KLINGER LUGB Vortex Flow Meter User Manual

June 9, 2024
KLINGER

LUGB Vortex Flow Meter
User Manual KLINGER logo

Vortex Flowmeter Instruction

Vortex Flowmeter is on the principle of Karman street, to measure liquid, gas and vapour even turbid liquid including micro grain and impurity.
Applications: petroleum, chemical industry, paper making, metallurgy, electric force, environmental protection, food industry and etc.

Working Principle

LUGB & LUCB Vortex flowmeter work on the principle of generatedvortex and relation between vortex and flow by theory of Karman and Strouhal, which specialize in measurement of steam, gas and liquid of lower viscosity.
As shown in below illustration, medium flows through bluff body and then vortex is generated, vortices are alternately formed on both sides with opposite directions of rotation, Vortices frequency is directly proportional to medium velocity. Through numbers of vortices that is measured by sensor head,medium velocity is calculated, plus flowmeter diameter, final volumeflow come out. KLINGER LUGB Vortex Flow Meter - fig 1

Computational formula as follows:
F=StV/md ………………………………………………..Formula 1
Q=3600
F/K ………………………………………….Formula 2
M=Q*p ………………………………………………………..Formula 3
Among Formula:

  • F Fluid flow through bluff body generate frequency of vortex ( Unit : Hz)
  • St… Strouhal constant ( zero dimension )
  • V Mean velocity of fluid inside the pipeline ( Unit : m/s)
  • m The ratio between Lune Circulation area of bluff body at both sides and cross-sectional area ( Unit: zero dimension )
  • d Upstream face width of bluff body inside vortex flowmeter ( Unit : m )
  • D Inside diameter (ID) of vortex flowmeter ( Unit : m )
  • Q Instantaneous volume flow ( Unit : m3 / h )
  • K Instrument coefficient of vortex flowmeter ( Unit : pulses / m3 )
  • M Instantaneous mass flow ( Unit : kg/ h ) Fluid density ( Unit : kg/ m3 )

Note: vortex flowmeter “K” coefficient is corresponding with one diameter, the exact “K” value should be calibrated in practice. Viz. one cubic meter fluid through sensor output numbers of pulse under working condition.

Technical Parameters

III. I Physical Parameters
Medium: liquid , gas ( including natural gas ), steam ( saturated steam and superheated steam )
Normal diameter LUGB Pipeline-version: DN10-DN500 LUCB insertion-version: DN200-DN2000
Accurate: LUGB Pipeline-version: 1.0% 1.5% (0.2% & 0.5% supply by negotiation)
LUCB insertion-version: 2.5% (1.0%&1.5% supply by negotiation)
REFERENCE FLOW RANGE AS PER BELOW DIAGRAMS.
Velocity scope of flow about intelligent digital filtering vortex flowmeter Liquid (0.30 m/s…10 m/s), Gas/steam (3.0 m/s…90 m/s)
Normal pressure:
LUGB pipeline-version wafer connection: DN10-DN500 ( priority PN2.5MPa )
LUGB pipeline-version flange connection: DN10-DN80 ( priority PN2.5MPa )
DN100-DN200 ( priority PN1.6MPa ) DN250-DN500 ( priority PN1.0MPa )
LUCB insertion-version attachment flange: DN200-DN2000 ( priority PN1.6MPa )
Note : wafer-version vortex flowmeter assemble made-to-order flanges, when flowmeter leave factory including companion flanges. We are able to provide GB/T9119-2000, ANSI/ASME, DIN. JIS. KS…. Standard flanges (GB-China standard priority), pressure class recommend priority level.
Medium temperature LUGB pipeline-version: -40°C – +160°C +420°C -40°C – +280°C-40°C – +350°C-40°C-
LUCB insertion-version:-40°C – +160°C -40°C- +200°C
Ambient conditions:
Ambient temperature: -20t-+60t(normal ); -20t- +40r(explosion-proof ) Relative humidity (RH): 5% – 95%RH
Atmospheric Pressure: 86kPa -106kPa
Electrical Interface: M20*1.5 internal thread (priority). Protection level : IP65 (IP67, IP68 supply by negotiation)
Explosion-proof class: Intrinsic safety Exia II CT4; Exib II CT4;Flame-proof Exd II CT6
Main body material: stainless steel (other material supply by negotiation) Pressure lose: AP,c.1.2 PI V2 (AP unit is Pa,P unit is kg/m3, V unit is m /s)
Calibration method : all flowmeters should be calibrated in the way of lower reaches taking pressure before flowmeters leave factory.
III. I. I
LUGB and LUCB Vortex Flowmeter configuration & size
LUGB wafer connection vortex flowmeter: special companion flanges.
LUGB flange connection vortex flowmeter: see appendix 3 & 4 flanges size of configuration. we are able to provide GB (China); ANSI; DIN; JIS and etc.
LUCB insertion-version vortex flowmeter: flanges choose DN100 standard flange
Dimensions of vortex flowmeter as per fig2 and figlKLINGER LUGB Vortex Flow
Meter - fig 2LUGB and LUCB vortex flowmeter max configuration size fig. 1 (unit: mm)

Items H1′ H1b Hi` D1 L1 HT HZ’ HT L2
DN15 525 445 355 45 65 540 460 370 170
DN20 531 451 361 58 65 545 465 375 170
DN25 531 451 361 58 65 550 470 380 250
DN32 531 451 361 58 65 563 483 393 250
DN40 529 449 359 85 70 578 498 408 250
DN50 541 461 371 99 70 590 510 420 250
DN65 558 478 388 118 70 612 532 442 250
DN80 573 493 403 132 70 625 545 455 280
DN100 595 515 425 156 70 644 564 474 300
DN125 621 541 451 184 70 674 594 504 350
DN150 647 567 477 211 70 703 623 533 350
DN200 705 625 535 266 98 757 677 587 400
DN250 757 677 587 319 114 810 730 640 450
Dn300 808 728 638 370 130 860 780 690 500

P.LUCB Insertion-Vortex Flowmeter ‘s Connection between amplifier and sensor
1.stop medium flow to dismantle
2.keep medium flow to dismantle
Q.The mode of wave filtering
1.common mode
2.Intelligent Digital filtering mode
R.LUCB Insertion-version Vortex flanges pressure class
1.PN1.6Mpa ( priority)
2.PN2.5MPa (pressure class >2.5 MPa supply by negotiation)
Attention: integrated P/T compensation Compact vortex apply in steam measurement, if designing drainage receiver configuration.Then Horizontal Installation is required. If vertical installation or leaning installation condensing drainage loop receiver is required.
Notes : each functions see appendix one.
III. I . II
LUGB pipeline-version vortex flowmeter measurable flow range (refer to Fig2-5)
Notes : when choose vortex flowmeter that keep medium flow with dismountable sensor head or vortex flowmeter with accuracy is ±0.5%, the lower limit of flow range is 1.5 times of corresponding value from fig 2-4, upper limit multiplied by 0.8 LUGB vortex flowmeter measurable liquid of different density corresponding with flow range under working condition fig. 2

Liquid flow range

Density,(kg/m”)| 500| 600| 700| 800| 900| 1000| 1200| 1400| 1600| 1800| Qmax
DW| Different density liquid, the mini flow ate Qmin(Unit:m3/h)| Unit:r0h)
DN15| 0.66| 0.55| 0.52| 0.41| 0.4| 0.39| 0.33| 0.31| 0.29| 0.26| 4.5
DN20| 1.27| 1.1| 1.08| 0.99| 0.88| 0.66| 0.64| 0.62| 0.59| 0.57| 8
DN25| 1.43| 1.32| 1.21| 1.16| 1.1| 0.99| 0.9| 0.84| 0.78| 0.75| 12
DN32| 2.09| 1.98| 1.87| 1.78| 1.72| 1.65| 1.6| 1.49| 1.32| 1.1| 20
DN40| 3.85| 3.52| 3.3| 3.08| 2.86| 2.51| 2.42| 2.31| 2.2| 2.09| 32
DN50| 5.17| 4.73| 4.29| 4.07| 3.96| 3.85| 3.3| 3.08| 2.86| 2.75| 50
DN65| 7.81| 7.15| 6.93| 6.82| 6.71| 6.6| 5.5| 4.95| 4.62| 4.4| 84
DN80| 12.1| 11| 10.56| 10.12| 10.01| 9.9| 8.8| 8.36| 7.7| 6.6| 127
DN100| 22| 19.8| 18.7| 17.6| 16.5| 15.4| 14.3| 13.2| 11| 9.9| 198
DN125| 30.8| 28.6| 27.5| 26.4| 25.3| 24.2| 23.1| 22| 19.8| 15.4| 310
DN150| 57.2| 55| 49.5| 46.2| 39.6| 35.2| 33| 30.8| 28.6| 22| 445
DN200| 108.9| 96.8| 85.8| 77| 68.2| 62.7| 58.3| 55| 47.3| 38.5| 791
DN250| 202.4| 181.5| 165| 143| 121| 97.9| 88| 79.2| 74.8| 60.5| 1237
DN300| 275| 242| 220| 198| 176| 140.8| 132| 121| 107.8| 84.7| 1780

LUGB Vortex flowmeter measure gas of different density corresponding with flow range under standard condition fig.3

gas flow range

Density(kg/m’)| 0.5| 0.8| 1.2| 2.4| 3.6| 4.8| 6| 7.2| 8.4| 9.6| 12| 20| Omax
DW| Different density liquid, the mini flow rate Omin(Unit:m1/h)| (Unit:m’Iti)
Dn15| 5.28| 3.85| 3.52| 3.08| 2.97| 2.86| 2.75| 2.64| 2.53| 2.42| 2.31| 2.2| 38
DN20| 9.02| 7.26| 5.5| 5.28| 5.17| 4.95| 4.73| 4.4| 4.29| 4.18| 4.07| 3.3| 67
DN25| 11| 9.9| 8.69| 8.36| 7.92| 7.59| 7.26| 6.82| 6.49| 5.94| 5.5| 4.95| 100
DN32| 28.6| 19.8| 15.4| 14.52| 14.08| 13.42| 13.2| 12.87| 12.32| 11.99| 11.11| 9.9| 170
DN40| 41.8| 27.5| 22| 20.9| 19.8| 18.7| 17.6| 16.5| 15.4| 14.3| 13.2| 11| 300
DN50| 52.8| 44| 34.1| 31.9| 30.8| 28.6| 25.3| 24.2| 23.1| 22| 19.8| 13.2| 500
DN65| 88| 72.6| 58.3| 49.5| 48.4| 46.2| 44| 41.8| 38.5| 33| 28.6| 19.8| 780
DN80| 143| 110| 88| 83.6| 77| 72.6| 68.2| 63.8| 55| 50.6| 41.8| 30.8| 1200
DN100| 198| 176| 132| 121| 110| 99| 88| 77| 68.2| 61.6| 52.8| 38.5| 2000
DN125| 308| 275| 209| 187| 171.6| 159.5| 148.5| 132| 110| 99| 83.6| 60.5| 2900
DN150| 418| 341| 308| 286| 264| 242| 220| 198| 176| 154| 121| 93.5| 4100
DN200| 880| 660| 550| 528| 473| 440| 418| 396| 363| 330| 297| 220| 7500
ON250| 1100| 968| 869| 803| 748| 682| 649| 572| 528| 462| 440| 330| 12500
Dn300| 1430| 1309| 1254| 1166| 1078| 990| 902| 836| 770| 682| 638| 440| 16500

Conversion formula o gas volume flow under working condition & volume flow under standard condition:
Q (Ambient) =0 (Standard) P (Standard) Z” (273.15+T (Ambient) ) / (P (Ambient) +P (Ambient) )* (273.15+T (Standard))]—FORMULA 4
Among formula :
Q (Ambient) — volume flow under working condition ( unit: m3/h)
(Ambient) — gas pressure under working condition ( unit: Mpa) T (Ambient) — gas temperature under working condition ( unit: “C ) Z gas relative compressibility Z=Zs /ZN (zero dimension)
(Standard) — volume flow under standard condition (unit: m3/h )
(Standard) — Atm press under standard condition (take absolute pressure =0.101325 MPa)
T (Standard) — temperature under standard condition ( 0°C or 20°C )
(Local) — local Atm press ( unit: Mpa )
LUGB Vortex flowmeter measure saturated steam of different density corresponding with flow range under working condition fig.4

Mpa 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 1.2 1.6 2 Unit
°C 120 134 144 152 159 165 175 180 184 192 204 215
Kg rn’ 1.12 1.67 2.19 2.68 3.18 3.67 4.62 5.16 5.63 6.67 8.52

10.57
DW| Range| Different steam density corresponding with flow range
mm
15| Omin| 3.85| 5.67| 7.41| 9.12| 11| 12.54| 15.95| 17.93| 19.36| 22.55| 29.37| 36.19| kg/h
Qmax| 35| 51.5| 67.4| 83| 100| 115| 146| 163| 176| 205| 268| 329
20| Omin| 6.84| 10.07| 13.09| 16.17| 19.58| 22.44| 28.49| 32.01| 34.43| 40.04| 52.25| 64.35
Qmax| 62.2| 91.6| 120| 147| 178| 204| 259| 291| 313| 365| 476| 586
25| Omin| 10.68| 15.73| 20.46| 25.3| 30.69| 34.98| 44.55| 49.94| 53.79| 62.59| 81.73| 100.54
Qmax| 97.1| 143| 187| 230| 279| 318| 405| 454| 489| 569| 743| 914
32| Omin| 17.49| 25.63| 33.66| 41.47| 50.27| 57.42| 72.93| 81.95| 88.11| 102.62| 133.1| 163.9
Qmax| 159| 234| 306| 378| 457| 522| 664| 745| 802| 933| 1218| 1499
40| Omin| 25.3| 36.3| 47.3| 58.3| 70.4| 80.3| 102.3| 110| 121| 143| 187| 231
Qmax| 300| 440| 575| 710| 860| 980| 1250| 1400| 1500| 1750| 2280| 2810
50| Omin| 38.5| 38.5| 57.2| 69.3| 83.6| 96.8| 122.1| 137.5| 143| 165| 220| 275
()max| 550| 460| 680| 845| 1020| 1170| 1480| 1670| 1800| 2100| 2730| 3360
65| Omin| 64.9| 95.7| 125.4| 150.7| 182.6| 209| 264| 303.6| 326.7| 379.5| 495| 605
Qmax| 790| 1160| 1520| 1835| 2222| 2540| 3230| 3620| 3970| 4620| 6030| 7422
80| Omin| 98.45| 144.1| 189.2| 233.2| 282.7| 319| 407| 451| 495| 572| 748| 924
Qmax| 1195| 1760| 2300| 2800| 3400| 3900| 4900| 5580| 6000| 6999| 9100| 11000
100| Omin| 0.15| 0.22| 0.3| 0.36| 0.44| 0.51| 0.64| 0.72| 0.77| 0.9| 1.1| 1.43| t/h
()max| 1.87| 2.75| 3.6| 4.43| 5.36| 6.12| 7.78| 8.73| 9.4| 11| 14.3| 17.6
125| Omin| 0.24| 0.35| 0.46| 0.56| 0.68| 0.78| 1| 1.1| 1.21| 1.41| 1.84| 2.2
Qmax| 2.91| 4.29| 5.62| 6.91| 8.37| 9.56| 12| 13.6| 14.7| 17| 22.3| 27.4
150| Omin| 0.35| 0.51| 0.66| 0.81| 0.99| 1.13| 1.44| 1.62| 1.74| 2.02| 2.64| 3.26
Qmax| 4.2| 6.18| 8.09| 9.96| 12| 13.8| 17.5| 19.6| 21.1| 24.6| 32.1| 39.5
200| Omin| 0.62| 0.9| 1.19| 1.45| 1.76| 2.01| 2.56| 2.87| 3.09| 3.61| 4.71| 5.8
Qmax| 7.5| 11| 14.4| 17.7| 21.4| 24.5| 31.1| 35| 37.6| 43.7| 57.1| 70.3
250| Omin| 0.96| 1.41| 1.85| 2.2| 2.76| 3.16| 4| 4.5| 4.84| 5.61| 7.36| 9.02
Qmax| 11.6| 17| 22| 27.6| 33| 38| 48| 54| 58.7| 68| 89| 110
300| Omin| 1.38| 2.04| 2.66| 3.28| 3.97| 4.54| 5.78| 6.48| 6.97| 8.12| 10.56| 12.98
Qmax| 16.7| 24.7| 32| 39| 48| 55| 70| 78| 84| 98| 128| 158

Superheated Steam fig.5 (unit : kg/m3 )

ITEM| 130°C| 140°C| 150°C| 160°C| 170°C| 180°C| 190°C| 210°C| 220°C| 250°C| 300°C| 360°C| 420°C
---|---|---|---|---|---|---|---|---|---|---|---|---|---
0.10MPa| 1.1| 1.07| 1.04| 1.02| 0.99| 0.97| 0.95| 0.91| 0.89| 0.83| 0.76| 0.69| 0.63
0.15MPa| 1.38| 1.34| 1.34| 1.28| 1.24| 1.21| 1.19| 1.13| 1.11| 1.04| 0.95| 0.86| 0.78
0.26MPa| | 1.96| 1.9| 1.85| 1.81| 1.76| 1.72| 1.64| 1.61| 1.51| 1.37| 1.24| 1.13
0.30MPa| | | 2.12| 2.067| 2.01| 1.96| 1.92| 1.83| 1.79| 1.68| 1.53| 1.38| 1.26
0.36MPa| | | 2.46| 2.39| 2.33| 2.27| 2.21| 2.11| 2.06| 1.94| 1.76| 1.59| 1.45
0.40MPa| | | | 2.61| 2.54| 2.47| 2.41| 2.3| 2.25| 2.11| 1.91| 1.73| 1.57
0.50MPa| | | | 3.16| 3.07| 2.99| 2.91| 2.77| 2.71| 2.54| 2.3| 2.07| 1.89
0.60MPa| | | | | 3.61| 3.51| 3.42| 3.25| 3.18| 2.97| 2.69| 2.42| 2.21
0.70MPa| | | | | | 4.05| 3.94| 3.74| 3.65| 3.41| 3.09| 2.78| 2.53
0.80MPa| | | | | | 4.59| 4.46| 4.23| 4.13| 3.85| 3.48| 3.13| 2.84
0.90MPa| | | | | | 5.15| 4.99| 4.73| 4.61| 4.3| 3.88| 3.48| 3.16
1.00MPa| | | | | | | 5.54| 5.23| 5.09| 4.75| 4.28| 3.84| 3.48
1.15MPa| | | | | | | 6.37| 6| 5.84| 5.43| 4.88| 4.37| 3.97
1.50MPa| | | | | | | | 7.87| 7.64| 7.05| 6.3| 5.63| 5.1
1.65MPa| | | | | | | | 8.7| 8.43| 7.76| 6.92| 6.17| 5.59
1.80MPa| | | | | | | | 9.55| 9.24| 8.48| 7.55| 6.72| 6.08
2.00MPa| | | | | | | | | 10.36| 9.47| 8.39| 7.45| 6.74
2.20MPa| | | | | | | | | 11.51| 10.47| 9.24| 8.2| 7.4
2.50MPa| | | | | | | | | | 12.02| 10.55| 9.32| 8.39

Several normal gas of density under standard conditionfig. 6 ( unit : kg/m3 )

Tag
Density| Air| Hydrogen| Oxygen| Nitrogen| Chlorine| Ammonia gas| Semi- watergas
---|---|---|---|---|---|---|---
1.293| 0.0889| 1.43| 1.251| 3.214| 0.77| 0.836
Tag
Density| Argon| Acetylene| Methane| Ethane| Propane| Butane| Coke-oven gas
1.79| 1.017| 0.717| 1.357| 2.005| 2.703| 0.4849
Tag
Density| Ethylene| Propylene| Natural gas| Coal gas| CO| CO2|
1.264| 1.914| 0.828| 0.802| 1.25| 1.977|

Notes: standard state is absolute pressure 0.101325MPa and temperature 0–c
LUCB insertion-version vortex flowmeter measurable flow range under working condition and its calculation. See fig. 7
LUCB insertion-version vortex flowmeter measure liquid of different density corresponding with flow range under working condition. Fig.7

Gas Density p(kg/m3) 1 1-2 2 3 4 6 8 10 15 20 Vmax(m!s)
Vmin(m/s) 5.5 5.2 5 4.8 4.6 4.2 4 3.8 3.6 3.5 55
Liquid Density
p(kg/m3) 500 600 700 800 900 1000 1200 1400 1600 1800 Vmax(m/s)
Vmin(tn/s) 0.96 0.8 0.7 0.66 0.62 0.6 0.56 0.52 0.5 0.45 6

Notes : fig.7 that is accuracy ±2.5% of insertion-version vortex flowmeter flow range.When accuracy is better than ±2.5%, velocity of flow = lower limit of velocity multiplied by coefficient R(R=2-3), the upper limit multiplied by 0.8.
LUCB insertion-version vortex flowmeter measurable medium flow range calculation under working condition.
Gas & liquid : min volume flow formula under working condition Qmin=3600Vmin( it
D2/4)———————————————— Formula 5
Gas & liquid : max volume flow formula under working condition Qmax=3600
Vmax( n
D2/4)———————————————— Formula 6
Gas : min volume flow formula under standard condition
QNmin=Qmin [( Piocal+Pambient) )(273.15+Tstandard)] PstandardZ(273.15+Tambient)] —-Formula 7
Gas : max volume flow formula under standard condition
QNmax=Qmax [( Rocal+Pambient) )(273.15+Tstandard)]/ [P standardZ(273.15+Tambient) —— Formula 8 Gas : density formula under working condition
P = p n[( Piocal+Pambient) )(273.15+Tstandard)]/ [PstandardZ(273.15+Tambient)]– Formula 9
Among ( insertion-version vortex flowmeter) :
Qmin — min volume flow under working condition ( unit : m3/h ) Qmax — max volume flow under working condition ( unit : m3/h )
Vmin — min velocity under working condition ( unit : m/s refer to fig.7)
Vmax — max velocity under working condition ( unit : m/s refer to fig.7)
D nominal diameter of insertion-version vortex flowmeter ( unit : m) it circumference ratio 3.1415926535898
QNmin – gas min volume flow under standard condition ( unit : m3/h)
QNmax – gas max volume flow under standard condition ( unit : m3/h)
T standard — temperature under standard condition, general is 0°C or 20°C. (unit:°C)
T ambient — measurable gas temperature under working condition (unit:°C)
P standard — normal atmospheric pressure ( =0.101325MPa )
P Ambient — measurable gas pressure under working condition (unit : Mpa )
Z measurable fluid relative compressibility Z=Z Ambient/Z standard A gas density under working condition ( unit : kg/m3)
A n—- gas density under standard state ( unit: kg/m3 ; temp is0°C or 20°C, absolute pressure is 0.101325MPal among formula 9 the temperature is the same between
T standard and ID n corresponding temp. Several normal gas density under standard state see fig. 6 )
P local –local atmospheric pressure ( unit : Mpa )
LUCB insertion-version vortex flowmeter Numerical Methods of flow range matching steam measurement:
According to steam temperature and pressure refer to fig.4 & fig.5 then gain exact density’ P ” under working condition.
According to steam density
P ” under working condition, refer to fig.7 then gain max/min velocity of flow under working condition • Vmax/Vmin ” .
According to pipe diameter of insertion-version vortex flowmeter, through Formula 5 and Formula 6 calculate min volume under working condition or max volume.
The finaldensity p “underworkingcondition x QminorQmax = mass flow range .
III. II Electrical Parameter Signal output :

1.Instantaneous flow under working condition corresponding voltage- frequency­pulse output (lower PWL-:.1V, higher PWL?––6V)
2.Instantaneous flow under standard condition corresponding voltage- frequency­pulse output (lower PWL-.1V, higher PWL.-6V)
3.Instantaneous flow under standard condition pulse equivalent output (lower PWL-1V, higher PWL..?-6V)
4.Instantaneous flow under working condition corresponding two-wire or three- wire 4-20mA output (load resistanceLC300 )
5.Instantaneous flow under standard condition corresponding two-wire or three- wire 4-20mA output (load resistance–300 )

Communication interface: RS485 ; HART Display mode:
A . Intelligent numeric alphabetic display type: twin-row numeric alphabetic LCD instantaneous flow rate and totalizer)
Intelligent dot matrix LCD: English 128’64 dot matrix LCD( instantaneous flow rate, totalizer, temperature and pressure under working condition, battery voltage or density under working condition, instantaneous flow rate under working condition, send-out, time, menu modify records, power-off records, etc. )
111.111.1. Menu Display
Turn on power 24VDC, the main menu will display. The main menu has 5 sub- page, which can be displayed & switched by the button (K2).
KLINGER LUGB Vortex Flow Meter - fig 3
Connect the hand operator to the flow meter, and press the button(K1) for several second, then the hand operator starts receiving the data and displaying the main menu. KLINGER LUGB Vortex Flow Meter - fig 4

Menu instruction
Instantaneous flow: display range 0.000-99999999 Total flow: display
Range 0.000-999999999
Remarks: When the total flow is accumulated to 1000000000, it is all cleared and re-accumulated. When the flow unit changes, the total flow value remains at the original value. In this case, please record down the original total flow, then clear it and re­accumulate.
Temperature: display range -50.0…430.0
Gauge pressure/Absolute pressure -0.1000…20.0000MPa
When the unit is MPa, range is -0.1000…20.0000MPa;
Working condition: Display instantaneous volume flow under working condition, range is 0.000-99999999m3/h
Density: 0.000-99999999kg/m3
K-factor: When choose Nm3/h (standard condition), the compression factor will display with medium under working condition, range is 0.000000-9.999999
Input: The frequency value that actually measured by the sensor, range is 0.000- 9000.0Hz Output: Display the corresponding frequency or current output value according to the “output type” setting in the menu
Instrument Temperature: Display inside temperature of amplifier, range is -99.9-+99.9 Upper-limit: when the measurement limitation function open, transmitter will show the cumulative flow over the upper limit, range is 0.000-999999999
Noted: When the upper-limit flow rate up to 1000000000, all the record will be reset and reaccumulate.
Parameter set: Times of parameters setting, range is 0-9999, if up to 10000 times, the value will be re-set.
Menu four: Display current time, total power fail minutes; “system time” will be shown when flow meter turn on
Menu five: Display the power failure record, will save the last 10 times of power failure; “DATE” will be shown when flow meter turn on special display instructions
NULL: No display
B .ERROR: Data errors, check parameter setting or flow meter operation
C.OVERRUN: Data beyond display range
IIII.II.II. Parameter Setting

Parameters could be set by button(K1), button(K2), button(K3), button(K4)
1. Button function
K1 button: enter parameter setting and ; setting confirmation
K2 button: Move the cursor to the next position
K3 button: Increase value or function selection
K4 button: return to last menu
Parameter setting
Validation setting
Language
2.Main menu
Press K1 to enter main menu
Press K2 to select each menu, press K1 to enter
3. Main menu of parameters setting
KLINGER LUGB Vortex Flow Meter - fig 5 After selecting menu, press K1 to enter password menu, input password; then set each parameter.
Noted: If there is no operating in the parameter setting menu over 30 seconds, the system will automatically exit the “Settings” state. Meanwhile, the setting parameter value is invalid. All the parameters setting will be workable by storage confirmation before exiting
3.1 Parameters Setting Menu
Initial password: 000000
Parameters Setting Menu (table one)

Menu Menu Content Explanation
LOAD DEFAULT YES or NO Select ‘YES”, press the setting button until the LCD

displays Please wait…”, then will display ‘Restore
completed”; select ‘NO’, to enter the next menu.
Default setting  is display “NO”.
APPLICATION| LIQUID GAS GAS+P+T HEAT STEAM+P+T SAT.           STEAM+T
SAT. STEAM +P WATER 412+T LIQUID COMP. OIL+P+T NATURAL GAS +P+T       MIXED
GAS+P+T|
SIZE| 0000- 9999mm|
FACTOR UNIT| 1/m3,                1/L|
K-FACTOR| K-FACTOR
LINEAR FLOW
CURVE K- FACTOR| K-factor
setting range: 0.000000-99999999 Linear
frequency modification
setting range: 0.00-9999Hz
Method of linear correction settings please     kindly check chapter 6
FLOW CURVE| POI NT 1
K 1
POINT 2
K 2
POINT 10 K 10
FLOW UNIT| m3/h,
km3/h ,
I/min,
kg/h.
t/h,
kg/min.
( Nm3/h.
Nkm3/h,
NI/min,
Nm3/min.
Nkm3/min )| m3/h; km3/h; I/min are the volume flow unit under the working condition;
kg/h; t/h; kg/min are mass flow unit;
Nm3/h; Nkm3/h;
NI/min; Nm3/min;
Nkm3/min are gas volume flow
unit
OUTPUT| UNSCALE PULS(calibration)
COMP, PULSE 4-20mA| UNSCALE PULSE: only output the frequency pulse before compensation
COMP. PULSE: Output the frequency after correction and compensation
4-20mA: Display and output the 4- 20ma current at the upper and lower limit of output
---|---|---
SCALED FACTOR| 0.000000- 99999999| The scaled factor is only workable when output type is “COMP. PULSE Scaled factor should be selected according to the flow rate. For calculation formula, please refer to appendix 3.
HIGH FLOW| 0.000000- 99999999| It’s workable under “4-20mA” output
LOW FLOW| 0.000000- 99999999
DAMPING| 00-99| “LIQUID COMP.” parameter setting
TEMP 1| – 9999-99999’C
FLUID DENSITY 1| 0.000000- 99999999kq/m3
TEMP. 2| – 9999-99999r
FLUID DENSITY 2| 0.000000- 99999999kg/m3
TEMP. 10| – 9999-999990|
FLUID DENSITY 10| 0.000000-99999999 kg/m3
Cot MOLE FRACTION| 0.000000-99999999| Parameter setting for’
NATRUAL GAS +P+T—0O2 MOLE FRACTION” default value 0.006; “H2MOLE FRACTION” default value 0;
“RELATIVE DENSITY”default
value 0.581 “OGR” default
value 40.66MJ/m3
H2 MOLE FRACTION| 0.000000-99999999
RELATIVE DENSITY| 0.000000-99999999
OCR| 0.000000- 99999999MJ/m3
COMPEN SATION
OF COMP. FACTOR| AUTO, MENU|
COMP. FACTOR| 0.000000-99999999| ” COMPENSATION OF COMP. FACTOR”is available when choose -MENU”
---|---|---
CRITIC AL PRES| 0.000000- 99999999MPa| ‘GAS +P +T” and “MIXED GAS +P +r parameter setting. COMPENSATION OF COMP. FACTOR”is available when choose “AUTO”
CRITIC AL TEMP| 0. 0.000000- 99999999K
GAS PRESSU RE| 0.000000-99999999MPa| Default value: 0.101325Mpa
STD.TE MP.t•| 00-99| Default value: 0 ‘C.
COMPEN SATION OFT| AUTO, MENU|
TEMP. DATA SET| –50-430’L.| Temperature compensation model is workable when choose “MENU’:
PRES UNIT| MPa . KPA . BAR|
COMPENSATION OF P| AUTO, MENU|
M.P.DA TA SET| – 0.1-+20MPa| Pressure compensation model is workable when choose” MENU”.
FLUID DENSI TY 99999999KG /M3| 0.000000| No compensation model: The density should be under working condition: Gas temperature compensation:The density should be under 0.101325Mpa and standard temp. Petroleum temperature compensation: The       density should be under 0.101325Mpa and20t: woodworking tern
FLOW CUTOFF UNIT Hz| Hz, UNIT|
CUTOFF DATA| 0.000000- 99999999|
DATE| NO, YES|
TIME SETTI NG| 00 YY 00 MM 00 DD 00 HH 00 MM| The time will not display when choose “NO”.
COMMUNICATION| NO 485|
DDRESS| 001-255| Default: 001
BAUDRA TE| 9600; 4800: 2400:1200| Default: 9600
PARITY MODE| NO Odd Even| Default: NO
---|---|---
STOP BIT| 1 BIT, 2 BITS| Default: 1 BIT
BACKLI GHT MODE| ON,OFF,AUTO|
SAVE| YES, NO| Press SET 2-3 seconds, and exit menu. Choose ”YES”, and the”PARAMETER SAVE–displays, and returns to the main menu.

Note:

    1. The above form lists all the menus, but if use different password, some menus will be hidden.
    1. When enter menu, some value maybe different with original value. The reason comes from non-flushed LCD screen,it’s normal.You could press K2 to recover.
      3.2 Total flow reset
      Total Flow reset
      Yes, No
      Total flow reset when power fails
      Yes, No
  • “Total flow reset” could clear the total flow and power failing records
    5.3.3 Zero setting
    Setting Method:
    Zero point value: 0053
    Manual setting
  • Enter the menu and change the value and save it.
    Notice: Non-professional people are forbidden to change the Zero point manually.
    Auto Zero setting
    1. One Key zero setting: On the main interface, press(K3) until the light is on to enter the auto setting status. When the light off, the setting is finished.
    2. Two key zero setting: Enter the auto setting status first. When the value becomes stable, press (K1), and save setting.
    Notice: When setting zero point, please make sure the flow is zero in the pipe.

Installation Instruction

Installation Place and Environment Selection Try to avoid strong power equipment, high-frequency equipment and strong power switchgear.
Try to avoid high-temp thermal source and source of radiant heating; outdoor installation should do some measures of sun-shading and rain shelter.
Try to avoid shock places and corrosion environment ; meanwhile, easy maintenance should be considered. Reasonable and correct installation position. Installation position should avoid strong shock pipeline, or take some measures of shock absorption. Horizontal, vertical and slanting installation. Liquid measuring ensure flow direction from low to high. Gas measuring, direction no required.
When measuring vapor or high-temp gas, flow meter body pillar should be at an angle of 45 Deg with vertical direction.
Grounding requirement. When pipelines without available grounding conditions, a ground-wire is essential between housing and earth. Straight length requirement In order to correct measurement, upstream or downstream of flow meter should obligate enough straight length. No components to effect fluid velocity in upstream of flow meter. All types of straight length installation reference:
LUGB Vortex Flowmeter Straight Length Size Drafts     KLINGER LUGB
Vortex Flow Meter - fig 6KLINGER LUGB Vortex Flow Meter -
fig 7

Installation and welding of flow meter
LUGB Vortex diameter is accordant to upstream and downstream tubing diameter at installation point; sensor is concentric with pipeline; prohibit gaskets between sensor and flanges bulge out into pipeline. Make sure that the connection end face of insertion-version vortex flowmeter parallel to the pipe axis. Details as per fig.4.
After initial installation, when medium is steam or other high-temp medium, flanges & bolts should be re-tightened when medium full of pipeline. Do heat reservation measures for pipeline in order to protect amplifier.
LUGB Vortex installation & Welding Reference FigureKLINGER LUGB Vortex
Flow Meter - fig 8KLINGER LUGB Vortex Flow Meter - fig
9 Be attention: concerning P/T compensation integrated vortex flow meter, to avoid high-temp or liner shock damage pressure transmitter, Pressure control valve must be closed before medium is full of pipeline. When medium full of pipeline meanwhile approaching working temperature and pressure, slowly turn on control valve. Pressure tapping and pressure detector should be done heat reservation if flow meter outdoor installation.

Tag

| DN| Medium| Medium temp|

Function description

---|---|---|---|---
Wafer Connection| Dn10-500(mm)| Gas Liquid
Saturatec steam
SuperheE ted steam| 40…+150 °C
40…+280 °C
-40…+350 °C| Flowmeter body material: stainless steel
Wafer type companion flange: forged carbon steel Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Flange Connection
Wafer connection
Patent type| DN25 -500 (mm)| -40…+150+
40…+
-40…+280t
-40…+
350t -40…+ 4200| Flowmeter body material: stainless steel ( other material supply by negotiation ) Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation ) Features : replace sensor head without fluid flow inside pipeline.
Flange connection
Patent type
Flange connection Low flow version equipped dismountable sensor head| Flowmeter body material: stainless steel ( other material supply by negotiation )
Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Features :
1.Compare same diameter vortex flowmeter its more lower limit.
Replace sensor head without effect fluid flow inside pipeline.
Flange connection
Low flow version
Wafer version with temp compensation
Dn25- 500
Wafer version ( mm) with Temperature Compensation equipped dismountable sensor head| Saturate steam| -100..+220+| Flowmeter body material: stainless steel ( other material supply by negotiation )
Flanges material: forged carbon steel Temperature gauge head: PT100 Max working pressure : 2.5Mpa Features :
1.Special for saturated steam.
Integrated flow and temperature sensor in one.
2.Sensor is dismountable type, replace sensor head without effect fluid flow inside pipeline.
Saturate steam
Saturate steam|
Flange connection Integrated temperature with pressure compensation| DN25- 500 (mm)| Gas Saturated steam
Superheated steam| 40…+150oc
– 40…+28 at
–40…+35 Oc| Flowmeter body material: stainless steel ( other material supply by negotiation )
Temperature gauge head: Pt100 Pressure gauge head: diffuse silicon pressure sensor. Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation )
Features :
1.Integrated temperature and pressure compensation in one. 2.Sensor is dismountable type. replace sensor head without effect fluid flow inside pipeline.
---|---|---|---|---
Flange connection Integrated temperature with pressure compensation equipped dismountable Sensor head| –40…+15 Oc
-40…+28 O’C’
–40…+35 Oc
-40…+42 0c
Insertion- version with dismountable body need stop medium flow| DN200- 2000 (mm)| Gas Liquid Saturated steam Superhe ated steam| -40…+1 60+

-40…+200+

| Flowmeter body material: stainless steel Connection joint: carbon steel Max working pressure: 2.5Mpa ( over 2.5Mpa supply by negotiation ) Features:
1.Stop medium flow is the priority for insertion vortex flowmeter. Its compact conformation and good anti­vibration performance.
No need stop medium flow with dismountable flowmeter body is equipped DN100 glove valve. Do installation, maintenance and replacement without effect medium flow.
Insertion-version with dismountable body no need stop medium now
Submer gible- version vortex flowmeter
Flange-version
Insert version(mm)| Wafer– DN10- version 50000(mm)| Gas Liquid| -40…+15 OC
40…+28 Oc| Flowmeter body and flange material: same
Max working pressure: 2.5Mpa ( over  2.5Mpa supply by negotiation ) Features :
1.Flowmeter sensor is Submergible-version. Appli cation: subsurface and Submergible pipeline. 2.Remote-version: transmitter and sensor is separated installation. (The biggest distance suggest sift.)
 DN25”  500(mm)
DN200-ion-2000

Appendix 2: Configuration Size of Flange Connection Models

KLINGER LUGB Vortex Flow Meter - fig 10

Flange diameter (may| Pressure class(MN)| Flange standard of connection version
---|---|---
O(mm)| K(mm)| a(MM)| N| H(mm)| D(mm)
ON10| PN1.01PN1.6/PN2.5| 90| 60| 14| 4| 14| 7.2
0N15| PN1.0/12N1.6/PN2.5| 95| 65| 14| 4| 14| 21.3
ON20| PN1.0/PN1.6/PN2.5| 105| 75| 14| 4| 16| 26.9
0N25| PN1.0/PN1.6/PN2.5| 115| 85| 14| 4| 16| 33.7
0N32| PN1.0/PN1.6/PN2.5| 140| 100| 18| 4| 18| 42.4
0N40| PN1.0/PN1.6/PN2.5| 150| 110| 18| 4| 18| 48.3
ON50| PN1.0/13N1.6./PN2.5| 165| 125| 18| 4| 20| 60.3
ON65| PN1.0/PN1.61PN2.5| 185| 145| 18| 4/4/8| 20/20/22| 76.1
DN80| PN1.0/PN1.6/PN2.5| 200| 160| 18| 8| 20/20124| 88.9
ON100| PN1.0/PN1.6/PN2.5| 220/220/235| 180/180/190| 18/18/22| 8| 22/22/26| 114.3
DN125| PN1.0/PN1.6/PN2.5| 250/250/270| 210/210/220| 18/18/28| 8| 22/22/28| 139.7
DN150| PN1.0/PN1.6/PN2.5| 285/285/300| 240/240/250| 22/22/26| 8| 24/24/30| 188.3
0N200| PN1.0/PN1.6/PN2.5| 340/340/360| 295/295/310| 22/22/26| 8/12/12| 24/26/32| 219.1
DN250| PN1.0/PN1.6/PN2.5| 395/405/425| 350/355/370| 22/26/30| 12/12/12| 26/29/35| 273
DN300| PN1.0/PN1.6/PN2.5| 445/460/485| 400/410/430| 22/26/30| 12/12/16| 28/32/38| 323.9
0N350| PN1.0/PN1.6/PN2.5| 505/520/555| 460)470/490| 22/26/33| 16/16/16| 30/35/42| 355.6
ON400| PN1.0/PN1.8/PN2.5| 565/580/620| 515/525/550| 26/30/36| 16/16/16| 32/38146| 406.4
0N450| PN1.0/PN1.6/PN2.5| 615/640/670| 565/585/600| 26/30/36| 20/20/20| 35/42/50| 457
DN500| PN1.0/PN1.6/PN2.5| 670/715/730| 620/650/660| 26/33/36| 20/20/20| 38/46/56| 508

Notes: LUGB flange connection vortex flowmeter its flange pressure class: DN10- DN80 is PN2.5MPa; DN100-DN200 is PN1.6MPa; DN250-DN500 is PN1.0MPa;
if over above pressure class, please mention clearly in purchasing order. GB ( China flange standard follows GB9119-2000). International standard, such as ANSI/DIN/XS… Please customer provide clear model number.

Appendix 3: Configuration Size of Wafer Connection Models

KLINGER LUGB Vortex Flow Meter - fig 11

(MPa) (mnil flangestandardofivalerconnectionversion
DI (mm) DAnin) K(mm)
PNI .0/PNI.6/PN2 _5 DNI 0 14
PNI.O/PN I .6/PN23 DNI 5 19
PNI.O/PNI .6/PN2.5 DN20 26
PNI.O/PNI .6/PN2.5 DN25 33
PNI.O/PN1.6/PN25 DN32 39
PNI.O/PNI .6/PN2.5 DN40 49
PNI.O/PNI .6/PN2.5 DN50 60
PNI.O/PNI .6IPN2.5 D1*5 76
PNI .0/PN1.6/PN2 _5 DM0 90
PNI.O/PN I .6/PN2 .5 DNI00 109
PNI.O/PN I .6/PN23 DNI 25 134
PNI.O/PNI .6/PN2.5 DN150 163
PNI.O/PNI .6/PN2.5 DN200 220
PNI.O/PN1.61PN25 DM 50 274
PNI.O/PNI .6/PN2.5 DN300 327
PNI.O/PNI .6/PN23 DN350 377
PNI.O/PN1.6/PN2 _5 DN400 426
PNI.O/PNI .6/PN2 ..5 DN450 4n
PNI.O/PN1.61PN25 DN500 534

Notes: companion flanges for wafer connection follows PN2.5MPa pressure class, when over 2.5MPa please make clearly mention.

Appendix 4: Calibration Method

(1 ) When calibrating the instrument, the “output form” must be set to “frequency of working condition”, and “value of small signal cutting” is set to 0; after calibration, “K-factor” is set according to the actual calibration, and then change “output form” and “value of small signal cutting” back to the original setting.
(2) Flow rate stabilization time of calibration point: ?-60s

Appendix 5: Fundamental Formula

(1) Instantaneous volume flow rate of working condition
Qv – volume flow rate of working condition(Unit:m3/h/ F — current frequency of working condition (Unit: Hz)
K – K factor (Unit: number of pulse/ m3)
(2)Instantaneous mass flow rate of working condition
Qm—Mass flow rate of working condition (unit: kg/h ) r)— medium density under working condition (unit: kg/m3)
(3)Scaled coefficient calculated method
KN – Scaled coefficient (unit: cumulative flow rate / pulse)
FN—Maximum frequency output (unit: Hz; when KN is selected, set FN<5000, and general FN should be 2000Hz)
Qmax—the actual maximum instantaneous flow rate (unit: same as the setting flow rate unit)

Appendix 6: Communication Function

  1. Relevant Parameters
    The instrument has RS485 communication interface, adopts standard MODBUS-RTU communication protocol, relevant parameters are as follows:
    Start bit: 1 bit ……………..Data bit: 8 digits ……………………Parity bit: can beset
    Termination bit: can be set………………Baud rate : can be set…………….response time: 0.05s

  2. Data Format
    IEEE754standard single float format

  3. Data Address
    This flow meter can transmit 1-16 continuous data at the same time, and each data is stored by the corresponding address as follows:

  4. 0001H: Instantaneous flow value

  5. 0003H: Cumulative flow value

  6. 0005H: Working temperature (Non-compensation model, it displays 0.0000)

  7. 0007H: Gauge Pressure/ absolute pressure (Non-compensation model, it displays 0.0000)

  8. 0009H: Volume flow rate of working condition

  9. 000BH: Density under working condition

  10. 000DH: compression coefficient (Non-standard condition volume unit, it displays 0.0000)

  11. 000FH: Input frequency

  12. 0011H: Frequency output under working condition (Not this output, it displays 0.0000)

  13. 0013H: Scaled pulse output (Not this output, it displays 0.0000)

  14. 0015H: Current output (Not this output, it displays 0.0000)

  15. 0017H: 0.0000 (This address is reserved by system and unrelated to the instrument data displays on the interface.)

  16. 0019H: Gauge temperature

  17. 001BH: Exceed to limited cumulative flow rate (When close the Protocol measurement, it displays 0.0000)

  18. 001DH: Total power outage time. (When the system clock is off, it displays 0.0000) 16.001FH: menu modification times

  19. Data Address
    When the LCD screen displays the following data transmission information: NULL: transmission data 0
    ERROR: transmission data -1234
    OVERRUN: transmission data -8888

Appendix 7: Electrical Wiring

KLINGER LUGB Vortex Flow Meter - fig 15 Remote type wiringKLINGER LUGB Vortex Flow Meter - fig 16

KLINGER Danmark A/S
Nyager 12-14
DK-2605 Broendby
Denmark
Phone +45 4364 6611
www.klinger.dk

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals