apogee INSTRUMENT MQ-210X Underwater Quantum Meter Owner’s Manual
- June 6, 2024
- apogee INSTRUMENT
Table of Contents
- MQ-210X Underwater Quantum Meter
- INTRODUCTION
- SENSOR MODELS
- SPECIFICATIONS
- DEPLOYMENT AND INSTALLATION
- BATTERY INSTALLATION AND REPLACEMENT
- OPERATION AND MEASUREMENT
- APOGEE AMS SOFTWARE
- MAINTENANCE AND RECALIBRATION
- TROUBLESHOOTING AND CUSTOMER SUPPORT
- RETURN AND WARRANTY POLICY
- PRODUCTS BEYOND THE WARRANTY PERIOD
- OTHER TERMS
- Read User Manual Online (PDF format)
- Download This Manual (PDF format)
MQ-210X Underwater Quantum Meter
OWNER’S MANUAL
APOGEE INSTRUMENTS, INC. | 721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA TEL:
435-792-4700 | FAX:
435-787-8268 | WEB:
APOGEEINSTRUMENTS.COM
Copyright © 2021 Apogee Instruments, Inc.
CERTIFICATE OF COMPLIANCE
EU Declaration of Conformity
This declaration of conformity is issued under the sole responsibility of the
manufacturer:
Apogee Instruments, Inc. 721 W 1800 N Logan, Utah 84321 USA for the following
product(s):
Models: MQ-210X
Type: Quantum Meter
The object of the declaration described above is in conformity with the
relevant Union harmonization legislation:
2014/30/EU Electromagnetic Compatibility (EMC) Directive
2011/65/EU Restriction of Hazardous Substances (RoHS 2) Directive
2015/863/EU Amending Annex II to Directive 2011/65/EU (RoHS 3)
Standards referenced during compliance assessment:
EN 61326-1:2013 Electrical equipment for measurement, control and laboratory
use – EMC requirements
EN 50581:2012 Technical documentation for the assessment of electrical and
electronic products with respect to the restriction of hazardous substances
Please be advised that based on the information available to us from our raw material suppliers, the products manufactured by us do not contain, as intentional additives, any of the restricted materials including lead (see note below), mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB), polybrominated diphenyls (PBDE), bis(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP). However, please note that articles containing greater than 0.1% lead concentration are RoHS 3 compliant using exemption 6c.
Further note that Apogee Instruments does not specifically run any analysis on
our raw materials or end products for the presence of these substances, but
rely on the information provided to us by our material suppliers.
Signed for and on behalf of:
Apogee Instruments, June 2021
Bruce Bugbee President Apogee Instruments, Inc.
INTRODUCTION
Radiation that drives photosynthesis is called photosynthetically active
radiation (PAR) and is typically defined as total radiation across a range of
400 to 700 nm. PAR is often expressed as photosynthetic photon flux density
(PPFD): photon flux in units of micromoles per square meter per second (µmol
m-2 s-1, equal to microEinsteins per square meter per second) summed from 400
to 700 nm (total number of photons from 400 to 700 nm). While Einsteins and
micromoles are equal (one Einstein = one mole of photons), the Einstein is not
an SI unit, so expressing PPFD as µmol m-2 s-1 is preferred.
The acronym PPF is also widely used and refers to the photosynthetic photon
flux. The acronyms PPF and PPFD refer to the same variable. The two terms have
co-evolved because there is not a universal definition of the term “flux”.
Some physicists define flux as per unit area per unit time. Others define flux
only as per unit time. We have used PPFD in this manual because we feel that
it is better to be more complete and possibly redundant.
Sensors that measure PPFD are often called quantum sensors due to the
quantized nature of radiation. A quantum refers to the minimum quantity of
radiation, one photon, involved in physical interactions (e.g., absorption by
photosynthetic pigments). In other words, one photon is a single quantum of
radiation.
Quantum sensors are increasingly used to measure PPFD underwater, which is important for biological, chemical, and physical processes in natural waters and in aquariums. When a quantum sensor that was calibrated in air is used to make underwater measurements, the sensor reads low. This phenomenon is called the immersion effect and happens because the refractive index of water (1.33) is greater than air (1.00). The higher refractive index of water causes more light to be backscattered (or reflected) out of the sensor in water than in air (Smith,1969; Tyler and Smith,1970). As more light is reflected, less light is transmitted through the diffuser to the detector, which causes the sensor to read low. Without correcting for this effect, underwater measurements are only relative, which makes it difficult to compare light in different environments. The immersion effect correction factor for Apogee original quantum sensors (model MQ-100X and SQ-200X series) is 1.15. The MQ-210X quantum meter is designed for underwater measurements, and already applies the immersion effect correction factor to the meter’s readings through firmware. The meter consists of a waterproof quantum sensors attached via waterproof cable to a handheld meter. Note: The handheld meter is not waterproof, only the sensor and cable are waterproof.
MQ-210X meters consist of a handheld meter and a dedicated quantum sensor that is connected by cable to an anodized aluminum housing. Sensors consist of a cast acrylic diffuser (filter), photodiode, and are potted solid with no internal air space. MQX series quantum meters provide a real-time PPFD reading on the LCD display, that determine the radiation incident on a planar surface (does not have to be horizontal), where the radiation emanates from all angles of a hemisphere. MQX series quantum meters include manual and automatic data logging features for making spot-check measurements or calculating daily light integral (DLI).
SENSOR MODELS
Apogee MQX series quantum meters covered in this manual are self-contained and come complete with handheld meter and sensor.
Sensor model number and serial number are located on a label on the backside of the handheld meter.
SPECIFICATIONS
Calibration Traceability
Apogee MQX series quantum meters are calibrated through side-by-side
comparison to the mean of four transfer standard quantum sensors under high
output T5 cool white fluorescent lamps. The reference quantum sensors are
recalibrated with a 200 W quartz halogen lamp traceable to the National
Institute of Standards and Technology
(NIST).
Spectral Response
Mean spectral response of four MQ-210x series quantum sensors compared to PPFD weighting function. Spectral response measurements were made at 10 nm increments across a wavelength range of 350 to 800 nm in a monochromator with an attached electric light source. Measured spectral data from each quantum sensor were normalized by the measured spectral response of the monochromator/electric light combination, which was measured with a spectroradiometer.
Cosine Response
Directional, or cosine, response is defined as the measurement error at a specific angle of radiation incidence. Error for Apogee MQ-100X series quantum sensors is approximately ± 2 % and ± 5 % at solar zenith angles of 45° and 75°, respectively.
Mean cosine response of five MQ-100X series quantum meters. Cosine response measurements were made by direct side-by-side comparison to the mean of seven reference SQ-500 quantum sensors.
DEPLOYMENT AND INSTALLATION
Apogee MQX series quantum meters are designed for spot-check measurements, and calculation of daily light integral (DLI; total number of photons incident on a planar surface over the course of a day) through the built-in logging feature. To accurately measure PFFD incident on a horizontal surface, the sensor must be level. The AL-100 accessory leveling plate is recommended for use with the MQ-210X to ensure the sensor is level when attached to a cross- arm. The bubble-level in the plate makes leveling simple and accurate.
The AM-310 Sensor Wand accessory incorporates a mounting fixture at the end of an extendable telescopic wand (up to 33 inches/84 cm). The wand is not suited for wet environments; however, it is excellent for greenhouses and growth chambers. Its ability to retract to a smaller size also makes it ideal for travel use.
The AM-320 Saltwater Submersible Sensor Wand accessory incorporates a mounting fixture at the end of a 40 inch segmented fiberglass wand and is well-suited for saltwater use. The wand allows the user to place the sensor in
BATTERY INSTALLATION AND REPLACEMENT
Use a phillips head screwdriver to remove the screw from the battery cover. Remove the battery cover by slightly lifting and sliding the outer edge of the cover away from the meter.
To power the meter, slide the included battery (CR2320) into the battery holder, after removing the battery door from the meter’s back panel.
The positive side (designated by a “+” sign) should be facing out from the meter circuit board.
NOTE: The battery cradle can be damaged by using an incorrectly sized battery. If the battery cradle is damaged, the circuit board will need to be replaced. To avoid this costly problem, use only a CR2320 battery.
Battery Removal
Press down on the battery with a screwdriver or similar object. Slide battery
out.
If the battery is difficult to move, turn the meter on its side so that the opening for the battery is facing downward and tap the meter downward against an open palm to dislodge the battery enough so that it can be removed with your thumb to slide the battery out of the battery holder.
OPERATION AND MEASUREMENT
Logging: To choose between manual or automatic logging, push the mode button twice and use the up/down buttons to make the appropriate selection (SMPL or LOG). Once the desired mode is blinking, press the mode button two more times to exit the menu. When in SMPL mode press the sample button to record up to 99 manual measurements (a counter in the upper right hand corner of the LCD display indicates the total number of saved measurements). When in LOG mode the meter will power on/off to make a measurement every 30 seconds. Every 30 minutes the meter will average the sixty 30 second measurements and record the averaged value to memory. The meter can store up to 99 averages and will start to overwrite the oldest measurement once there are 99 measurements. Every 48 averaged measurements (making a 24 hour period), the meter will also store an integrated daily total in moles per meter squared per day (mol m-2 d-1).
Reset: To reset the meter, in either SMPL or LOG mode, push the mode button three times (RUN should be blinking), then while pressing the down button, press the mode button once. This will erase all of the saved measurements in memory, but only for the selected mode. That is, performing a reset when in SMPL mode will only erase the manual measurements and performing a reset when in LOG mode will only erase the automatic measurements.
Review/Download Data: Each of the logged measurements in either SMPL or LOG mode can be reviewed on the LCD display by pressing the up/down buttons. To exit and return to the real-time readings, press the sample button. Note that the integrated daily total values are not accessible through the LCD and can only be viewed by downloading to a computer.
Downloading the stored measurements will require the AC-100 communication cable and software (sold separately). The meter outputs data using the UART protocol and requires the AC-100 to convert from UART to USB, so standard USB cables will not work. Set up instructions and software can be downloaded from the Apogee website (http://www.apogeeinstruments.com/ac-100-communcation- cable/).
Spectral Errors
Apogee SQ-100X series sensors can measure PPFD for sunlight and electric light
with a single calibration factor. However, errors occur in various light
sources due to changes in spectral output. If the light source spectrum is
known then errors can be estimated and used to adjust the measurements. The
weighting function for PPFD is shown in the graph below, along with the
spectral response of Apogee SQ-100X series quantum sensors. The closer the
spectral response matches the defined PPFD spectral weighting functions, the
smaller spectral errors will be. The table below provides spectral error
estimates for PPFD measurements from light sources different than the
calibration source. The method of Federer and Tanner (1966) was used to
determine spectral errors based on the PPFD spectral weighting functions,
measured sensor spectral response, and radiation source spectral outputs
(measured with a spectroradiometer). This method calculates spectral error and
does not consider calibration, cosine, and temperature errors.
Federer, C. A., and C. B. Tanner, 1966. Sensors for measuring light available for photosynthesis. Ecology 47:654-657.
McCree, K. J., 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9:191-216.
Spectral Errors for PPFD Measurements with Apogee SQ-100x and SQ-500 Series Quantum Sensors
Quantum sensors can be a very practical means of measuring PPFD and YPFD from multiple radiation sources, but spectral errors must be considered. The spectral errors in the table above can be used as correction factors for individual radiation sources.
Underwater Measurements and Immersion Effect
When a quantum sensor that was calibrated in air is used to make underwater
measurements, the sensor reads low. This phenomenon is called the immersion
effect and happens because the refractive index of water (1.33) is greater
than air (1.00). The higher refractive index of water causes more light to be
backscattered (or reflected) out of the sensor in water than in air
(Smith,1969; Tyler and Smith,1970). As more light is reflected, less light is
transmitted through the diffuser to the detector, which causes the sensor to
read low. Without correcting for this effect, underwater measurements are only
relative, which makes it difficult to compare light in different environments.
The MQ-210X sensor has an immersion effect correction factor of 1.15. The immersion effect correction factor is already accounted for in the MQ-210X meter firmware so there is no need to apply the correction factor to your measurements. If you wish to use your meter to make measurements in air, simply divide the measured number by the immersion effect (1.15).
When making underwater measurements, only the sensor and cable can go in the water. The handheld meter is not waterproof and must not get wet. If the meter might get wet from splashing, we recommend placing it in a plastic bag or other container to help protect it from accidentally getting wet.
Further information on underwater measurements and the immersion effect can be
found at
http://www.apogeeinstruments.com/underwater-par-measurements/.
APOGEE AMS SOFTWARE
Downloading data to a computer requires the AC-100 communication cable and the
free ApogeeAMS software. The meter outputs data using the UART protocol and
requires the AC-100 to convert from UART to USB, so standard USB cables will
not work.
The most recent version of ApogeeAMS software can be downloaded at
http://www.apogeeinstruments.com/downloads/.
MAINTENANCE AND RECALIBRATION
Moisture or debris on the diffuser is a common cause of low readings. The sensor has a domed diffuser and housing for improved self-cleaning from rainfall, but materials can accumulate on the diffuser (e.g., dust during periods of low rainfall, salt deposits from evaporation of sea spray or sprinkler irrigation water) and partially block the optical path. Dust or organic deposits are best removed using water or window cleaner and a soft cloth or cotton swab. Salt deposits should be dissolved with vinegar and removed with a soft cloth or cotton swab. Never use an abrasive material or cleaner on the diffuser.
Although Apogee sensors are very stable, nominal accuracy drift is normal for all research-grade sensors. To ensure maximum accuracy, we generally recommend sensors are sent in for recalibration every two years, although you can often wait longer according to your particular tolerances.
To determine if your sensor needs recalibration, the Clear Sky Calculator (www.clearskycalculator.com) website and/or smartphone app can be used to indicate the PPFD incident on a horizontal surface at any time of day at any location in the world. It is most accurate when used near solar noon in spring and summer months, where accuracy over multiple clear and unpolluted days is estimated to be ± 4 % in all climates and locations around the world. For best accuracy, the sky must be completely clear, as reflected light from clouds causes PPFD to increase above the value predicted by the clear sky calculator. Measured values of PPFD can exceed values predicted by the Clear Sky Calculator due to reflection from thin, high clouds and edges of clouds, which enhances incoming PPFD. The influence of high clouds typically shows up as spikes above clear sky values, not a constant offset greater than clear sky values.
To determine recalibration need, input site conditions into the calculator and compare PPFD measurements to calculated values for a clear sky. If sensor PPFD measurements over multiple days near solar noon are consistently different than calculated values (by more than 6 %), the sensor should be cleaned and re-leveled. If measurements are still different after a second test, email calibration@apogeeinstruments.com to discuss test results and possible return of sensor(s).
TROUBLESHOOTING AND CUSTOMER SUPPORT
Verify Functionality
Pressing the power button should activate the LCD and provide a real-time PPFD
reading. Direct the sensor head toward a light source and verify the PPFD
reading responds. Increase and decrease the distance from the sensor to the
light source to verify that the reading changes proportionally (decreasing
PPFD with increasing distance and increasing PPFD with decreasing distance).
Blocking all radiation from the sensor should force the PPFD reading to zero.
Battery Life
When the meter is maintained properly the coin cell battery (CR2320) should
last for many months, even after continuous use. The low battery indicator
will appear in the upper left hand corner of the LCD display when the battery
voltage drops below 2.8 V DC. The meter will still function correctly for some
time, but once the battery is drained the pushbuttons will no longer respond
and any logged measurements will be lost.
Pressing the power button to turn off the meter will actually put it in sleep
mode, where there is still a slight amount of current draw. This is necessary
to maintain the logged measurements in memory. Therefore, it is recommended to
remove the battery when storing the meter for many months at a time, in order
to preserve battery life.
Low-Battery Error after Battery Replacement
A master reset will usually correct this error, please see the master reset
section for details and cautions. If a master reset does not remove the low
battery indicator, please double check that the voltage of your new battery is
above 2.8 V, this is the threshold for the indicator to turn on.
Master Reset
If a meter ever becomes non-responsive or experiences anomalies, such as a low
battery indicator even after replacing the old battery, a master reset can be
performed that may correct the problem. Note that a master reset will erase
all logged measurements from memory.
Step 1: press the power button so that the LCD display is activated.
Step 2: Slide the battery out of the holder, which will cause the LCD display to fade out.
Step 3: After a few seconds, slide the battery back into the holder.
The LCD display will flash all segments and then show a revision number (e.g. “R1.0”). This indicates the master reset was performed and the display should return to normal.
Error Codes and Fixes
Error codes will appear in place of the real-time reading on the LCD display
and will continue to flash until the problem is corrected. Contact Apogee if
the following fixes do not rectify the problem.
Err 1: battery voltage out of range. Fix: replace CR2320 battery and perform master reset.
Err 2: sensor voltage out of range. Fix: perform master reset.
Err 3: not calibrated. Fix: perform master reset.
Err 4: CPU voltage below minimum. Fix: replace CR2320 battery and perform master reset.
Modifying Cable Length
Although it is possible to splice additional cable to the separate sensor of
the appropriate MQX model, note that the cable wires are soldered directly
into the circuit board of the meter. Care should be taken to remove the back
panel of the meter in order to access the board and splice on the additional
cable, otherwise two splices would need to be made between the meter and
sensor head. See Apogee webpage for further details on how to extend sensor
cable length: (http://www.apogeeinstruments.com/how-to-make-a-weatherproof-
cable-splice/).
Unit Conversion Charts
Apogee MQX series quantum sensors are calibrated to measure PPFD in units of
µmol m-2 s-1. Units other than photon flux density (e.g., energy flux density,
illuminance) may be required for certain applications. It is possible to
convert the PPFD value from a quantum sensor to other units, but it requires
spectral output of the radiation source of interest. Conversion factors for
common radiation sources can be found on the Unit Conversions page in the
Support Center on the Apogee website (http://www.apogeeinstruments.com/unit-
conversions/). A spreadsheet to convert PPFD to energy flux density or
illuminance is also provided on the Unit Conversions page in the Support
Center on the Apogee website (http://www.apogeeinstruments.com/content/PPFD-
to-Illuminance-Calculator.xls).
RETURN AND WARRANTY POLICY
RETURN POLICY
Apogee Instruments will accept returns within 30 days of purchase as long as
the product is in new condition (to be determined by Apogee). Returns are
subject to a 10 % restocking fee.
WARRANTY POLICY
What is Covered
All products manufactured by Apogee Instruments are warranted to be free from
defects in materials and craftsmanship for a period of four (4) years from the
date of shipment from our factory. To be considered for warranty coverage an
item must be evaluated by Apogee.
Products not manufactured by Apogee (spectroradiometers, chlorophyll content meters, EE08-SS probes) are covered for a period of one (1) year.
What is Not Covered
The customer is responsible for all costs associated with the removal,
reinstallation, and shipping of suspected warranty items to our factory.
The warranty does not cover equipment that has been damaged due to the following conditions:
- Improper installation or abuse.
- Operation of the instrument outside of its specified operating range.
- Natural occurrences such as lightning, fire, etc.
- Unauthorized modification.
- Improper or unauthorized repair.
Please note that nominal accuracy drift is normal over time. Routine recalibration of sensors/meters is considered part of proper maintenance and is not covered under warranty.
Who is Covered
This warranty covers the original purchaser of the product or other party who
may own it during the warranty period.
What Apogee Will Do
At no charge Apogee will:
- Either repair or replace (at our discretion) the item under warranty.
- Ship the item back to the customer by the carrier of our choice.
Different or expedited shipping methods will be at the customer’s expense.
How To Return An Item
-
Please do not send any products back to Apogee Instruments until you have received a Return Merchandise Authorization (RMA) number from our technical support department by submitting an online RMA form at
www.apogeeinstruments.com/tech-support-recalibration- repairs/. We will use your RMA number for tracking of the service item. Call 435-245-8012 or email techsupport@apogeeinstruments.com with questions. -
For warranty evaluations, send all RMA sensors and meters back in the following condition: Clean the sensor’s exterior and cord. Do not modify the sensors or wires, including splicing, cutting wire leads, etc. If a connector has been attached to the cable end, please include the mating connector – otherwise the sensor connector will be removed in order to complete the repair/recalibration. Note: When sending back sensors for routine calibration that have Apogee’s standard stainless-steel connectors, you only need to send the sensor with the 30 cm section of cable and one-half of the connector. We have mating connectors at our factory that can be used for calibrating the sensor.
-
Please write the RMA number on the outside of the shipping container.
-
Return the item with freight pre-paid and fully insured to our factory address shown below. We are not responsible for any costs associated with the transportation of products across international borders.
Apogee Instruments, Inc.
721 West 1800 North Logan, UT
84321, USA
5. Upon receipt, Apogee Instruments will determine the cause of failure. If the product is found to be defective in terms of operation to the published specifications due to a failure of product materials or craftsmanship, Apogee Instruments will repair or replace the items free of charge. If it is determined that your product is not covered under warranty, you will be informed and given an estimated repair/replacement cost.
PRODUCTS BEYOND THE WARRANTY PERIOD
For issues with sensors beyond the warranty period, please contact Apogee at techsupport@apogeeinstruments.com to discuss repair or replacement options.
OTHER TERMS
The available remedy of defects under this warranty is for the repair or replacement of the original product, and Apogee Instruments is not responsible for any direct, indirect, incidental, or consequential damages, including but not limited to loss of income, loss of revenue, loss of profit, loss of data, loss of wages, loss of time, loss of sales, accruement of debts or expenses, injury to personal property, or injury to any person or any other type of damage or loss.
This limited warranty and any disputes arising out of or in connection with this limited warranty (“Disputes”) shall be governed by the laws of the State of Utah, USA, excluding conflicts of law principles and excluding the Convention for the International Sale of Goods. The courts located in the State of Utah, USA, shall have exclusive jurisdiction over any Disputes.
This limited warranty gives you specific legal rights, and you may also have other rights, which vary from state to state and jurisdiction to jurisdiction, and which shall not be affected by this limited warranty. This warranty extends only to you and cannot by transferred or assigned. If any provision of this limited warranty is unlawful, void or unenforceable, that provision shall be deemed severable and shall not affect any remaining provisions. In case of any inconsistency between the English and other versions of this limited warranty, the English version shall prevail.
This warranty cannot be changed, assumed, or amended by any other person or agreement.
APOGEE INSTRUMENTS, INC. | 721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA TEL:
435-792-4700 | FAX:
435-787-8268 | WEB:
APOGEEINSTRUMENTS.COM
Copyright © 2021 Apogee Instruments, Inc.