the firewall E2 in place. Before you epoxy the firewall in, make sure the openings and holes in the firewall match your motor – make any changes as necessary or cut a new firewall to match your motor perfectly.
  • Once the bottom and upper sheeting is in place cut the fuselage sides flush with the front edge of the E2 firewall. Temporarily install your motor and use the spinner as a jig to align the E1 plywood ring; once satisfied, epoxy it in place. Sand the nose to the desired shape matching your spinner. (Fig. 9) (Fig. 10)

Tail Surfaces – continued

  • Insert the R10 fibreglass fin fixing plate into the opening in the fin. Do not glue yet! (Fig. 16)
  • Slide the horizontal stabilizer and fin onto the R11 carbon rods. Screw in the M3 nylon bolt through the hole in the tail boom, R10 plate into the F16 nut. Align the R10 late flush with the left side of the fin. Push the fin to the stabilizer and fuselage and tack glue the R10 plate to the fin with a couple of CA drops. (Fig. 17) (Fig. 18)
  • Remove the fin, cyano the R10 plate thoroughly to the fin; fill the recess on the right side using the R14 1.5 mm balsa filler. Sand the entire fin smooth. (Fig. 19)
  • The rudder and elevator horns R16 and T10 as well as the R8 skid will be glued in later, after the tail surfaces are covered.

Wing
Wing Centre Section

  • Epoxy together the wing central ribs W3 and W4; insert 3 mm beech dowels into the holes in order to obtain correct match. Note: Make a left and right pair of ribs. (Fig. 20)
  • Epoxy the W10 wing fixing bolt plate between the central ribs. (Fig. 21)
  • Epoxy together the parts of the W13 main spar shear webbing; the short 0.8 mm ply W11 joiner (with a hole in the centre) to the front side, the  W12 long joiner to the rear side. (Fig. 22) (Fig. 23)
  • Make bays for P32 wing carbon joiners; epoxy together the W14 front (shorter) 0.8 mm ply plate, 5 mm ply central plate W15 and rear 0.8 mm ply (longer, slanted edge) W16 plate. Prevent the epoxy hardening inside the bays – put the parts together with the P32 carbon joiner inserted, then immediately remove the joiner (do not forget cleaning the joiner using a paper tissue and rubbing alcohol before the glue sets). (Fig. 24)
  • Slide all ribs onto the mains spar shear webbing (no glue yet!). Bind the joiner bays with the provided Kevlar thread and soak with medium CA. (Fig. 25) (Fig. 26)
  • Insert the W27 rear spar, trial fit the W30 leading and W17 trailing edges. Sand to fit if necessary. Once satisfied with the fit, glue all the parts of the wing centre section with medium cyano over the building plan protected with a sheet of thin clear plastic film (you might find better gluing ribs to the W13 main spar shear webbing with an aliphatic resin).
  • Edge glue together the W24 upper D-box sheeting (1.5 mm balsa) and the W26 upper 8×2 mm spruce stick main spar; once cured glue it to the wing using aliphatic resin. Use a hardwood stick positioned along the leading edge to push the balsa sheeting straight and even to the W30 leading edge.
  • Glue the W26 lower 8×2 mm spruce stick main spar in place.
  • Bevel both two R5 end ribs of the wing centre section using the supplied 7° dihedral jig. Then glue the W6 3 mm liteply end ribs. You might find easier doing it later; with the P32 joiners inserted and finished wing outer panels attached.
  • Glue the W21 airbrake frame to the upper side of the wing; insert and glue the airbrake bay reinforcement plate W20 (balsa 1.5 mm) into W5, W7 and W8 ribs. Cyano the W34 fibreglass bushings for the airbrake torsion bar onto W3/W4 and W7 ribs. Insert the 3 mm carbon torsion bar W37 into the bushings. Do not forget to slide the W36 control horn in the centre. Do not glue yet! The control horn and airbrake levers are to be glued in place once the wing is covered and the servo and airbrakes fitter (refer to Det. C).
  • Glue the W29 magnet holders to the bottom side of W21 airbrake frames. The pairs of W33 magnets will be epoxied into the holders W29 and airbrakes W22 and W23 only after the wing is covered.
  • Glue the 1.5 mm balsa W28 upper centre sheeting (supplied in 2 pieces) and the bottom W19 sheeting in place over the W3 ribs.
  • Do not glue the W25 airbrake servo hatch; it will remain removable for easy access to the servo. You can secure it using e.g. small wood screw (not supplied in the kit) to the 5 mm plywood holders W32. Do not forget to cut the opening for the wing fixing bolt into the balsa sheeting.
  • Epoxy the W1 central riblet with the wing alignment pin sandwiched between two W2 riblets in place. Glue the 1.5 mm front bottom sheeting W18 between the W3/W4 ribs.
  • ◊ Sand to fit and glue the 2.5 mm balsa gussets W38 in place. (Fig. 27-31) ◊ Fine sand the entire wing centre section (incl. the airbrake).

Wing Outer Panels (Fig. 32-36)

  •  The wing outer panels are to be constructed in the same manner as thewing centre section; the main difference is that the inner part and theouter winglet are built as one part on a flat surface. Once the structure isfinished, you will cut it between the end/root ribs; then bevel to obtainthe correct dihedral and glue together.
  • Glue together both two wing outer panels over the building plan protected with a sheet of thin clear plastic film (remember – you are buildingleft and right wing panels!). Please note the inner spars are made of spruce sticks P33 resp. P23, whilst the winglet spars are made of balsa sticks(P34 and P31).
  • Glue the top D-box sheeting P27 and P28 in the same manner as thewing centre sheeting W24.
  • Sand the wing tip flat, glue the P17 winglet fairing in place and bevel itto the required 35°angle. Insert the P29 plywood joiner and sand the P18wing tip to fit. Once satisfied glue the joiner and wing tip in place.
  • Sand to fit and glue the 2.5 mm balsa gussets P33 and the P34 diagonalbraces made of 5×3 mm spruce stick in place.
  • Cut off the outer winglets between the end ribs P10 and P11; bevel theP11 ribs using the supplied 7° dihedral jig. Epoxy the wing panels andwinglets together.
  • Bevel the P2 root ribs of the wing outer panels using the supplied 7° dihedral jig. Trial fit the P32 carbon wing joiner into the respective bays;there should be a tight fit, no play. If there is a significant play, put someepoxy to appropriate area of the joiner and sand as necessary once theglue hardens.
  • Glue the 3 mm liteply P1 root ribs with 3 mm beech alignment pins P30in place. ◊ Fine sand the entire wing outer panels.

Covering

  • Thoroughly sand the surface of all parts with No. 360-400 sandpaper and carefully vacuum all the dust (the iron-on film does not stick well to a dusty surface; the dust also contains hard grains released off the sandpaper capable to ruin the smooth coating
    of your sealing iron quickly).

  • Use as light iron-on film as you can get (transparent Oracover, Oralite etc.
    – not supplied in the kit). Follow the instruction manual supplied with the covering film of your choice please.

Hinging the Control Surfaces

  • Use strips of a high quality hinging tape (available in hobby shops) or strips of the same iron-on film you used for the covering. Remember to apply the tape with the control surface deflected to the limit in order to get free movement of the particular control surface.

Pushrod Installation

  • Tack glue the pushrod tubes to the 1.5 mm balsa pushrod tube holder with three plywood formers supplied in the kit. Do not shorten the tubes yet – they will have to go all the way into the front part of the fuselage. (Fig. 37)
  • The elevator push rod tube goes all the way through the tail boom tube; carefully drill and cut the exit opening for the rudder push rod tube in the tail boom. (Fig. 38)
  • Insert the balsa holder with push rod tubes into the tail boom; align with the front part of the fuselage. Once satisfied tack glue the holder to the tail boom tube.

Tail Boom Installation

  • Attach the wing centre section to the fuselage and secure with the M5 nylon bolt. Attach and secure the tail surfaces to the tail boom with the push rod tubes installed in their holder (the holder prevents the tubes from getting loose and keeps any unwanted play in the elevator and rudder linkage next to zero). Slide the tail boom onto the holder on the fuselage front part. Thread the push rod tubes through the holes in F10, F8 and F7 formers.
  • Check that the fuselage is straight looking from above; align the wing and the horizontal tailplane with their trailing edges parallel. Once satisfied use 30min epoxy to secure the tail boom in place. Double check the correct alignment of the wing, fuselage and tailplane before the glue hardens.

Servo Installation
Rudder and Elevator Servos Installation

  • The rudder and elevator servos are to be installed into their servo tray F23 under the F16 hatch (glider) or into the E3 servo tray under the wing (electric version). Cyano the push rod tubes into the fuselage formers; you can use the supplied fibreglass pushrod holders (Bag 1) to secure the ends of the tubes.
  • Solder the M2 brass threaded couplers to one end of the piano wire pushrods and attach the M2 ball links.
  • Alternatively you can use a closed loop of a Kevlar thread (not supplied in the kit) to hook the rudder – it might save some weight. In that case you will need to install just one pushrod for the elevator.
  • Fit the tail surfaces to the fuselage; insert the control horns into the rudder and elevator – do not glue yet. Set the servos in neutral position with your radio on and mark the correct length of the push rod wires. Make a “Z“ bend on the end of the pushrod and fit it to the rudder and elevator horns. Check once again and only then cyano the control horns in place. Do not forget to glue the end of the elevator push rod tube to the fuselage.

Spoiler Servo Installation

  • The spoiler servo is to be installed using a strip of double sided foam tape (not supplied in the kit) to the W28 balsa sheeting. First, apply thinned epoxy or thin cyano to the inner surface of the W28 sheeting in order to be sure the double sided foam tape will stick. Reinforce the inner surface of the W22 and W23 airbrakes in the same manner.
  • Epoxy the W33 magnets into the holes in W22 and W23 airbrakes and W29 holders on the airbrake frames. Please check the polarity of magnets first – they must attract each other. (Fig. 30) (Fig. 31)
  • Refer to the Det. C on the building plan during the final airbrake servo installation. Link the servo horn and the W36 torsion bar lever with two ball links joined together with an M2 threaded rod (saw off the head of the supplied M2x10 mm screw).
  • Once you check the servo can move freely within the required range, cya- no the W36 lever to the W37 carbon torsion bar. (Fig. 39)
  • With your radio on, set the airbrake servo to the “airbrake fully extended” position. One at a time, set the W22 and W23 airbrakes in the fully extended position (-24 mm), push the corresponding lever W35 to the airbrake and secure with a small drop of cyano to the W37 torsion bar. Take care the position of both two airbrakes was exactly the same! Once satisfied, secure the joints of W35 and W36 levers with the W37 torsion bar using a sparse amount of epoxy.
  • Finally, cut an opening into the W25 hatch to allow free movement of the airbrake servo arm (if necessary) and secure it to the W32 holders. (Fig. 40)

Wing Root Ribs

  • Glue the pairs of W31 magnets using 5min epoxy into the openings in W6 and P1 ribs. Please check the polarity of magnets first – they must attract each other.

Towhook (Glider)

  • Install the towhook to the pre-drilled holes in the F15 plate.
  • Keep the recommender CG position 78 – 82 mm behind the wing leading edge.
  • Set the towhook 10 mm in front the CG for the first flight.
  • You have to loose the front screw in order to move the towhook.

Power System Installation (Electric Version)

  • Fit your motor using appropriate screws to the firewall; secure the ESC and power pack using Velcro tape into the cockpit. With your RC set on test whether the motor rotates in the correct direction (counter clockwise when looking from the front) If it not the case, change the setting of your ESC or swap any two of the three cables between the motor and ESC. Fit 30 mm spinner with blades corresponding to your motor and battery set-up.

Recommended Control Surface Throw, CG Position

  • CG Position: 78-82 mm
  • Rudder: ±60 mm
  • Elevator: ±10 mm
  • Spoiler: -24 mm
  • Brake->Elevator mix: -2 mm elevator at full airbrake

FLYING

Be sure you are using fully charged batteries. Now (and before any furtherflight again) check correct function of whole radio equipment, motor andmoving of control surfaces. Be sure any part of flight equipment cannotmove during flight. We strongly recommend making a range check (seeyour radio instruction manual for details).
The first flight: Wait for a calm day. Fly only on a safe site as a RC club flyingfield. Glider will be very happy on your favourite slope on a calm day. Thevery light lift will allow perfect fine trimming out.
Glider: Switch your transmitter and then the receiver on and check all the working systems one more. Facing INTO the wind hold your transmitter in one hand; grip the model in the other hand near the centre of gravity. Hold it at head level and give the model a fairly powerful push exactly into wind;wings level, nose slightly down. Your model should now glide in a long, flat and straight path without needing any help from you. Use the controls gently if necessary, and adjust the trim tabs until your MIRAI glides above
described way. Now check the position of control surfaces; set length of pushrods to bring back trim tabs on your transmitter to central position if necessary (we strongly recommend doing it in any way). Check again gliding of your MIRAI.
Now you are ready to make your first bungee launch. Always use a bungeeset appropriate to the size (100-150 m) and weight of your model!
Electric version: Switch your transmitter and then the receiver on and check all the working systems once again. Launch your MIRAI with throttle fully open INTO the wind. During climbing be gentle on the controls; try to keep the model flying into the wind until you have about 100-150 metres of altitude. Climb slowly – too steep climbing may cause the model will stall and fall to the ground. You are at 150 metres – this is time to trim out our MIRAI at full power. After everything is OK – it means the model at approx. 50-60% of full throttle flies straight without turning, descending or ascending (if your MIRAI already tends to ascend you will have to increase motor down thrust), turn the motor off and test MIRAI’s gliding characteristics.
Keep your MIRAI into the wind and observe its flight. If turns without power right (although under power it kept the straight direction) it will be necessary to increase  motor right side thrust and vice versa.
If descends too much without power (although under power it kept the level flight) you will have to increase motor down thrust (assuming the centre of gravity is correct! – check it after landing).
Final Fine Tuning: During next flights trim out your MIRAI to find optimal setting – safe climbing and good gliding – it is a compromise, of course. You might find useful programming a spoiler->elevator mix (if your radio allows) that will eliminate the nose pitching when the spoiler is deployed. In general the CG position should be located between 78-82 mm behind the wing leading edge. By moving the CG back you get better gliding performance whilst reducing the stability. It makes your model more sensitive on controls and increases the model reaction on thermal.  The back CG position makes the model more difficult to fly and requires more attention from you, while a nose heavy model is easier to fly but you will lack the performance. We recommend starting with the CG at 78 mm behind the leading edge. Beyond 82 mm the increasing lack of stability prevails over the gain of gliding performance.
On windy days, you can improve the penetration of the glider version putting additional ballast into the F20 ballast tube.
Enjoy your new MIRAI, have a ball!

Parts List

Parts list Qty Building Plan No. Material
Building Plan 1:1 1
Instruction Manual 1
Sheet of Stickers 1
Pushrod Set 2 plastic tube+0.8 mm piano wire
Tail Boom 1 F22 carbon tube Ø18×10 mm
Pushrod Holder + Formers 1+1 balsa 1.5 mm + 0.8 mm plywood
Bag No. 1 – small parts
Adjustable Towhook w. M3 Socket Screw 1 fibreglass + metal
Neodymium Magnet 3×3 mm 6 F21, W33
Neodymium Magnet 10×3 mm 4 W31
Wing Bolt M5 1 M5 nylon
Captive Nut M5 1 M5 aluminium
Rudder Horn 2 R15, T10 fibreglass1,5 mm
Wing Outer Panel Alignment Pin 4 P30 beech dowel Ø 3 mm
Fuselage Corner Radius Template 1 liteply 3 mm
Nose Shape Template 1 liteply 3 mm
Dihedral Jig 7 deg 1 liteply 3 mm
Airbrake Magnet Holder 200.00% liteply 3 mm
Fuselage Hatch Lock 100.00% F6
Kevlar Thread 100.00%
Carbon Rod 2 R11 carbon rod Ø2 mm
Rudder and Elevator Servo Tray 1 F23
Airbrake Lever Set 1 W34+W35+W36 fibreglass plate 1.5 mm
Push Rod Tube Holder 1 fibreglass plate 1.5 mm
Ball Link Short M2 4
Threaded Coupler M2 2 brass M2/0,8 mm
Airbrake Link Bolt M2 1 M2x10 mm machine screw
Captive Nut M3 1 R16 M3 aluminium
Nylon Bolt M3 1
Tail Skid 1 R8 balsa 3 mm

Bag No. 2
Nose Block| 2| F1| balsa 10 mm
Towhook Plate| 1| F15| plywood 1.5 mm
Wing Bolt Plate| 1| F9| plywood 3 mm
Fuselage Former| 1| F7| plywood 3 mm
Fuselage Former| 1+1+1| F2, F8, F9| liteply 3 mm
Horizontal Tail Boom Holder| 1| F13| liteply 3 mm
Vertical Tail Boom Holder| 1| F14| plywood 3 mm
Fuselage Cross-brace| 3| F18, F19| liteply 3 mm
Bag No. 3
Wing Rib| 2| W3| liteply 3 mm
Wing Rib| 4| W6, P1| liteply 3 mm
Wing Rib| 2| W4| plywood 0.8 mm
Main Spar Shear Webbing Joiner Short| 1| W11| plywood 0.8 mm
Main Spar Shear Webbing Joiner Long| 1| W12| plywood 0.8 mm
Wing Joiner Bay Plate| 2+2+2+2| W14, W16, P25, P26| plywood 0.8 mm
Riblet w. Wing Alignment Pin| 1| W1| plywood 3 mm
Riblet| 2| W2| plywood 0.8 mm
Wing Bolt Plate| 1| W10| plywood 2 mm
Wing Joiner Bay| 2+2| W15, P22| plywood 5 mm
Wing Centre Sheeting| 1+1+1+1| 18, W19, W28a, W28b,| balsa 1.5 mm
Airbrake Bay Reinforcement plate| 2| W20| balsa 1.5 mm
Airbrake Servo Hatch| 1| W25| plywood 1.2 mm
Winglet Joiner| 2| P29| plywood 1.5 mm
Airbrake Servo Hatch Holder| 2| W32| plywood 5 mm
Wing Joiner 2ks| 2| P32| carbon
Bag No. 4 – Tail
Horizontal Stabilizer| 1| T1| balsa 3 mm
Elevator| 1| T2| balsa 3 mm
Horizontal Stabilizer Tip| 2| T3| balsa 3 mm
Fin| 1| R1| balsa 3 mm
Rudder| 1| R6| balsa 3 mm
Rudder Tip| 1| R5| balsa 3 mm
Horizontal Stabilizer Ribs| 2+2+2| T5, T6, T7| balsa 3 mm
Horizontal Stabilizer Centre Rib| 1| T4| balsa 3 mm
Fin Ribs| 1+1+1| R2, R3, R4| balsa 3 mm
Rudder Reinforcement| 1| R7| balsa 3 mm
Carbon Fin Reinforcement| 1| R12| carbon 0.5×3 mm
Carbon Horizontal Stabilizer Reinforcement| 1| T9| carbon 0.5×3 mm
Plastic Tube| 2| R9| plastic tube Ø3 mm
Horizontal Stabilizer Seat| 1| T8| liteply 2 mm
Fin Root Rib| 1| R13| plywood 1,2 mm
Fin Fixing Plate| 1| R10| fibreglass 1.5 mm
Balsa Filler| 1| R14| balsa 1,5 mm
Bag No. 5 (electric version)
Firewall| 1| E2| plywood 3 mm
Balsa Triangle Stock| 4| E4| balsa 8×8 mm
Spinner Ring| 1| E1| plywood 1.2 mm
Servo Tray Electric| 1| E3| liteply 3 mm
Battery Tray| 1| E5| balsa 5 mm
Fuselage Cross-brace| 3| F18, F19| liteply 3 mm
Bag No. 6
Wing Centre Section Rib| 6| W7| balsa 1.5 mm
Wing Centre Section Rib| 2| W8| balsa 1.5 mm
Wing Centre Section Rib| 4| W9| balsa 1.5 mm
Wing Outer Panel Rib Set| 2 each| P3-P9, P12-P15| balsa 1.5 mm
Wing Outer Panel Root Rib| 2| P2| balsa 5 mm
Wing Outer Panel End/Winglet Root Rib| 2+2| P10, P11| balsa 5 mm
Winglet End Rib| 2| P16| balsa 5 mm
Wing Centre Section Trailing Edge| 1| W17| balsa 5 x 20 mm
Wing Outer Panel Trailing Edge| 1+1| P24R/L| balsa 5 x 20 mm
Leading Edge 1+2ks| 1+1+1| W30, P20| balsa 5 x5 mm
Wing Centre Section D-box Sheeting| 1| W24| balsa 1.5 mm
Wing Outer Panel D-box Sheeting| 2| P27+P28| balsa 1.5 mm
Wing Centre Section Main Spar| 2| W26| spruce 2x8x690 mm
Wing Centre Section Rear Spar| 1| W27| spruce 3x6x690 mm
Wing Centre Section Main Spar Shear Webbing| 1+1| W13| balsa 5 mm
Wing Outer Panel Main Spar Shear Webbing| 2| P21| balsa 5 mm
Wing Outer Panel Main Spar| 4| P33| spruce 2x8x380 mm
Wing Outer Panel Rear Spar| 2| P23| spruce 3x5x380 mm
Wing Outer Panel Main Spar (outer)| 4| P34| balsa 2x8x260 mm
Wing Outer Panel Rear Spar (outer)| 2| P31| balsa 3x5x200 mm
Wing Gusset Set| 1| W38, P33| balsa 2,5 mm
Wing Tip| 2| P18| balsa 3 mm
Wing Tip Reinforcement| 2| P19| balsa 3 mm
Winglet Fairing| 2| P17| balsa 10 mm
Airbrake| 1+1| W22, W23| balsa 2,5 mm
Airbrake Torsion Bar| 1| W37| carbon rod Ø3 mm
Wing Outer Panel Diagonal Brace| 1| P34| spruce 3x5x200 mm
Bag No. 7
Fuselage Side| 1+1| F17L/R| balsa 2 mm
Fuselage Bottom Sheeting| 1| | balsa 2.5 mm
Fuselage Upper Sheeting| 3| | balsa 2.5 mm
Tail Boom Fairing| 1+1| F11, F12| balsa 8 mm
Fuselage Side Reinforcement Plate (Front)| 2| F3| liteply 3 mm
Fuselage Side Reinforcement Plate (Rear)| 1+1| F5L/R| liteply 3 mm
Servo Hatch| 1| F16| balsa 2 mm
Ballast Tube| 1| F20| carbon tube Ø10 mm

KAVAN F3RES High Performance Thermal Glider - fig

KAVAN F3RES High Performance Thermal Glider - fig 1| KAVAN F3RES High Performance Thermal Glider - fig
4
---|---
KAVAN F3RES High Performance Thermal Glider - fig 2| KAVAN F3RES High Performance Thermal Glider -
fig5

Note: Please note the pictures are just for illustration only– some show our prototype that might differ slightly from the actual, regular series production kits.KAVAN F3RES High Performance Thermal Glider - fig
6

Made in the Czech RepublicKAVAN logo

www.kavanrc.com
info@kavanrc.com
DE, CZ: +49 8374 259 2696
EN, CZ: +420 463 358 712

PELIKAN DANIEL
Doubravice 110
533 53 Pardubice
Tel: 466 260 133
Fax: 466 260 132
e-mail: info@pelikandaniel.com
WWW.PELIKANDANIEL.Com

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals