METREL MI 2893 Power Master XT User Manual
- June 15, 2024
- METREL
Table of Contents
- MI 2893 Power Master XT
- Product Information: Power Master XT / Power Master / Master Q4
- Specifications:
- Introduction:
- Main Features:
- Safety Considerations:
- Applicable Standards:
- Abbreviations:
- Front Panel:
- Connector Panel:
- Bottom View:
- Accessories:
- Instrument Status Bar:
- Instrument Keys:
- Instrument Memory (microSD card):
- Instrument Main Menu:
- Q: Can I use the Power Master XT / Power Master / Master Q4 MI
- Q: How do I update the firmware of the Power Master XT / Power
- Q: What is the maximum operating temperature range of the Power
MI 2893 Power Master XT
Product Information: Power Master XT / Power Master / Master Q4
MI 2893 / MI 2892 / MI 2885
Specifications:
- Manufacturer: METREL d.o.o.
- Model Numbers: MI 2893 / MI 2892 / MI 2885
- Hardware Version: 9.0
- Instruction manual version: 1.5.10
- Code Number: 20 753 179
- Distributor: [Distributor Name]
- Address: Ljubljanska cesta 77, 1354 Horjul, Slovenia
- Website: http://www.metrel.si
- Email: metrel@metrel.si
Introduction:
The Power Master XT / Power Master / Master Q4 MI 2893 / MI 2892
/ MI 2885 is a versatile instrument designed for various
applications.
Main Features:
- [Feature 1]
- [Feature 2]
- [Feature 3]
Safety Considerations:
When using the Power Master XT / Power Master / Master Q4 MI
2893 / MI 2892 / MI 2885, please ensure the following safety
considerations:
- [Safety Consideration 1]
- [Safety Consideration 2]
- [Safety Consideration 3]
Applicable Standards:
The Power Master XT / Power Master / Master Q4 MI 2893 / MI 2892
/ MI 2885 complies with the following standards:
- [Standard 1]
- [Standard 2]
- [Standard 3]
Abbreviations:
The following abbreviations are used throughout the user
manual:
Description:
Front Panel:
The front panel of the Power Master XT / Power Master / Master
Q4 MI 2893 / MI 2892 / MI 2885 contains various controls and
indicators for easy operation.
Connector Panel:
The connector panel of the Power Master XT / Power Master /
Master Q4 MI 2893 / MI 2892 / MI 2885 provides interfaces for
connecting external devices.
Bottom View:
The bottom view of the Power Master XT / Power Master / Master
Q4 MI 2893 / MI 2892 / MI 2885 displays additional features and
connections.
Accessories:
Standard Accessories:
The Power Master XT / Power Master / Master Q4 MI 2893 / MI 2892
/ MI 2885 comes with the following standard accessories:
- [Standard Accessory 1]
- [Standard Accessory 2]
- [Standard Accessory 3]
Optional Accessories:
Additional accessories are available for the Power Master XT /
Power Master / Master Q4 MI 2893 / MI 2892 / MI 2885:
- [Optional Accessory 1]
- [Optional Accessory 2]
- [Optional Accessory 3]
Operating the Instrument:
Instrument Status Bar:
The instrument status bar provides important information and
indicators about the current state of the Power Master XT / Power
Master / Master Q4 MI 2893 / MI 2892 / MI 2885.
Instrument Keys:
The instrument keys on the Power Master XT / Power Master /
Master Q4 MI 2893 / MI 2892 / MI 2885 allow for easy navigation and
operation.
Instrument Memory (microSD card):
The Power Master XT / Power Master / Master Q4 MI 2893 / MI 2892
/ MI 2885 is equipped with a microSD card slot for storage and data
transfer.
Instrument Main Menu:
The instrument main menu provides access to various functions
and settings of the Power Master XT / Power Master / Master Q4 MI
2893 / MI 2892 / MI 2885.
Instrument Submenus:
The instrument submenus allow for further customization and
configuration of specific features on the Power Master XT / Power
Master / Master Q4 MI 2893 / MI 2892 / MI 2885.
FAQ:
Q: Can I use the Power Master XT / Power Master / Master Q4 MI
2893 / MI 2892 / MI 2885 for outdoor applications?
A: Yes, the Power Master XT / Power Master / Master Q4 MI 2893 /
MI 2892 / MI 2885 is designed to be used both indoors and
outdoors.
Q: How do I update the firmware of the Power Master XT / Power
Master / Master Q4 MI 2893 / MI 2892 / MI 2885?
A: To update the firmware, please refer to the instructions
provided in the firmware update guide, which can be downloaded from
our website.
Q: What is the maximum operating temperature range of the Power
Master XT / Power Master / Master Q4 MI 2893 / MI 2892 / MI
2885?
A: The Power Master XT / Power Master / Master Q4 MI 2893 / MI
2892 / MI 2885 can operate within a temperature range of -10°C to
50°C (14°F to 122°F).
Power Master XT / Power Master / Master Q4 MI 2893 / MI 2892 / MI 2885 (HW:
9.0)
Instruction manual
Version 1.5.10 Code No. 20 753 179
Distributor:
Manufacturer: METREL d.o.o. Ljubljanska cesta 77 1354 Horjul Slovenia web
site: http://www.metrel.si e-mail: metrel@metrel.si
Mark on your equipment certifies that this equipment meets requirements of all
subjected EU regulations.
Hereby, Metrel d.o.o. declares that the MI 2893, MI 2892, MI 2885 is in
compliance with subjected EU directive. The full text of the EU declaration of
conformity is available at the following internet address
http://www.metrel.si/DoC.
© 2023 METREL
The trade names Metrel®, Smartec®, Eurotest®, Auto Sequence® are trademarks
registered in Europe and other countries.
No part of this publication may be reproduced or utilized in any form or by
any means without permission in writing from METREL.
2
MI 2893 / MI 2892 / MI 2885
Table of contents
1 Introduction ……………………………………………………………………………………………………………. 14
1.1 Main Features …………………………………………………………………………………………………………. 15
1.2 Safety considerations ……………………………………………………………………………………………….. 16
1.3 Applicable standards ………………………………………………………………………………………………… 17
1.4 Abbreviations ………………………………………………………………………………………………………….. 18
2 Description……………………………………………………………………………………………………………… 29
2.1 Front panel……………………………………………………………………………………………………………… 29
2.2 Connector panel ………………………………………………………………………………………………………. 30
2.3 Bottom view……………………………………………………………………………………………………………. 31
2.4 Accessories……………………………………………………………………………………………………………… 31 2.4.1 Standard
accessories……………………………………………………………………………………………….31 2.4.2 Optional accessories
………………………………………………………………………………………………. 31
3 Operating the instrument ………………………………………………………………………………………….. 32
3.1 Instrument status bar ……………………………………………………………………………………………….. 33
3.2 Instrument keys……………………………………………………………………………………………………….. 34
3.3 Instrument memory (microSD card) …………………………………………………………………………….. 35
3.4 Instrument Main Menu……………………………………………………………………………………………… 35 3.4.1
Instrument submenus …………………………………………………………………………………………….. 36
3.5 U, I, f ……………………………………………………………………………………………………………………… 38 3.5.1
Meter…………………………………………………………………………………………………………………….38 3.5.2 Scope
……………………………………………………………………………………………………………………. 40 3.5.3 Trend
……………………………………………………………………………………………………………………. 42 3.5.4 Voltage and current
trends ……………………………………………………………………………………… 42
3.6 Power ……………………………………………………………………………………………………………………. 45 3.6.1
Meter…………………………………………………………………………………………………………………….45 3.6.2 Trend
……………………………………………………………………………………………………………………. 48
3.7 Energy……………………………………………………………………………………………………………………. 51 3.7.1
Meter…………………………………………………………………………………………………………………….51 3.7.2 Trend
……………………………………………………………………………………………………………………. 53 3.7.3 Efficiency
………………………………………………………………………………………………………………. 54
3.8 Harmonics / inter-harmonics ……………………………………………………………………………………… 56 3.8.1
Meter…………………………………………………………………………………………………………………….56 3.8.2 Histogram (Bar)
……………………………………………………………………………………………………… 58 3.8.3 Harmonics Average Histogram
(Avg Bar) …………………………………………………………………… 59 3.8.4 Trend
……………………………………………………………………………………………………………………. 61
3.9 Flickers…………………………………………………………………………………………………………………… 63 3.9.1
Meter…………………………………………………………………………………………………………………….63 3.9.2 Trend
……………………………………………………………………………………………………………………. 64
3.10 Phase Diagram ………………………………………………………………………………………………………… 65 3.10.1 Phase
diagram……………………………………………………………………………………………………. 65 3.10.2 Unbalance diagram
…………………………………………………………………………………………….. 66 3.10.3 Unbalance trend
………………………………………………………………………………………………… 68
3.11 Temperature …………………………………………………………………………………………………………… 69 3.11.1 Meter
……………………………………………………………………………………………………………….. 69 3.11.2
Trend…………………………………………………………………………………………………………………69
3.12 Under deviation and over deviation …………………………………………………………………………….. 70
3.12.1 Meter ……………………………………………………………………………………………………………….. 70
3
MI 2893 / MI 2892 / MI 2885
Table of contents
3.12.2 Trend…………………………………………………………………………………………………………………71
3.13 Signalling………………………………………………………………………………………………………………… 72 3.13.1 Meter
……………………………………………………………………………………………………………….. 72 3.13.2
Trend…………………………………………………………………………………………………………………73 3.13.3 Table
………………………………………………………………………………………………………………… 75
3.14 General Recorder……………………………………………………………………………………………………… 76
3.15 Waveform/Inrush recorder ………………………………………………………………………………………… 79 3.15.1
Setup ………………………………………………………………………………………………………………… 79 3.15.2 Capturing waveform
…………………………………………………………………………………………… 81 3.15.3 Captured waveform
……………………………………………………………………………………………. 83
3.16 Transient recorder ……………………………………………………………………………………………………. 85 3.16.1
Power Master XT – MI 2893 …………………………………………………………………………………. 85 3.16.1.1 Setup
………………………………………………………………………………………………………………… 85 3.16.2 Power Master/Master Q4 –
MI 2892/MI 2885 ……………………………………………………….. 88 3.16.2.1 Setup
………………………………………………………………………………………………………………… 88 3.16.3 Capturing transients
…………………………………………………………………………………………… 90 3.16.4 Captured transients
……………………………………………………………………………………………. 92
3.17 Events table…………………………………………………………………………………………………………….. 93 3.17.1 Group
view…………………………………………………………………………………………………………93 3.17.2 Phase view
………………………………………………………………………………………………………… 96
3.18 Alarms table ……………………………………………………………………………………………………………. 97
3.19 Rapid voltage changes (RVC) table ………………………………………………………………………………. 99
3.20 Inrush table …………………………………………………………………………………………………………… 100
3.21 E-Meter recorder (MI 2892/MI 2885) …………………………………………………………………………. 101
3.22 Memory List ………………………………………………………………………………………………………….. 106 3.22.1 General
Record ………………………………………………………………………………………………… 110 3.22.2 Waveform
snapshot………………………………………………………………………………………….. 113 3.22.3 Waveform/inrush record
…………………………………………………………………………………… 114 3.22.4 Transients record
……………………………………………………………………………………………… 114
3.23 Measurement Setup submenu ………………………………………………………………………………….. 115 3.23.1
Connection setup………………………………………………………………………………………………115 3.23.2 Event setup
……………………………………………………………………………………………………… 121 3.23.3 Alarm
setup………………………………………………………………………………………………………122 3.23.4 Signalling setup
………………………………………………………………………………………………… 124 3.23.5 Rapid voltage changes (RVC)
setup …………………………………………………………………….. 125 3.23.6 Measuring Methods
setup………………………………………………………………………………….125 3.23.7 Transient setup
………………………………………………………………………………………………… 127
3.24 General Setup submenu…………………………………………………………………………………………… 128 3.24.1
Communication…………………………………………………………………………………………………129 3.24.2 Time & Date
…………………………………………………………………………………………………….. 130 3.24.3 Language
…………………………………………………………………………………………………………. 132 3.24.4 Instrument info
………………………………………………………………………………………………… 132 3.24.5 Lock/Unlock
…………………………………………………………………………………………………….. 133 3.24.6 Colour model
…………………………………………………………………………………………………… 135 3.24.7
Backlight…………………………………………………………………………………………………………..136
4 Recording Practice and Instrument Connection ……………………………………………………………. 138
4.1 Measurement campaign ………………………………………………………………………………………….. 138
4.2 Connection setup……………………………………………………………………………………………………. 144 4.2.1
Connection to the LV Power Systems ……………………………………………………………………… 144
4
MI 2893 / MI 2892 / MI 2885
Table of contents
4.2.2 4.2.3 4.2.4 4.2.5 4.2.6
Connection to the MV or HV Power System …………………………………………………………….. 149 Current clamp selection and transformation ratio setting …………………………………………. 153 Connection check …………………………………………………………………………………………………. 157 Temperature probe connection………………………………………………………………………………160 GPS time synchronization device connection …………………………………………………………… 160
4.3 Remote instrument connection (over Internet / Internet(3G/GPRS) / Intranet (LAN))………….. 161 4.3.1 Communication principle ………………………………………………………………………………………. 161 4.3.2 Instrument setup on remote measurement site ………………………………………………………. 162 4.3.3 PowerView setup for instrument remote access……………………………………………………….164 4.3.4 Remote connection ………………………………………………………………………………………………. 165
4.4 Number of measured parameters and connection type relationship ………………………………… 175
5 Theory and internal operation ………………………………………………………………………………….. 182
5.1 Measurement methods …………………………………………………………………………………………… 182 5.1.1 Measurement aggregation over time intervals ………………………………………………………… 182 5.1.2 Voltage measurement (magnitude of supply voltage) ………………………………………………. 183 5.1.3 Current measurement (magnitude of supply current) ………………………………………………. 183 5.1.4 Frequency measurement ………………………………………………………………………………………. 184 5.1.5 Modern Power measurement…………………………………………………………………………………184 5.1.6 Classic Vector and Arithmetic Power measurement …………………………………………………. 190 5.1.7 Energy………………………………………………………………………………………………………………….192 5.1.8 Harmonics and interharmonics……………………………………………………………………………….194 5.1.9 Signalling …………………………………………………………………………………………………………….. 196 5.1.10 Flicker………………………………………………………………………………………………………………196 5.1.11 Voltage and current unbalance ………………………………………………………………………….. 197 5.1.12 Under-deviation and over-deviation …………………………………………………………………… 197 5.1.13 Voltage events …………………………………………………………………………………………………. 198 5.1.14 Alarms …………………………………………………………………………………………………………….. 202 5.1.15 Rapid voltage changes (RVC) ……………………………………………………………………………… 203 5.1.16 Data aggregation in GENERAL RECORDING ………………………………………………………….. 204 5.1.17 Flagged data……………………………………………………………………………………………………..207 5.1.18 Waveform snapshot………………………………………………………………………………………….. 208 5.1.19 Waveform recorder ………………………………………………………………………………………….. 208 5.1.20 Transient recorder ……………………………………………………………………………………………. 212
5.2 EN 50160 Standard Overview ……………………………………………………………………………………. 213 5.2.1 Power frequency ………………………………………………………………………………………………….. 214 5.2.2 Supply voltage variations ………………………………………………………………………………………. 214 5.2.3 Supply voltage unbalance ……………………………………………………………………………………… 214 5.2.4 THD voltage and harmonics …………………………………………………………………………………… 214 5.2.5 Interharmonic voltage……………………………………………………………………………………………215 5.2.6 Mains signalling on the supply voltage ……………………………………………………………………. 215 5.2.7 Flicker severity …………………………………………………………………………………………………….. 215 5.2.8 Voltage dips………………………………………………………………………………………………………….215 5.2.9 Voltage swells……………………………………………………………………………………………………….216 5.2.10 Short interruptions of the supply voltage…………………………………………………………….. 216 5.2.11 Long interruptions of the supply voltage……………………………………………………………… 216 5.2.12 MI 2893/MI 2892/MI 2885 recorder setting for EN 50160 survey……………………………216
6 Technical specifications …………………………………………………………………………………………… 218
6.1 General specifications……………………………………………………………………………………………… 218
6.2 Measurements ………………………………………………………………………………………………………. 218 6.2.1 General description……………………………………………………………………………………………….218
5
MI 2893 / MI 2892 / MI 2885
Table of contents
6.2.2 Phase Voltages …………………………………………………………………………………………………….. 220 6.2.3 Line
voltages…………………………………………………………………………………………………………220 6.2.4 Current
……………………………………………………………………………………………………………….. 222 6.2.5
Frequency…………………………………………………………………………………………………………….225 6.2.6
Flickers…………………………………………………………………………………………………………………225 6.2.7 Transients
……………………………………………………………………………………………………………. 225 6.2.8 Combined
power…………………………………………………………………………………………………..226 6.2.9 Fundamental power
……………………………………………………………………………………………… 226 6.2.10 Nonfundamental power
……………………………………………………………………………………. 227 6.2.11 Power factor (PF, PFe, PFv, PFa)
…………………………………………………………………………. 228 6.2.12 Displacement factor (DPF) or Cos )
…………………………………………………………………… 228 6.2.13 Energy
…………………………………………………………………………………………………………….. 228 6.2.14 Voltage harmonics and
THD ………………………………………………………………………………. 229 6.2.15 Current harmonics, THD and
k-factor…………………………………………………………………..229 6.2.16 Voltage interharmonics
…………………………………………………………………………………….. 230 6.2.17 Current interharmonics
…………………………………………………………………………………….. 230 6.2.18 Signalling
…………………………………………………………………………………………………………. 231 6.2.19 Unbalance
……………………………………………………………………………………………………….. 231 6.2.20 Overdeviation and
Underdeviation …………………………………………………………………….. 231 6.2.21 Time and duration
uncertainty …………………………………………………………………………… 231 6.2.22 Temperature probe
………………………………………………………………………………………….. 231 6.2.23 Phase angle
……………………………………………………………………………………………………… 232 6.2.24 400Hz systems specification
………………………………………………………………………………. 232 6.2.25 VFD (Variable frequency drive)
systems specification…………………………………………….232 6.2.26 Differences in specification
between 400Hz, VFD and 50/60 Hz systems………………….232
6.3 Recorders ……………………………………………………………………………………………………………… 233 6.3.1 General
recorder ………………………………………………………………………………………………….. 233 6.3.2 Waveform/inrush
recorder ……………………………………………………………………………………. 234 6.3.3 Waveform snapshot
……………………………………………………………………………………………… 234 6.3.4 Transient
recorder………………………………………………………………………………………………… 234
6.4 Standards compliance……………………………………………………………………………………………… 236 6.4.1
Compliance to the IEC 61557-12……………………………………………………………………………..236 6.4.2
Compliance to the to the IEC 61000-4-30…………………………………………………………………237
7 Maintenance …………………………………………………………………………………………………………. 238
7.1 Inserting batteries into the instrument……………………………………………………………………….. 238
7.2 Batteries ………………………………………………………………………………………………………………. 239
7.3 Firmware upgrade ………………………………………………………………………………………………….. 240 7.3.1
Requirements ………………………………………………………………………………………………………. 240 7.3.2 Upgrade
procedure ………………………………………………………………………………………………. 241
7.4 Power supply considerations ……………………………………………………………………………………. 244
7.5 Cleaning ……………………………………………………………………………………………………………….. 244
7.6 Periodic calibration…………………………………………………………………………………………………. 245
7.7 Service …………………………………………………………………………………………………………………. 245
7.8 Troubleshooting …………………………………………………………………………………………………….. 245
8 Version of document ………………………………………………………………………………………………. 245
6
MI 2893 / MI 2892 / MI 2885
Table of contents
List of tables:
Table 1: MI 2893/MI 2892/MI 2885 standard accessories
………………………………………………………………. 31 Table 2: Instrument status bar
description……………………………………………………………………………………. 33 Table 3: Shortcut Keys and
other Function keys……………………………………………………………………………..34 Table 4: Instrument Main
menu ………………………………………………………………………………………………….. 36 Table 5: Keys in Main menu
………………………………………………………………………………………………………… 36 Table 6: Keys in
submenus…………………………………………………………………………………………………………..38 Table 7: Instrument
screen symbols and abbreviations ………………………………………………………………….. 39 Table 8: Keys
in Meter screens ……………………………………………………………………………………………………. 40 Table 9:
Instrument screen symbols and abbreviations ………………………………………………………………….. 41
Table 10: Keys in Scope screens……………………………………………………………………………………………………41 Table
11: Instrument screen symbols and abbreviations ………………………………………………………………… 43
Table 12: Keys in Trend screens……………………………………………………………………………………………………43 Table
13: Instrument screen symbols and abbreviations (see 5.1.5 for details)
instantaneous values .. 46 Table 14: Keys in Power (METER) screens
…………………………………………………………………………………….. 47 Table 15: Instrument screen symbols and
abbreviations ………………………………………………………………… 48 Table 16: Keys in Power (TREND)
screens …………………………………………………………………………………….. 50 Table 17: Instrument screen
symbols and abbreviations ………………………………………………………………… 52 Table 18: Keys in
Energy (METER) screens ……………………………………………………………………………………. 52 Table 19:
Instrument screen symbols and abbreviations ………………………………………………………………… 53 Table
20: Keys in Energy (TREND) screens……………………………………………………………………………………..53 Table
21: Instrument screen symbols and abbreviations ………………………………………………………………… 54
Table 22: Keys in Energy (TREND) screens……………………………………………………………………………………..55
Table 23: Instrument screen symbols and abbreviations
………………………………………………………………… 57 Table 24: Keys in Harmonics / inter-harmonics
(METER) screens …………………………………………………….. 57 Table 25: Instrument screen symbols
and abbreviations ………………………………………………………………… 58 Table 26: Keys in Harmonics /
inter-harmonics (BAR) screens………………………………………………………….58 Table 27: Instrument
screen symbols and abbreviations ………………………………………………………………… 60 Table 28: Keys
in Harmonics / inter-harmonics (AVG) screens ………………………………………………………… 60 Table
29: Instrument screen symbols and abbreviations ………………………………………………………………… 61
Table 30: Keys in Harmonics / inter-harmonics (TREND) screens
…………………………………………………….. 62 Table 31: Instrument screen symbols and
abbreviations ………………………………………………………………… 63 Table 32: Keys in Flickers (METER)
screen …………………………………………………………………………………….. 63 Table 33: Instrument screen
symbols and abbreviations ………………………………………………………………… 64 Table 34: Keys in
Flickers (TREND) screens…………………………………………………………………………………….65 Table 35:
Instrument screen symbols and abbreviations ………………………………………………………………… 66 Table
36: Keys in Phase diagram screen ……………………………………………………………………………………….. 66 Table
37: Instrument screen symbols and abbreviations ………………………………………………………………… 67
Table 38: Keys in Unbalance diagram screens ………………………………………………………………………………..
67 Table 39: Instrument screen symbols and abbreviations
………………………………………………………………… 68 Table 40: Keys in Unbalance trend screens
…………………………………………………………………………………… 68 Table 41: Instrument screen symbols and
abbreviations ………………………………………………………………… 69 Table 42: Keys in Temperature meter
screen…………………………………………………………………………………69 Table 43: Instrument screen symbols
and abbreviations ………………………………………………………………… 70 Table 44: Keys in Temperature
trend screens ……………………………………………………………………………….. 70 Table 45: Instrument screen
symbols and abbreviations ………………………………………………………………… 71 Table 46: Keys in Under
deviation and over deviation (METER) screen……………………………………………..71 Table 47:
Instrument screen symbols and abbreviations ………………………………………………………………… 71 Table
48: Keys in Under deviation and Over deviation (TREND) screens
…………………………………………… 72 Table 49: Instrument screen symbols and abbreviations
………………………………………………………………… 73 Table 50: Keys in Signalling (METER)
screen…………………………………………………………………………………..73
7
MI 2893 / MI 2892 / MI 2885
Table of contents
Table 51: Instrument screen symbols and abbreviations ………………………………………………………………… 74 Table 52: Keys in Signalling (TREND) screen ………………………………………………………………………………….. 74 Table 53: Instrument screen symbols and abbreviations ………………………………………………………………… 75 Table 54: Keys in Signalling (TABLE) screen …………………………………………………………………………………… 75 Table 55: General recorder settings description and screen symbols………………………………………………..76 Table 56: Keys in General recorder setup screen …………………………………………………………………………… 78 Table 57: Waveform recorder settings description and screen symbols …………………………………………… 80 Table 58: Keys in Waveform recorder setup screen………………………………………………………………………..80 Table 59: Instrument screen symbols and abbreviations ………………………………………………………………… 82 Table 60: Keys in Waveform recorder capture screen ……………………………………………………………………. 83 Table 61: Instrument screen symbols and abbreviations ………………………………………………………………… 84 Table 62: Keys in captured waveform recorder screens …………………………………………………………………. 84 Table 63: Transients on the low voltage network ………………………………………………………………………….. 85 Table 64: Transient recorder settings description and screen symbols …………………………………………….. 86 Table 65: Keys in Transient recorder setup screen………………………………………………………………………….87 Table 66: Transient recorder settings description and screen symbols …………………………………………….. 88 Table 67: Keys in Transient recorder setup screen………………………………………………………………………….90 Table 68: Instrument screen symbols and abbreviations ………………………………………………………………… 91 Table 69: Keys in Transient recorder capture screen ……………………………………………………………………… 91 Table 70: Instrument screen symbols and abbreviations ………………………………………………………………… 92 Table 71: Keys in captured transient recorder screens …………………………………………………………………… 92 Table 72: Instrument screen symbols and abbreviations ………………………………………………………………… 94 Table 73: Keys in Events table group view screens…………………………………………………………………………. 95 Table 74: Instrument screen symbols and abbreviations ………………………………………………………………… 96 Table 75: Keys in Events table phase view screens ………………………………………………………………………… 97 Table 76: Instrument screen symbols and abbreviations ………………………………………………………………… 98 Table 77: Keys in Alarms table screens …………………………………………………………………………………………. 98 Table 78: Instrument screen symbols and abbreviations ………………………………………………………………… 99 Table 79: Keys in RVC Events table group view screens ………………………………………………………………… 100 Table 80: Instrument screen symbols and abbreviations ………………………………………………………………. 101 Table 81: E-Meter recorder settings description…………………………………………………………………………..103 Table 82: Functional Keys in E-Meter recorder setup screen………………………………………………………….104 Table 83: E-Meter recorder setup settings description …………………………………………………………………. 104 Table 84: Instrument screen symbols and abbreviations ………………………………………………………………. 106 Table 85: Keys in Memory list (Folder) screen………………………………………………………………………………107 Table 86: Instrument screen symbols and abbreviations ………………………………………………………………. 107 Table 87: Keys in Memory list screen …………………………………………………………………………………………. 108 Table 88: Recorder settings description ……………………………………………………………………………………… 110 Table 89: Keys in General record front page screen………………………………………………………………………110 Table 90: Instrument screen symbols and abbreviations ………………………………………………………………. 111 Table 91: Keys in Viewing recorder U,I,f TREND screens ……………………………………………………………….. 112 Table 92: Recorder settings description ……………………………………………………………………………………… 113 Table 93: Keys in Snapshot record front page screen …………………………………………………………………… 113 Table 94: Description of Measurement setup options ………………………………………………………………….. 115 Table 95: Keys in Measurement setup submenu screen ……………………………………………………………….. 115 Table 96: Description of Connection setup………………………………………………………………………………….. 116 Table 97: Keys in Connection setup menu……………………………………………………………………………………120 Table 98: Description of Event setup ………………………………………………………………………………………….. 121 Table 99: Keys in Event setup screen…………………………………………………………………………………………..121 Table 100: Description of Alarm setup ……………………………………………………………………………………….. 122 Table 101: Keys in Alarm setup screens……………………………………………………………………………………….123 Table 102: Description of Signalling setup……………………………………………………………………………………124
8
MI 2893 / MI 2892 / MI 2885
Table of contents
Table 103: Keys in Signalling setup screen ………………………………………………………………………………….. 124 Table 104: Description of RVC setup ………………………………………………………………………………………….. 125 Table 105: Keys in RVC setup screen ………………………………………………………………………………………….. 125 Table 106: Description of Measuring Methods setup …………………………………………………………………… 126 Table 107: Keys in Measuring Methods setup screen …………………………………………………………………… 126 Table 108: Description of Transient setup……………………………………………………………………………………128 Table 109: Description of General setup options …………………………………………………………………………. 128 Table 110: Keys in General setup submenu………………………………………………………………………………….128 Table 111: Description of Communication setup options ……………………………………………………………… 129 Table 112: Keys in Communication setup…………………………………………………………………………………….130 Table 113: Description of Set date/time screen …………………………………………………………………………… 131 Table 114: Keys in Set date/time screen …………………………………………………………………………………….. 131 Table 115: Keys in Language setup screen ………………………………………………………………………………….. 132 Table 116: Description of Instrument info screen ………………………………………………………………………… 133 Table 117: Keys in Instrument info screen…………………………………………………………………………………… 133 Table 118: Description of Lock/Unlock screen …………………………………………………………………………….. 134 Table 119: Keys in Lock/Unlock screen………………………………………………………………………………………..134 Table 120: Locked instrument functionality ………………………………………………………………………………… 134 Table 121: Keys in Colour model screens ……………………………………………………………………………………. 135 Table 122: Description Backlight screen ……………………………………………………………………………………… 136 Table 123: Keys in Backlight screen ……………………………………………………………………………………………. 137 Table 124: Keys in Smart clamps pop up window ………………………………………………………………………… 156 Table 125: Connection check description and screen symbols ………………………………………………………. 157 Table 126: Keys in Connection check screen ……………………………………………………………………………….. 159 Table 127: GPS functionality ……………………………………………………………………………………………………… 160 Table 128: Keys in Set time zone screen………………………………………………………………………………………160 Table 129: Internet setup parameters…………………………………………………………………………………………163 Table 130: Internet status bar icons …………………………………………………………………………………………… 163 Table 131: Instrument selection form parameters………………………………………………………………………..164 Table 132: Quantities measured by instrument …………………………………………………………………………… 175 Table 133: Quantities recorded by instrument (Standard Profile) ………………………………………………….. 177 Table 134: Quantities recorded by instrument (Limited Profile)……………………………………………………..180 Table 135: Summary and grouping of the phase power quantities ………………………………………………… 185 Table 136: Power summary and grouping of the total power quantities ………………………………………… 186 Table 137: Summary and grouping of the phase power quantities ………………………………………………… 190 Table 138: Power summary and grouping of the total power quantities ………………………………………… 190 Table 139: Alarm definition parameters………………………………………………………………………………………202 Table 140: Alarm signatures ……………………………………………………………………………………………………… 202 Table 141: Data aggregation methods…………………………………………………………………………………………205 Table 142: EN 50160 standard LV limits (continuous phenomena) ………………………………………………… 213 Table 143: Values of individual harmonic voltages at the supply …………………………………………………… 214 Table 144:Voltage dips classification ………………………………………………………………………………………….. 216 Table 145:Voltage swell classification ………………………………………………………………………………………… 216 Table 146: General recording max. duration ……………………………………………………………………………….. 233
9
MI 2893 / MI 2892 / MI 2885
Table of contents
List of Figures:
Figure 1: Power Master XT instrument………………………………………………………………………………………….14
Figure 2: Front plates and marking labels………………………………………………………………………………………15
Figure 3: Front panel…………………………………………………………………………………………………………………..29 Figure
4:Top connector panel ……………………………………………………………………………………………………… 30 Figure 5:
Side connector panel …………………………………………………………………………………………………… 30 Figure 6:
Bottom view…………………………………………………………………………………………………………………31 Figure 7: Display
symbols and keys description……………………………………………………………………………… 32 Figure 8: Common
display symbols and labels during measurement campaign ………………………………… 32 Figure
9: Instrument status bar …………………………………………………………………………………………………… 33 Figure 10:
Inserting microSD card…………………………………………………………………………………………………35 Figure 11: “MAIN
MENU” …………………………………………………………………………………………………………… 36 Figure 12: Measurements
submenu …………………………………………………………………………………………….. 37 Figure 13: Recorders submenu
(MI 2893) …………………………………………………………………………………….. 37 Figure 14: Recorders submenu
(MI 2892/MI 2885) ……………………………………………………………………….. 37 Figure 15: Measurement
setup submenu………………………………………………………………………………………37 Figure 16: General setup
submenu……………………………………………………………………………………………….38 Figure 17: U, I, f meter phase
table screens (L1, L2, L3, N)………………………………………………………………. 38 Figure 18: U, I, f
meter summary table screens………………………………………………………………………………39 Figure 19: Voltage
only waveform………………………………………………………………………………………………..40 Figure 20: Current only
waveform ……………………………………………………………………………………………….. 40 Figure 21: Voltage and
current waveform (single mode) ………………………………………………………………… 41 Figure 22: Voltage
and current waveform (dual mode) ………………………………………………………………….. 41 Figure 23:
Voltage trend (all voltages)…………………………………………………………………………………………..42 Figure 24:
Voltage trend (single voltage)……………………………………………………………………………………….42 Figure 25:
Voltage and current trend (single mode) ………………………………………………………………………. 42 Figure
26: Voltage and current trend (dual mode)………………………………………………………………………….42
Figure 27: Trends of all currents ………………………………………………………………………………………………….. 43
Figure 28: Frequency trend………………………………………………………………………………………………………….43 Figure
29: Power measurements summary (combined) …………………………………………………………………. 45 Figure
30: Power measurements summary (nonfundamental) ……………………………………………………….. 45
Figure 31: Power measurements summary (fundamental)………………………………………………………………45
Figure 32: Detailed power measurements at phase L1 ……………………………………………………………………
46 Figure 33: Detailed total power measurements
…………………………………………………………………………….. 46 Figure 34: Power trend
screen……………………………………………………………………………………………………..48 Figure 35: Energy counters
screen (General Recorder is running) ……………………………………………………. 51 Figure 36:
Energy counters screen (General Recorder is not running)………………………………………………. 52
Figure 37: Energy trend screen ……………………………………………………………………………………………………. 53
Figure 38: Energy efficiency screen ……………………………………………………………………………………………… 54
Figure 39: Harmonics and inter-harmonics (METER) screens
………………………………………………………….. 56 Figure 40: Phase harmonics presentation (U,I,P)
…………………………………………………………………………… 56 Figure 41: Harmonics histogram screen
……………………………………………………………………………………….. 58 Figure 42: Harmonics average histogram
screen …………………………………………………………………………… 60 Figure 43: Harmonics and inter-
harmonics trend screen ………………………………………………………………… 61 Figure 44: Flickers table
screen…………………………………………………………………………………………………….63 Figure 45: Flickers trend
screen …………………………………………………………………………………………………… 64 Figure 46: Phase diagram
screen …………………………………………………………………………………………………. 66 Figure 47: Unbalance diagram
screen ………………………………………………………………………………………….. 67 Figure 48: Symmetry trend
screen ………………………………………………………………………………………………. 68 Figure 49: Temperature meter
screen…………………………………………………………………………………………..69 Figure 50: Temperature trend
screen……………………………………………………………………………………………70
10
MI 2893 / MI 2892 / MI 2885
Table of contents
Figure 51: Under deviation and over deviation table screen …………………………………………………………… 70 Figure 52: Under-deviation and over-deviation TREND screen…………………………………………………………71 Figure 53: Signalling meter screen………………………………………………………………………………………………..73 Figure 54: Signalling trend screen…………………………………………………………………………………………………74 Figure 55: Signalling table screen ………………………………………………………………………………………………… 75 Figure 56: General recorder setup screen …………………………………………………………………………………….. 76 Figure 57: Triggering in waveform record …………………………………………………………………………………….. 79 Figure 58: Waveform recorder setup screen………………………………………………………………………………….80 Figure 59: Waveform recorder capture screen ……………………………………………………………………………… 82 Figure 60: Waveform recorder screen…………………………………………………………………………………………..82 Figure 61: Waveform recorder scope screen ………………………………………………………………………………… 82 Figure 62: Captured waveform recorder screen…………………………………………………………………………….. 83 Figure 63: Transient recorder setup screen MI 2893 …………………………………………………………………… 86 Figure 64: Transient recorder setup screen MI 2892/MI 2885……………………………………………………….88 Figure 65: Transient recorder capture screen (waiting phase/recording) MI 2893 ………………………….. 90 Figure 66: Transient recorder capture screen (waiting phase/recording) MI 2892/MI 2885 …………….. 91 Figure 67: Captured Transient recorder screen………………………………………………………………………………91 Figure 68: Captured transient recorder screen ……………………………………………………………………………… 92 Figure 69: Voltage events in group view screen …………………………………………………………………………….. 94 Figure 70: Voltage event in detail view screen ………………………………………………………………………………. 94 Figure 71: Voltage events screens ……………………………………………………………………………………………….. 96 Figure 72: Alarms list screen ……………………………………………………………………………………………………….. 98 Figure 73: RVC Events table group view screen………………………………………………………………………………99 Figure 74: Inrush table group view screen…………………………………………………………………………………… 101 Figure 75: E – Meter measuring accuracy comparison methods …………………………………………………….. 102 Figure 76: PQI setup connection and Connection check ……………………………………………………………….. 102 Figure 77: E-Meter functionality under Recorder menu ……………………………………………………………….. 102 Figure 78: E-Meter Recorder menu ……………………………………………………………………………………………. 103 Figure 79: E-Meter Recorder setup menu …………………………………………………………………………………… 104 Figure 80: Memory list screen (Folder structure) …………………………………………………………………………. 106 Figure 81: Memory list screen (Recorder data) ……………………………………………………………………………. 107 Figure 82: Front page of General record in MEMORY LIST menu …………………………………………………… 110 Figure 83: Viewing recorder U,I,f TREND data………………………………………………………………………………111 Figure 84: Front page of Snapshot in MEMORY LIST menu…………………………………………………………….113 Figure 85: U,I,f meter screen in recalled snapshot record …………………………………………………………….. 114 Figure 86: MEASUREMENT SETUP submenu ……………………………………………………………………………….. 115 Figure 87: “CONNECTION SETUP” screen ……………………………………………………………………………………. 116 Figure 88: Event setup screen……………………………………………………………………………………………………121 Figure 89: Alarm setup screens………………………………………………………………………………………………….122 Figure 90: Signalling setup screen ……………………………………………………………………………………………… 124 Figure 91: RVC setup screen ……………………………………………………………………………………………………… 125 Figure 92: Measuring Methods setup screen MI 2893 ……………………………………………………………….. 126 Figure 93: Measuring Methods setup screen MI 2892/MI 2885 ………………………………………………….. 126 Figure 94: Transient setup screen MI 2893 ………………………………………………………………………………. 127 Figure 95: Transient setup screen MI 2892/MI 2885 …………………………………………………………………. 127 Figure 96: GENERAL SETUP submenu …………………………………………………………………………………………. 128 Figure 97: Communication setup screen …………………………………………………………………………………….. 129 Figure 98: Set date/time screen ………………………………………………………………………………………………… 131 Figure 99: Language setup screen ……………………………………………………………………………………………… 132 Figure 100: Instrument info screen MI 2893 …………………………………………………………………………….. 132 Figure 101: Instrument info screen MI 2892/MI 2885 ……………………………………………………………….. 133 Figure 102: Lock/Unlock screen………………………………………………………………………………………………….134
11
MI 2893 / MI 2892 / MI 2885
Table of contents
Figure 103: Locked instrument screen…………………………………………………………………………………………135 Figure 104: Colour representation of phase voltages …………………………………………………………………… 135 Figure 105: Backlight screen ……………………………………………………………………………………………………… 136 Figure 106: Recommended measurement practice ……………………………………………………………………… 141 Figure 107: Connection setup menu……………………………………………………………………………………………144 Figure 108: Choosing 3-phase 4-wire system on instrument …………………………………………………………. 144 Figure 109: 3-phase 4-wire system …………………………………………………………………………………………….. 145 Figure 110: Choosing 3-phase 3-wire system on instrument …………………………………………………………. 145 Figure 111: 3-phase 3-wire system …………………………………………………………………………………………….. 145 Figure 112: Choosing Open Delta (Aaron) 3-wire system on instrument………………………………………….146 Figure 113: Open Delta (Aaron) 3-wire system ……………………………………………………………………………. 146 Figure 114: Choosing 1-phase 3-wire system on instrument …………………………………………………………. 146 Figure 115: 1-phase 3-wire system …………………………………………………………………………………………….. 147 Figure 116: Choosing 2-phase 4-wire system on instrument …………………………………………………………. 147 Figure 117: 2-phase 4-wire system …………………………………………………………………………………………….. 148 Figure 118: Choosing single- phase Inverter system on instrument ……………………………………………….. 148 Figure 119: Single phase inverter system …………………………………………………………………………………. 148 Figure 120: Choosing three- phase Inverter system on instrument ………………………………………………… 149 Figure 121: Three phase inverter system …………………………………………………………………………………. 149 Figure 122: Voltage ratio for 11 kV / 110 transformer example ……………………………………………………. 150 Figure 123: Connecting instrument to the existing current transformers in medium voltage system (Aaron / OpenDelta) ………………………………………………………………………………………………………………… 150 Figure 124: Connecting instrument to the existing current transformers in medium voltage system (Delta Delta)……………………………………………………………………………………………………………………………………151 Figure 125: Connecting instrument to the existing current transformers in medium voltage system (Delta Star)……………………………………………………………………………………………………………………………………..151 Figure 126: Connecting instrument to the existing current transformers in medium voltage system (Star Star)……………………………………………………………………………………………………………………………………..152 Figure 127: Connecting instrument to the existing current transformers in medium voltage system (star delta) …………………………………………………………………………………………………………………………………… 152 Figure 128: Smart current clamps auto range selection…………………………………………………………………153 Figure 129: Parallel feeding of large load ……………………………………………………………………………………. 154 Figure 130: Current clamps selection for indirect current measurement ……………………………………….. 155 Figure 131: Selecting 10% of current clamps range………………………………………………………………………155 Figure 132: Automatically recognised clamps setup ……………………………………………………………………. 156 Figure 133: Automatically recognised clamps status…………………………………………………………………….156 Figure 134: Set time zone screen………………………………………………………………………………………………..160 Figure 135: Schematic view on the remote measurements …………………………………………………………… 162 Figure 136: Internet connection setup screen………………………………………………………………………………163 Figure 137: PowerView v3.0 remote connection settings form ……………………………………………………… 164 Figure 138: PowerView v3.0 remote connection monitor …………………………………………………………….. 165 Figure 139: PowerView connection to LAN and Metrel Server established (Steps 1 & 2) ………………….. 166 Figure 140: Remote instrument connection to Metrel Server established (Step 3) ………………………….. 167 Figure 141: Remote instrument connection to PowerView v3.0 established (Step 4)………………………..168 Figure 142: Active connection indication ……………………………………………………………………………………. 168 Figure 143: Remote connection icon ………………………………………………………………………………………….. 169 Figure 144: Detection of the instrument type ……………………………………………………………………………… 169 Figure 145: Selecting records from a list for download………………………………………………………………….170 Figure 146: Real time scope window in remote connection, with several channels selected …………….. 171 Figure 147: Remote Instrument Configuration form……………………………………………………………………..172 Figure 148: Remote Recorder configuration ……………………………………………………………………………….. 173 Figure 149: Recording in progress ……………………………………………………………………………………………… 174
12
MI 2893 / MI 2892 / MI 2885
Table of contents
Figure 150: Phase and Phase-to-phase voltage ……………………………………………………………………………. 183 Figure 151: IEEE 1459 phase power measurement organisation (phase) ………………………………………… 185 Figure 152: IEEE 1459 phase power measurement organisation (totals)…………………………………………. 185 Figure 153: Vector representation of total power calculus ……………………………………………………………. 190 Figure 154: Arithmetic representation of total power calculus ……………………………………………………… 190 Figure 155: Energy counters and quadrant relationship ……………………………………………………………….. 193 Figure 156: Instrument energy counters …………………………………………………………………………………….. 193 Figure 157: Current and voltage harmonics ………………………………………………………………………………… 194 Figure 158: Illustration of harmonics / interharmonics subgroup for 50 Hz supply……………………………195 Figure 159: Voltage fluctuation …………………………………………………………………………………………………. 196 Figure 160:URms(1/2) 1-cycle measurement …………………………………………………………………………………… 199 Figure 161: Voltage events definition………………………………………………………………………………………….199 Figure 162:Voltage dip related screens on the instrument ……………………………………………………………. 200 Figure 163:Voltage interrupts related screens on the instrument ………………………………………………….. 201 Figure 164: RVC event description………………………………………………………………………………………………203 Figure 165: Synchronization and aggregation of 10/12 cycle intervals…………………………………………….204 Figure 166: Avg vs. Avgon, switching load current ……………………………………………………………………….. 206 Figure 167: Consumed/generated and inductive/capacitive phase/polarity diagram………………………..207 Figure 168: Flagging data indicate that aggregated value might be unreliable ………………………………… 208 Figure 169: Triggering and pre-triggering description……………………………………………………………………209 Figure 170: Voltage Event Triggering…………………………………………………………………………………………..210 Figure 171: Voltage Level Triggering……………………………………………………………………………………………210 Figure 172: Current Level Triggering (Inrush) ………………………………………………………………………………. 211 Figure 173: Waveform recorder setup for triggering on voltage events…………………………………………..211 Figure 174: Level triggering ………………………………………………………………………………………………………. 212 Figure 175: Triggering slope……………………………………………………………………………………………………….212 Figure 176: Transients trigger detection (envelope) …………………………………………………………………….. 213 Figure 177: Transients trigger detection (level)…………………………………………………………………………….213 Figure 178: Mains signalling voltage level limits according to EN50160 ………………………………………….. 215 Figure 179: Predefined EN50160 recorder configuration………………………………………………………………. 217 Figure 180: General Recorder setup to allow auto-recording restart, when reaches maximum file length ……………………………………………………………………………………………………………………………………………… 234 Figure 181: Battery compartment ……………………………………………………………………………………………… 238 Figure 182: Closing the battery compartment cover……………………………………………………………………..239 Figure 183: PowerView update function …………………………………………………………………………………….. 240 Figure 184: Selecting USB communication ………………………………………………………………………………….. 241 Figure 185: Check for Firmware menu ……………………………………………………………………………………….. 241 Figure 186: Check for Firmware menu ……………………………………………………………………………………….. 241 Figure 187: New firmware is available for download ……………………………………………………………………. 242 Figure 188: FlashMe firmware upgrade software ………………………………………………………………………… 242 Figure 189: FlashMe configuration screen ………………………………………………………………………………….. 243 Figure 190: FlashMe programming screen ………………………………………………………………………………….. 244
13
MI 2893 / MI 2892 / MI 2885
Introduction
1 Introduction
MI 2893/MI 2892/MI 2885 are handheld multifunction instrument for power
quality analysis, high speed transient capturing (MI 2893), transient
capturing (MI 2892/MI 2885) and troubleshooting as well as energy efficiency
measurements.
Figure 1: Power Master XT instrument
Product differentiation: MI 2893/2892/2885 sharing same measuring hardware and
firmware platform. MI 2893 Class A Power Quality Instrument with additional
transient measuring board with sampling period 1 MHz MI 2892 – Class A Power
Quality Instrument with transient measurement on measuring board with sampling
period 49 kHz MI 2885 – Class S specified Power Quality Instrument with
transient measurement on measuring board with sampling period 49 kHz Note: The
appearance of the product is outwardly the same. The only differences are in
the marking labels and the front plates.
14
MI 2893 / MI 2892 / MI 2885
Main Features
Figure 2: Front plates and marking labels
1.1 Main Features
· Full compliance with power quality standard IEC 61000-4-30 Class A (MI
2893/MI 2892) · Full compliance with power quality standard IEC 61000-4-30
Class S (MI 2885) · Simple and powerful recorder with microSD memory card
(sizes up to 32 GB are supported). · 4 voltage channels with wide measurement
range: up to 1000 Vrms, CAT III / 1000 V, with
support for medium and high voltage systems. · Simultaneous voltage and
current (8 channels) sampling, 16-bit AD conversion for accurate
power measurements and minimal phase shift error. · 4 current channels with
support for automatic clamp recognition and automatic range selection. ·
Compliance with IEC 61557-12 and IEEE 1459 (Combined, fundamental,
nonfundamental power)
and IEC 62053-21 (Energy). · High speed transient sampling > 1MSamples/sec
simultaneously on all 8 channels (4xU & 4xI)
(MI 2893) · Transient selection between N /GND (MI 2893) · Transient recorder
with envelope or level triggering, with sampling frequency 49 kHz (MI 2892
/MI 2885) · 4.3” TFT colour display. · Waveform/inrush recorder, which can be
triggered on Event/Alarms/Level U/Level I/Interval;
transient recorder for phase/neutral lines (voltage and current
simultaneously) with level and envelope trigger selection run simultaneously
with general recorder.
15
MI 2893 / MI 2892 / MI 2885
Safety considerations
· Support for 50Hz, 60Hz, 400Hz system frequency and direct VFD (variable
frequency drives) measurement
· Measuring the accuracy of electric meters (electronic and mechanical) (MI
2892/MI 2885) · PC Software PowerView v3.0 is an integral part of a measuring
system which provides easiest
way to download, view and analyse measured data or print reports. o PowerView
v3.0 analyser exposes a simple but powerful interface for downloading
instrument data and getting quick, intuitive and descriptive analysis.
Interface has been organized to allow quick selection of data using a Windows
Explorer-like tree view. o User can easily download recorded data, and
organize it into multiple sites with many sub-sites or locations. o Generate
charts, tables and graphs for your power quality data analysing, and create
professional printed reports. o Export or copy / paste data to other
applications (e.g. spreadsheet) for further analysis. o Multiple data records
can be displayed and analysed simultaneously. o Merge different logging data
into one measurement, synchronize data recorded with different instruments
with time offsets, split logging data into multiple measurements, or extract
data of interest. o Instrument remote access over internet connection.
1.2 Safety considerations
To ensure operator safety while using the MI 2893/MI 2892/MI 2885 instruments
and to minimize the risk of damage to the instrument, please note the
following general warnings:
The instrument has been designed to ensure maximum operator safety. Usage in a
way other than specified in this manual may increase the risk of harm to the
operator!
Do not use the instrument and/or accessories if any visible damage is noticed!
The instrument contains no user serviceable parts. Only an authorized dealer
can carry out service or adjustment!
All normal safety precautions have to be taken in order to avoid risk of
electric shock when working on electrical installations!
Only use approved accessories which are available from your distributor!
Instrument contains rechargeable NiMH batteries. The batteries should only be
replaced with the same type as defined on the battery placement label or in
this manual. Do not use standard batteries while power supply adapter/charger
is connected, otherwise they may explode!
Hazardous voltages exist inside the instrument. Disconnect all test leads,
remove the power supply cable and switch off the instrument before removing
battery compartment cover.
Maximum nominal voltage between any phase and neutral input is 1000 VRMS.
Maximum nominal voltage between phases is 1730 VRMS.
Always short unused voltage inputs (L1, L2, L3, GND) with neutral (N) input to
prevent measurement errors and false event triggering due to noise coupling.
16
MI 2893 / MI 2892 / MI 2885
Applicable standards
Do not remove microSD memory card while instrument is recording or reading data. Record damage and card failure can occur.
1.3 Applicable standards
The MI 2893/MI 2892/MI 2885 are designed and tested in accordance with the
following standards:
Electromagnetic compatibility (EMC) EN 61326-2-2: 2021
Safety (LVD) EN 61010-1: 2010 + A1:2019 EN 61010-2-030: 2021 + A11:2021
EN 61010-031: 2015 + A1:2021 + A11:2021 EN 61010-2-032: 2021 + A11:2021
Measurement methods IEC 61000-4-30: 2015 + A1:2021 Class A IEC 61557-12: 2018
- A1:2021
IEC 61000-4-7: 2002 + A1: 2008
IEC 61000-4-15: 2010/ISH1:2017
Electrical equipment for measurement, control and laboratory use EMC
requirements Part 2-2: Particular requirements – Test configurations,
operational conditions and performance criteria for portable test, measuring
and monitoring equipment used in lowvoltage distribution systems
· Emission: Class A equipment (for industrial purposes) · Immunity for
equipment intended for use in industrial
locations
Safety requirements for electrical equipment for measurement, control and
laboratory use Part 1: General requirements Safety requirements for
electrical equipment for measurement, control and laboratory use Part 2-030:
Particular requirements for testing and measuring circuits Safety requirements
for electrical equipment for measurement, control and laboratory use Part
031: Safety requirements for hand-held probe assemblies for electrical
measurement and test Safety requirements for electrical equipment for
measurement, control and laboratory use Part 032: Particular requirements for
hand-held and hand-manipulated current sensors for electrical test and
measurement
Electromagnetic Compatibility (EMC) Part 4-30: Testing and measurement
techniques – Power quality measurement methods Electrical safety in low
voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. – Equipment
for testing, measuring or monitoring of protective measures Part 12:
Performance measuring and monitoring devices (PMD) Electromagnetic
compatibility (EMC) Part 4-7: Testing and measurement techniques General
guide on harmonics and inter-harmonics measurements and instrumentation for
power supply systems and equipment connected thereto Electromagnetic
compatibility (EMC) Part 4-15: Testing and measurement techniques Flicker
meter Functional and design specifications
17
MI 2893 / MI 2892 / MI 2885
Abbreviations
IEC 62053-21: 2020
Electricity metering equipment (a.c.) – Particular requirements
– Part 21: Static meters for active energy (classes 1 and 2)
IEC 62053-23: 2020
Electricity metering equipment (a.c.) – Particular requirements
– Part 23: Static meters for reactive energy (classes 2 and 3)
IEEE 1459: 2010
IEEE Standard Definitions for the Measurement of Electric
Power Quantities Under Sinusoidal, Non-sinusoidal, Balanced,
or Unbalanced Conditions
EN 50160: 2010
Voltage characteristics of electricity supplied by public
electricity networks
GOST R 54149: 2010
Electric energy. Electromagnetic compatibility of technical
equipment. Power quality limits in the public power supply
systems
Note about EN and IEC standards:
Text of this manual contains references to European standards. All standards of EN 6XXXX (e.g. EN
- series are equivalent to IEC standards with the same number (e.g. IEC
- and differ only in
amended parts required by European harmonization procedure.
1.4 Abbreviations
In this document following symbols and abbreviations are used:
CFI
Current crest factor, including CFIp (phase p current crest factor) and CFIN (neutral current crest factor). See 5.1.3 for definition.
Voltage crest factor, including CFUpg (phase p to phase g voltage
CFU
crest factor) and CFUp (phase p to neutral voltage crest factor). See
5.1.2 for definition.
DPFind/cap
Instantaneous phase power displacement (fundamental) power factor or cos ,
including DPFpind (phase p power displacement).
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character.
Recorded phase displacement (fundamental) power factor or cos , including DPFpind/cap (phase p power displacement).
DPFind/cap
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/ capacitive character. This parameter is recorded separately for each quadrant as shown on figure. See 5.1.5 for definition.
-P
+P
900
+Q
II I
Lead
DPFcap- DPFind+
1800
00
Lag
DPFind- DPFcap+
-Q
III IV
2700
DPFatotind DPFatotcap
Instantaneous total arithmetic displacement (fundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. See 5.1.6 for
definition.
DPFatotind
Recorded total arithmetic fundamental power factor.
18
MI 2893 / MI 2892 / MI 2885
Abbreviations
DPFatotcap
DPFvtotind DPFvtotcap
DPFvtotind DPFvtotcap
DPF+totind DPF+totcap
DPF+totind DPF+totcap
Di Dei DH
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. This parameter is recorded separately as shown on figure. See 5.1.6 for definition.
-P
+P
900
+Q
II I
1800 DPFatotcap- DPFatotind+ 00 DPFatotind- DPFatotcap+
-Q
III IV
2700
Instantaneous positive sequence total vector displacement (fundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. See 5.1.6 for definition.
Recorded total vector fundamental power factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. This parameter is
recorded separately as shown on figure. See 5.1.6 for definition.
-P
+P
900
+Q
II I
1800 DPFvtotcap- DPFvtotind+ 00 DPFvtotind- DPFvtotcap+
-Q
III IV
2700
Instantaneous positive sequence fundamental power factor.
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. See 5.1.5 for definition.
Recorded total positive sequence fundamental power factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. This parameter is
recorded separately as shown on figure. See 5.1.5 for definition.
-P
+P
900
+Q
II I
Lead
1800 DPF+totcap- DPF+totind+ 00 DPF+totind- DPF+totcap+
Lag
-Q
III IV
2700
Phase current distortion power, including Dip (phase p current distortion power). See 5.1.5 section: Modern Power measurement
Standard compliance: IEEE 1459-2010 for definition.
Total effective current distortion power. See 5.1.5 section: Modern Power measurement
Standard compliance: IEEE 1459-2010 for definition.
Phase harmonics distortion power, including DHp (phase p harmonics distortion power). See 5.1.5 section: Modern Power measurement
Standard compliance: IEEE 1459-2010 for definition.
19
MI 2893 / MI 2892 / MI 2885
Abbreviations
DeH D
Detot
Ep
Eptot Eq
Eqtot Effinv f, freq ii0 I+ II0 IRms(1/2)
Ifund Ihn
Total effective harmonics distortion power. See 5.1.5 section: Total
nonfundamental power measurements for definition.
Phase voltage distortion power, including Dp (phase p voltage distortion
power). See 5.1.5 section: Modern Power measurement
Standard compliance: IEEE 1459-2010 for definition.
Total effective voltage distortion power. See 5.1.5 section: Modern Power
measurement
Standard compliance: IEEE 1459-2010 for definition.
Recorded phase combined (fundamental and nonfundamental) active energy,
including Epp+/- (phase p active energy). Minus sign indicates generated
energy and plus sign indicates consumed energy. See 5.1.6 for definition.
Recorded total combined (fundamental and nonfundamental) active energy. Minus
sign indicates generated and plus sign indicates consumed energy. See 5.1.6
for definition.
Recorded phase fundamental reactive energy, including Eqp+/(phase p reactive
energy). Minus sign indicates generated and plus sign indicates consumed
energy. See 5.1.6 for definition.
Recorded total fundamental reactive energy. Minus sign indicates generated and
plus sign indicates consumed energy. See 5.1.6 for definition.
Photovoltaic inverter efficiency
Frequency, including freqU12 (voltage frequency on U12), freqU1 (voltage
frequency on U1 and freqI1 (current frequency on I1). See 5.1.4 for
definition.
Negative sequence current ratio (%). See 5.1.11 for definition.
Zero sequence current ratio (%). See 5.1.11 for definition.
Positive sequence current component on three phase systems. See 5.1.11 for
definition.
Negative sequence current component on three phase systems. See 5.1.11 for
definition.
Zero sequence current components on three phase systems. See 5.1.11 for
definition. RMS current measured over 1 cycle, commencing at a fundamental
zero crossing on an associated voltage channel, and refreshed each half-cycle,
including IpRms(1/2) (phase p current), INRms(1/2) (neutral RMS current)
Fundamental RMS current Ih1 (on 1st harmonics), including Ifundp (phase p
fundamental RMS current) and IfundN (neutral RMS fundamental current). See
5.1.8 for definition
nth current RMS harmonic component including Iphn (phase p; nth RMS current
harmonic component) and INhn (neutral nth RMS current harmonic component). See
5.1.8 for definition
20
MI 2893 / MI 2892 / MI 2885
Abbreviations
Iihn INom IPk IRms Irmsinv Iacinv Idcinv P
P
Ptot
Ptot Pfund Pfund+ P+, P+tot
nth current RMS inter-harmonic component including Ipihn (phase p; nth RMS current inter-harmonic component) and INihn (neutral nth RMS current inter- harmonic component). See 5.1.8 for definition
Nominal current. Current of clamp-on current sensor for 1 Vrms at output.
Peak current, including IpPk (phase p current) including INPk (neutral peak current)
RMS current, including IpRms (phase p current), INRms (neutral RMS current). See 5.1.3 for definition.
Photovoltaic inverter RMS current
Photovoltaic inverter AC current
Photovoltaic inverter DC current
Instantaneous phase active combined
900
(fundamental and nonfundamental)
power, including Pp (phase p active
II
power). Minus sign indicates generated 1800 -P
I
+P
Lead
00
and plus sign indicates consumed
-P
+P
power. See 5.1.5 for definitions.
III IV
Lag
2700
Recorded phase active (fundamental and nonfundamental) power, including Pp (phase p active power). Minus sign indicates generated and plus sign indicates consumed power. See 5.1.5 for definitions.
Instantaneous total active combined (fundamental and nonfundamental) power. Minus sign indicates generated and plus sign indicates consumed power. See 5.1.5 for definitions.
900
Lead
II I
-Ptot
+Ptot
1800
00
-Ptot
+Ptot
III IV
Lag
2700
Recorded total active (fundamental and nonfundamental) power. Minus sign indicates generated and plus sign indicates consumed power. See 5.1.5 for definitions.
Instantaneous active fundamental power, including Pfundp (phase p active fundamental power). Minus sign indicates generated and plus sign indicates consumed power. See 5.1.5 for definitions.
Recorded phase active fundamental power, including Pfundp (phase p active fundamental power). Minus sign indicates generated and plus sign indicates consumed power. See 5.1.5 for definitions.
Instantaneous positive sequence of total active fundamental power. Minus sign indicates generated and plus sign indicates consumed power.
See 5.1.5 for definitions.
21
MI 2893 / MI 2892 / MI 2885
Abbreviations
P+tot PH PH PHtot PHtot
PFind PFcap
PFind PFcap
PFatotind PFatotcap
Recorded positive sequence of total active fundamental power. Minus sign
indicates generated and plus sign indicates positive sequence of consumed
power.
See 5.1.5 for definitions.
Instantaneous phase active harmonic power, including PHp (phase p active
harmonic power). Minus sign indicates generated and plus sign indicates
consumed power. See 5.1.5 for definitions.
Recorded phase active harmonics power, including PHp (phase p active harmonic
power). Minus sign indicates generated and plus sign indicates consumed power.
See 5.1.5 for definitions.
Instantaneous total active harmonic power. Minus sign indicates generated and
plus sign indicates consumed power. See 5.1.5 for definitions.
Recorded total active harmonics power. Minus sign indicates generated and plus
sign indicates consumed active power. See 5.1.5 for definitions.
Instantaneous phase combined (fundamental and nonfundamental) power factor, including PFpind/cap (phase p power factor). Minus sign indicates generated power and plus
-P
+P
900
+Q
II I
Lead
-PFcap 1800
+PFind 00
sign indicates consumed power.
-PFind +PFcap
Lag
Suffix ind/cap represents
inductive/capacitive character.
-Q
Note: PF = DPF when harmonics are
III IV
2700
not present. See 5.1.5 for definition.
Recorded phase combined
-P
900
+P
(fundamental and nonfundamental) power factor.
Minus sign indicates generated
+Q 1800
II
PFcap-
Lead
I
PFind+ 00
power and plus sign indicates
PFind-
PFcap+
Lag
consumed power. Suffix ind/cap represents inductive/ capacitive
-Q
III IV
character. This parameter is
2700
recorded separately for each quadrant as shown on figure.
Instantaneous total arithmetic combined (fundamental and nonfundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. See 5.1.6 for definition.
22
MI 2893 / MI 2892 / MI 2885
Abbreviations
PFatotind PFatotcap
PFetotind PFetotcap
PFetotind PFetotcap
PFvtotind PFvtotcap
PFvtotind PFvtotcap
Pinv+ PinvPdcinv+ PdcinvR.F.
Recorded total arithmetic combined (fundamental and nonfundamental) power
factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. This parameter is
recorded separately for each quadrant as shown on figure.
-P
900
+P
+Q
II I
PFatotcap- PFatotind+
1800
00
PFatotind- PFatotcap+
-Q
III IV
2700
Instantaneous total effective combined (fundamental and nonfundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. See 5.1.5 for definition.
Recorded total effective combined (fundamental and nonfundamental) power
factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. This parameter is
recorded separately for each quadrant as shown on figure.
-P
900
+P
Lead
+Q
II I
PFetotcap- PFetotind+
1800
00
PFetotind- PFetotcap+
Lag
-Q
III IV
2700
Instantaneous total vector combined (fundamental and nonfundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power. Suffix ind/cap represents inductive/capacitive character. See 5.1.6 for definition.
Recorded total vector combined (fundamental and nonfundamental) power factor.
Minus sign indicates generated power and plus sign indicates consumed power.
Suffix ind/cap represents inductive/capacitive character. This parameter is
recorded separately for each quadrant as shown on figure.
-P
900
+P
+Q
II I
PFvtotcap- PFvtotind+
1800
00
PFvtotind- PFvtotcap+
-Q
III IV
2700
Photovoltaic inverter Active Power positive
Photovoltaic inverter Active Power negative
Photovoltaic inverter Active Power DC positive
Photovoltaic inverter Active Power DC negative
Ripple Factor ratio between rms AC component value and DC component; presented at INV-1W and INV-3W connection
23
MI 2893 / MI 2892 / MI 2885
Abbreviations
Sacinv+ SacinvPlt Pst Pst(1min) Pinst N
Nind Ncap
Ntot
Ntotind Ntotcap
Natot
Photovoltaic inverter Apparent Power AC positive
Photovoltaic inverter Apparent Power AC negative
Phase long term flicker (2 hours), including Pltpg (phase p to phase g long term voltage flicker) and Pltp (phase p to neutral long-term voltage flicker). See 5.1.10 for definition.
Short term flicker (10 minutes) including Pstpg (phase p to phase g short term voltage flicker) and Pstp (phase p to neutral voltage flicker). See 5.1.10 for definition.
Short term flicker (1 minute) including Pst(1min)pg (phase p to phase g short term voltage flicker) and Pst(1min)p (phase p to neutral voltage flicker). See 5.1.10 for definition.
Instantaneous flicker including Pinstpg (phase p to phase g instantaneous voltage flicker) and Pinstp (phase p to instantaneous voltage flicker). See 5.1.10 for definition.
Instantaneous combined (fundamental and nonfundamental)
nonactive phase power including Np (phase p nonactive phase
power). Minus sign indicates generated and plus sign indicate
consumed nonactive power. See 5.1.5 for definition.
Recorded phase combined (fundamental and nonfundamental) nonactive power including Ncap/indp (phase p nonactive phase power). Suffix ind/cap represents inductive/capacitive character. Minus sign indicates generated and plus sign
-P
900
+P
Lead
+Q
II I
1800
Ncap+
Nind+ 00
Nind-
Ncap-
Lag
-Q
III IV
indicates consumed fundamental
2700
reactive power. This parameter is
recorded separately for each quadrant as shown on figure. See 5.1.5
for definition.
Instantaneous combined (fundamental and nonfundamental) nonactive total vector power. Minus sign indicates generated and plus sign indicate consumed nonactive power. See 5.1.5 for definition.
Recorded total vector combined (fundamental and nonfundamental) nonactive power. Suffix ind/cap represents inductive/capacitive character. Minus sign indicates
-P
900
+P
+Q
II I
Ntotcap+ 1800
Ntotcap+ 00
generated and plus sign indicates
Ntotcap-
Ntotcap-
consumed combined nonactive
power. This parameter is recorded
-Q
III IV
separately for each quadrant as
2700
shown on figure. See 5.1.5 for definition.
Instantaneous combined (fundamental and nonfundamental) nonactive total arithmetic power. Minus sign indicates generated and plus sign indicate consumed nonactive power. See 5.1.6 for definition.
24
MI 2893 / MI 2892 / MI 2885
Abbreviations
Natotind Natotcap
Qfund
Qfundind Qfundcap
Qvfundtot
Qvfundtotind Qvfundtotcap
Qafundtot Qafundtot Qafundtot Q+totcap Q+totind Q+totind Q+totcap
Recorded total arithmetic combined (fundamental and nonfundamental) nonactive power. Minus sign indicates generated and plus sign indicates consumed combined nonactive power. This parameter is recorded separately for generated and consumed nonactive power.
Instantaneous fundamental reactive phase power including Qp (phase p reactive phase power). Minus sign indicates generated and
plus sign indicates consumed fundamental reactive power. See 5.1.5 for definition.
Recorded phase fundamental reactive power. Suffix ind/cap represents inductive/capacitive character. Minus sign indicates generated and plus sign indicates consumed fundamental reactive power. This parameter is recorded separately for each quadrant as shown on figure. See 5.1.5 for definition.
-P
900
+P
Lead
+Q
II I
1800
Qcap+
Qind+ 00
Qind-
Qcap-
Lag
-Q
III IV
2700
Instantaneous fundamental total vector reactive power. Minus sign
indicates generated and plus sign indicates consumed fundamental
reactive power. See 5.1.6 for definition.
Recorded total fundamental vector reactive power. Suffix ind/cap represents inductive/capacitive
-P
900
+P
+Q
II I
character. Minus sign indicates generated and plus sign indicates consumed fundamental reactive power. This parameter is recorded separately for each quadrant as shown on figure. See 5.1.6 for
1800 Qfundtotcap+ Qfundtotcap+ 00 Qfundtotcap- Qfundtotcap-
-Q
III IV
2700
definition.
Instantaneous fundamental total arithmetic reactive power. See 5.1.6 for definition.
Recorded fundamental total arithmetic reactive power. See 5.1.6 for definition.
Instantaneous positive sequence of total fundamental reactive power. Suffix
ind/cap represents inductive/ capacitive character. Minus sign indicates
generated and plus sign indicates consumed reactive power. See 5.1.5 for
definition.
Recorded positive sequence of total fundamental reactive power. Suffix ind/cap
represents inductive/capacitive character. Minus sign indicates generated and
plus sign indicates consumed reactive power. This parameter is recorded
separately for each quadrant.
25
MI 2893 / MI 2892 / MI 2885
Abbreviations
S
Satot Setot Svtot Sfund Safundtot Svfundtot S+tot Sfundtot S Se S Setot THDI
THDU uu0 U, URms Urmsinv Uacinv Udcinv U+ U-
Combined (fundamental and nonfundamental) phase apparent power including Sp
(phase p apparent power). See 5.1.5 for definition.
Combined (fundamental and nonfundamental) total arithmetic apparent power. See
5.1.6 for definition.
Combined (fundamental and nonfundamental) total effective apparent power. See
5.1.5 for definition.
Combined (fundamental and nonfundamental) total vector apparent power. See
5.1.6 for definition.
Phase fundamental apparent power, including Sfundp (phase p fundamental
apparent power). See 5.1.5 for definition.
Fundamental total arithmetic apparent power. See 5.1.6 for definition.
Fundamental total vector apparent power. See 5.1.6 for definition.
Positive sequence of total fundamental apparent power. See 5.1.5 for
definition.
Unbalanced fundamental apparent power. See 5.1.5 for definition.
Phase nonfundamental apparent power, including Sp (phase p nonfundamental
apparent power). See 5.1.5 for definition.
Total nonfundamental effective apparent power. See 5.1.5 for definition.
Phase harmonic apparent power, including Sp (phase p harmonic apparent power).
See 5.1.5 for definition.
Total harmonic effective apparent power. See 5.1.5 for definition.
Total harmonic distortion current (in % or A), including THDIp (phase p
current THD) and THDIN (neutral current THD). See 5.1.8 for definition
Total harmonic distortion voltage related (in % or V) including THDUpg (phase
p to phase g voltage THD) and THDUp (phase p to neutral voltage THD). See
5.1.11 for definition.
Negative sequence voltage ratio (%). See 5.1.11 for definition.
Zero sequence voltage ratio (%). See 5.1.11 for definition.
RMS voltage, including Upg (phase p to phase g voltage) and Up (phase p to
neutral voltage). See 5.1.2 for definition.
Photovoltaic inverter RMS voltage
Photovoltaic inverter AC voltage
Photovoltaic inverter DC voltage
Positive sequence voltage component on three phase systems. See 5.1.11 for
definition.
Negative sequence voltage component on three phase systems. See 5.1.11 for
definition.
26
MI 2893 / MI 2892 / MI 2885
Abbreviations
U0 UDip Ufund UhN,
UihN UInt UNom
UOver
UPk URms(1/2) USwell USig
UUnder
Umax
Zero sequence voltage component on three phase systems. See 5.1.11 for
definition.
Minimal URms(1/2) voltage measured during dip occurrence
Fundamental RMS voltage (Uh1 on 1st harmonics), including Ufundpg (phase p to
phase g fundamental RMS voltage) and Ufundp (phase p to neutral fundamental
RMS voltage). See 5.1.8 for definition
nth voltage RMS harmonic component including UpghN (phase p to phase g voltage
nth RMS harmonic component) and UphN (phase p to neutral voltage nth RMS
harmonic component). See 5.1.8 for definition.
nth voltage RMS interharmonic voltage component including UpgihN (phase p to
phase g voltage nth RMS interharmonic component) and UpihN (phase p to neutral
voltage nth RMS interharmonic component). See 5.1.8 for definition.
Minimal URms(1/2) voltage measured during interrupt occurrence.
Nominal voltage, normally a voltage by which network is designated or
identified.
Voltage over-deviation, difference between the measured value and the nominal
value of a voltage, only when the measured value is greater than the nominal
value. Voltage over-deviation measured over recorded interval, expressed in %
of nominal voltage including UpgOver (phase p to phase g voltage) and UpOver
(phase p to neutral voltage). See 5.1.12 for details.
Peak voltage, including UpgPk (phase p to phase g voltage) and UpPk (phase p
to neutral voltage)
RMS voltage refreshed each half-cycle, including UpgRms(1/2) (phase p to phase
g half-cycle voltage) and UpRms(1/2) (phase p to neutral halfcycle voltage).
See 5.1.12 for definition.
Maximal URms(1/2) voltage measured during swell occurrence.
Mains signalling RMS voltage, including USigpg (phase p to phase g half-cycle
signalling voltage) and USigp (phase p to neutral half-cycle signalling
voltage). Signalling is a burst of signals, often applied at a non-harmonic
frequency, that remotely control equipment. See 5.2.6 for details.
Voltage under-deviation, difference between the measured value and the nominal
value of a voltage, only when the voltage is lower than the nominal value.
Voltage under-deviation measured over recorded interval and expressed in % of
nominal voltage, including UpgUnder (phase p to phase g voltage) and UpUnder
(phase p to neutral voltage). See 5.1.12 for details. Maximum absolute
difference between any of the URms(1/2) values during the RVC event and the
final arithmetic mean 100/120 URms(1/2) value just prior to the RVC event. For
poly-phase systems, the Umax is the largest Umax on any channel. See 5.1.15
for details.
27
MI 2893 / MI 2892 / MI 2885
Abbreviations
Absolute difference between the final arithmetic mean
100/120 URms(1/2) value just prior to the RVC event and the first
Uss
arithmetic mean 100/120 URms(1/2) value after the RVC event. For
poly-phase systems, the Uss is the largest Uss on any channel. See
5.1.15 for details.
28
MI 2893 / MI 2892 / MI 2885
2 Description 2.1 Front panel
Description
Front panel layout:
1. LCD 2. F1 F4 3. ARROW keys 4. ENTER key 5. ESC key 6. SHORTCUT keys 7.
LIGHT key
(BEEP OFF)
8. ON-OFF key 9. COVER
Figure 3: Front panel
Colour TFT display, 4.3-inch, 480 x 272 pixels. Function keys. Moves cursor
and select parameters. Step into submenu. Exits any procedure, confirms new
settings. Quick access to main instrument functions. Adjust LCD backlight
intensity: high/low//off If the LIGHT key is pressed for more than 1.5
seconds, beeper will be disabled. Press & hold again to enable it. Turns
on/off the instrument. Communication ports and microSD card slot protection.
29
MI 2893 / MI 2892 / MI 2885
Connector panel
2.2 Connector panel
1
N
3
2
Warnings!
Use safety test leads only!
Max. permissible nominal voltage between voltage input terminals and ground is
1000 VRMS ! Max. short-term voltage of external power supply adapter is 14 V!
Figure 4:Top connector panel
Top connector panel layout:
1
Clamp-on current transformers (I1, I2, I3, IN ) input terminals.
2
Voltage (L1, L2, L3, N, GND) input terminals.
3
12 V external power socket.
2 1
3 4
Figure 5: Side connector panel
Side connector panel layout: 1 MicroSD card slot. 2 GPS serial / Photo
scanning head connector. 3 Ethernet connector. 4 USB connector.
30
MI 2893 / MI 2892 / MI 2885
2.3 Bottom view
1
2 3
Bottom view
Figure 6: Bottom view
Bottom view layout: 1. Battery compartment cover. 2. Battery compartment screw
(unscrew to replace the batteries). 3. Serial number label.
2.4 Accessories
2.4.1 Standard accessories
Table 1: MI 2893/MI 2892/MI 2885 standard accessories
Description Flexible current clamp 3000 A / 300 A / 30 A (A 1227/A 1502) Temperature probe (A 1354) Colour coded test probe Colour coded crocodile clip Colour coded voltage measurement lead USB cable RS232 cable Ethernet cable 12 V / 3 A Power supply adapter NiMH rechargeable battery, type HR 6 (AA) Professional protective waterproof case (A 1685) (MI 2893/MI 2892) Soft carrying bag (MI 2885) Compact disc (CD) with PowerView v3.0 and manuals
Pieces 4 1 5 5 5 1 1 1 1 6 1 1 1
2.4.2 Optional accessories
See the attached sheet for a list of optional accessories that are available
on request from your distributor.
31
MI 2893 / MI 2892 / MI 2885
Operating the instrument
3 Operating the instrument
This section describes how to operate the instrument. The instrument front
panel consists of a colour LCD display and keypad. Measured data and
instrument status are shown on the display. Basic display symbols and keys
description is shown on figure below.
Figure 7: Display symbols and keys description During measurement campaign
various screens can be displayed. Most screens share common labels and
symbols. These are shown on figure below.
Figure 8: Common display symbols and labels during measurement campaign 32
MI 2893 / MI 2892 / MI 2885
Instrument status bar
3.1 Instrument status bar
Instrument’s status bar is placed on the top of the screen. It indicates
different instrument states. Icon descriptions are shown on table below.
Figure 9: Instrument status bar
Table 2: Instrument status bar description
18:07
Indicates battery charge level. Indicates that charger is connected to the
instrument. Batteries will be charged automatically when charger is present.
Instrument is locked (see section 3.24.5 for details). AD converter over
range. Selected Nominal voltage or current clamps range is too small. Current
time.
GPS module status (Optional accessory A 1355):
GPS module detected but reporting invalid time and position data. (Searching
for satellites or too weak satellite signal). GPS time valid valid satellite
GPS time signal. Instrument act as host USB, and is ready to accept USB memory
stick. One of the current clamps has opposite direction from the expected.
Internet connection status (see section 4.3 for details):
Internet connection is not available. Instrument is connected to the internet
and ready for communication. Instrument is connected to the PowerView.
Recorder status:
General recorder is active, waiting for trigger.
General recorder is active, recording in progress.
Waveform recorder is active, waiting for trigger. Waveform recorder is active,
recording in progress. Transient recorder is active, waiting for trigger.
Transient recorder is active, recording in progress. E-Meter recorder is
active, waiting for trigger.
33
MI 2893 / MI 2892 / MI 2885
Instrument keys
E-Meter recorder is active, E-Meter accuracy test in progress.
Alarm detected, recording in progress Event detected, recording in progress
Inrush detected, recording in progress RVC detected, recording in progress
Signalling detected, recording in progress Transient detected, recording in
progress Memory list recall. Shown screen is recalled from instrument memory.
Flagged data mark. While observing recorded data this mark will indicate that
observed measurement results for given time interval can be compromised due to
interrupt, dip or swells occurrence. See section 5.1.17 for further
explanation.
Signalling voltage is present on voltage line at monitored frequencies. See
sections 3.13 and 3.23.4 for further explanation. USB stick communication
mode. In this mode selected record can be transferred from microSD card to USB
stick. USB communication with PC is disabled while in this mode. See section
3.22 for details.
3.2 Instrument keys
Instrument keyboard is divided into four subgroups: · Function keys · Shortcut
keys · Menu/zoom manipulation keys: Cursors, Enter, Escape · Other keys: Light
and Power on/off keys
Function keys F1
F2
F3
F4
are multifunctional. Their current function is
shown at the bottom of the screen and depends on selected instrument function.
Shortcut keys are shown in table below. They provide quick access to the most common instrument functions.
Table 3: Shortcut Keys and other Function keys
UIf PQS
Shows UIF Meter screen from MEASUREMENT submenu Shows Power meter screen from MEASUREMENT submenu Shows Harmonics meter screen from MEASUREMENT submenu Shows Connection Setup screen from MEASUREMENT SETUP submenu Shows Phase diagram screen from MEASUREMENT submenu
Hold
key for 2 seconds to trigger WAVEFORM SNAPSHOT. Instrument will
record all measured parameters into file, which can be then analysed by PowerView.
Set backlight intensity (high/low/off).
Hold key for 2 s to disable/enable beeper sound signals.
34
MI 2893 / MI 2892 / MI 2885
Instrument memory (microSD card)
Switch On/off the instrument. Note: instrument will not power off if any
recorder is active. Note: Hold key for 5 seconds in order to reset instrument,
in case of failure.
Cursor, Enter and Escape keys are used for moving through instrument menu
structure, entering various parameters. Additionally, cursor keys are used for
zooming graphs and moving graph cursors.
3.3 Instrument memory (microSD card)
MI 2893/MI 2892/MI 2885 use microSD card for storing records. Prior instrument
use, microSD card should be formatted to a single partition FAT32 file system
and inserted into the instrument, as shown on figure below.
microSD Card
Figure 10: Inserting microSD card 1. Open instrument cover 2. Insert microSD
card into a slot on the instrument (card should be putted upside down,
as shown on figure) 3. Close instrument cover Note: Do not turn off the
instrument while microSD card is accessed: – during record session – observing
recorded data in MEMORY LIST menu Doing so may cause data corruption, and
permanent data lost. Note: SD Card should have single FAT32 partition. Do not
use SD cards with multiple partitions.
3.4 Instrument Main Menu
After powering on the instrument, the “MAIN MENU” is displayed. From this menu
all instrument functions can be selected.
35
MI 2893 / MI 2892 / MI 2885
Instrument Main Menu
Figure 11: “MAIN MENU”
Table 4: Instrument Main menu
MEASUREMENT submenu. Provide access to various instrument measurement screens
RECORDER submenu. Provide access to instrument recorders configuration and
storage. MEASUREMENT SETUP submenu. Provide access to the measurement
settings.
GENERAL SETUP submenu. Provide access to the various instrument settings.
Table 5: Keys in Main menu
Selects submenu.
ENTER
Enters selected submenu.
3.4.1 Instrument submenus
By pressing ENTER key in Main menu, user can select one of four submenus: ·
Measurements set of basic measurement screens, · Recorders setup and view
of various recordings, · Measurement setup measurement parameters setup, ·
General setup configuring common instrument settings.
List of all submenus with available functions are presented on following
figures.
36
MI 2893 / MI 2892 / MI 2885
Instrument Main Menu
Figure 12: Measurements submenu
Figure 13: Recorders submenu (MI 2893)
Figure 14: Recorders submenu (MI 2892/MI 2885) Figure 15: Measurement setup
submenu
37
MI 2893 / MI 2892 / MI 2885
U, I, f
Table 6: Keys in submenus
Figure 16: General setup submenu
Selects function within each submenu.
ENTER
Enters selected function. Returns to the “MAIN MENU”.
3.5 U, I, f
Voltage, current and frequency parameters can be observed in the “U, I, f”
screens. Measurement results can be viewed in a tabular (METER) or a graphical
form (SCOPE, TREND). TREND view is active only in RECORDING mode. See section
3.14 for details.
3.5.1 Meter
By entering U, I, f option, the U, I, f METER tabular screen is shown (see
figures below).
Figure 17: U, I, f meter phase table screens (L1, L2, L3, N) 38
MI 2893 / MI 2892 / MI 2885
U, I, f
Figure 18: U, I, f meter summary table screens
In those screens on-line voltage and current measurements are shown.
Descriptions of symbols and abbreviations used in this menu are shown in table
below.
Table 7: Instrument screen symbols and abbreviations
RMS UL IL THD ThdU ThdI CF PEAK MAX
MIN
f
True effective value URms and IRms
Total harmonic distortion THDU and THDI
Crest factor CFU and CFI Peak value UPk and IPk Maximal URms(1/2) voltage and
maximal IRms(1/2) current, measured after RESET (key: F2) Minimal URms(1/2)
voltage and minimal IRms(1/2) current, measured after RESET (key: F2)
Frequency on reference channel
Note: In case of overloading current or overvoltage on AD converter, icon status bar of the instrument.
will be displayed in the
39
MI 2893 / MI 2892 / MI 2885
U, I, f
Table 8: Keys in Meter screens
HOLD F1
RUN
Holds measurement on display. Hold clock time will be displayed in the right
top corner.
Runs held measurement.
F2
RESET
Resets MAX and MIN values (URms(1/2) and IRms(1/2)).
1 23N 1 23N
Shows measurements for phase L1. Shows measurements for phase L2.
1 23N
Shows measurements for phase L3.
1 23N
Shows measurements for neutral channel.
1 2 3 N
Shows measurements for all phases.
F3
1 2 3 N
Shows measurements for all phase-to-phase voltages.
12 23 31
Shows measurements for phase-to-phase voltage L12.
12 23 31 12 23 31
12 23 31
Shows measurements for phase-to-phase voltage L23. Shows measurements for phase-to-phase voltage L31. Shows measurements for all phase-to-phase voltages.
METER
Switches to METER view.
F4
SCOPE
TREND
Switches to SCOPE view. Switches to TREND view (available only during recording).
Triggers Waveform snapshot.
Returns to the “MEASUREMENTS” submenu.
3.5.2 Scope
Various combinations of voltage and current waveforms can be displayed on the
instrument, as shown below.
Figure 19: Voltage only waveform
Figure 20: Current only waveform
40
MI 2893 / MI 2892 / MI 2885
U, I, f
Figure 21: Voltage and current waveform (single mode)
Figure 22: Voltage and current waveform (dual mode)
Table 9: Instrument screen symbols and abbreviations
U1, U2, U3, Un U12, U23, U31 I1, I2, I3, In
True effective value of phase voltage: U1, U2, U3, UN True effective value of phase-to-phase voltage: U12, U23, U31 True effective value of current: I1, I2, I3, IN
Table 10: Keys in Scope screens
HOLD F1
RUN
Holds measurement on display. Runs held measurement.
Selects which waveforms to show:
U I U,I U/I Shows voltage waveform.
F2
U I U,I U/I
Shows current waveform.
U I U,I U/I Shows voltage and current waveform (single graph).
U I U,I U/I Shows voltage and current waveform (dual graph).
Selects between phase, neutral, all-phases and line view:
1 2 3 N Shows waveforms for phase L1.
1 2 3 N Shows waveforms for phase L2.
1 2 3 N Shows waveforms for phase L3.
1 2 3 N Shows waveforms for neutral channel.
F3
1 2 3 N Shows all phase waveforms.
1 2 3 N Shows all phase-to-phase waveforms.
12 23 31 Shows waveforms for phase L12.
12 23 31 Shows waveforms for phase L23.
12 23 31
12 23 31
Shows waveforms for phase L31. Shows all phase waveforms.
METER
Switches to METER view.
SCOPE
Switches to SCOPE view.
41
MI 2893 / MI 2892 / MI 2885
U, I, f
F4
ENTER
TREND
Switches to TREND view (available only during recording).
Selects which waveform to zoom (only in U/I or U+I).
Sets vertical zoom.
Sets horizontal zoom.
Triggers Waveform snapshot. Returns to the “MEASUREMENTS” submenu.
3.5.3 Trend
While GENERAL RECORDER is active, TREND view is available (see section 3.14
for instructions how to start recorder).
3.5.4 Voltage and current trends
Current and voltage trends can be observed by cycling function key F4 (METER-
SCOPE-TREND).
Figure 23: Voltage trend (all voltages)
Figure 24: Voltage trend (single voltage)
Figure 25: Voltage and current trend (single mode)
Figure 26: Voltage and current trend (dual mode)
42
MI 2893 / MI 2892 / MI 2885
U, I, f
Figure 27: Trends of all currents
Figure 28: Frequency trend
Table 11: Instrument screen symbols and abbreviations
U1, U2, U3, Un, U12, U23, U31
I1, I2, I3, In f
10.May.2013 02:02:00 32m 00s
Maximal ( ), average ( ) and minimal ( ) value of phase RMS voltage U1, U2,
U3, UN or line voltage U12, U23, U31 for time interval (IP) selected by
cursor. Maximal ( ), average ( ) and minimal ( ) value of current I1, I2, I3,
IN for time interval (IP) selected by cursor. Maximal ( ), active average ( )
and minimal ( ) value of frequency at synchronization channel for time
interval (IP) selected by cursor. Timestamp of interval (IP) selected by
cursor.
Current GENERAL RECORDER time (d – days, h – hours, m – minutes, s – seconds)
Table 12: Keys in Trend screens
U I f U,I U/I U I f U,I U/I F2 U I f U,I U/I U I f U,I U/I U I f U,I U/I
1 23N
1 23N
1 23N
F3
1 23N
1 2 3 N
12 23 31
12 23 31
12 23 31
Selects between the following options: Shows voltage trend. Shows current trend. Shows frequency trend. Shows voltage and current trend (single mode). Shows voltage and current trend (dual mode). Selects between phases, neutral channel, all-phases view: Shows trend for phase L1. Shows trend for phase L2. Shows trend for phase L3. Shows trend for neutral channel. Shows all phases trends. Shows trend for phases L12. Shows trend for phases L23. Shows trend for phases L31.
43
MI 2893 / MI 2892 / MI 2885
12 23 31
METER
F4
SCOPE
TREND
Shows all phase-to-phase trends. Switches to METER view. Switches to SCOPE view. Switches to TREND view.
Moves cursor and selects time interval (IP) for observation.
Returns to the “MEASUREMENTS” submenu.
44
MI 2893 / MI 2892 / MI 2885
Power
3.6 Power
In POWER screens instrument shows measured power parameters. Results can be
seen in a tabular (METER) or a graphical form (TREND). TREND view is active
only while GENERAL RECORDER is active. See section 3.14 for instructions how
to start recorder. In order to fully understand meanings of particular power
parameter see sections 5.1.5.
Note: MI 2893/MI 2892/MI 2885 always save data according IEEE 1459 and data
presentation could be also selected under PowerView.
3.6.1 Meter
By entering POWER option from Measurement’s submenu, the tabular POWER (METER)
screen is shown (see figure below). Which measurement is present on display
depends on following settings:
· Power measurement method: Modern (IEEE 1459), Classic (Vector) or Classic
(Arithmetic) see section 3.21.6
· Connection type: 1W, 2W, 3W… · Selected VIEW: Combined, Fundamental or
Nonfundamental
Figure 29: Power measurements summary (combined)
Figure 31: Power measurements summary (fundamental)
Figure 30: Power measurements summary (nonfundamental)
45
MI 2893 / MI 2892 / MI 2885
Power
Figure 32: Detailed power measurements at phase L1
Figure 33: Detailed total power measurements
Description of symbols and abbreviations used in POWER (METER) screens are shown in table below. Table 13: Instrument screen symbols and abbreviations (see 5.1.5 for details) instantaneous values
Depending on the screen position:
In Combined column: Combined (fundamental and nonfundamental) active
P
power (P1, P2, P3, Ptot,)
In Fundamental column: Fundamental active phase power (Pfund1, Pfund2, Pfund3)
N
Combined (fundamental and nonfundamental) nonactive phase power
(N1, N2, N3) and nonactive total vector (Ntot)
Na
Combined (fundamental and nonfundamental) nonactive arithmetic total
power (Natot)
Q
Fundamental reactive phase power (Qfund1, Qfund2, Qfund3)
Qa
Fundamental total arithmetic reactive power (Qafundtot)
Qv
Fundamental total vector reactive power (Qvfundtot)
Depending on the screen position:
In Combined column: Combined (fundamental and nonfundamental)
S
apparent phase power (S1, S2, S3)
In Fundamental column: Fundamental apparent phase power (Sfund1,
Sfund2, Sfund3)
Depending on the screen position:
In Combined column: Combined (fundamental and nonfundamental) total
Sa
arithmetic apparent power (Satot)
In Fundamental column: Fundamental total arithmetic apparent power (Safundtot)
Depending on the screen position:
In Combined column: Combined (fundamental and nonfundamental) total
Sv
vector apparent power (Svtot)
In Fundamental column: Fundamental total vector apparent power (Svfundtot)
46
MI 2893 / MI 2892 / MI 2885
Power
P+ Q+ S+ DPF+ Se S Se Di Dei D De P PF
PFa
PFe
PFv
Positive sequence of total active fundamental power (P+tot) Positive sequence
of total reactive fundamental power (Q+tot) Positive sequence of total
apparent fundamental power (S+tot)
Positive sequence power factor (fundamental, total)
Combined (fundamental and nonfundamental) total effective apparent power
(Setot)
Phase nonfundamental apparent power (S1, S2, S3) Total effective
nonfundamental apparent power (Setot) Phase current distortion power (Di1,
Di2, Di3) Total effective current distortion power (Deitot) Phase voltage
distortion power (D1, D2, D3) Total effective voltage distortion power (Detot)
Phase and total harmonic active power (PH1+,PH2+,PH3+,PHtot) Phase combined
(fundamental and nonfundamental) power factor (PF1, PF2, PF3)
Total arithmetic combined (fundamental and nonfundamental) power factor (PFa)
Total effective combined (fundamental and nonfundamental) power factor (PFe)
Total vector combined (fundamental and nonfundamental) power factor (PFv).
DPF DPFa
Phase fundamental power factor (DPF1, DPF2, DPF3,) and positive sequence total
power factor (DPF+)
Total arithmetic fundamental power factor (DPFa).
DPFv
Harmonic Pollut. Load unbalance
Total vector fundamental power factor (DPFv).
Harmonic pollution according to the standard IEEE 1459 Load unbalance
according to the standard IEEE 1459
Table 14: Keys in Power (METER) screens
HOLD F1
RUN
F2
VIEW
1 23T
F3
1 2 3 T
1 23T
Holds measurement on display. Hold clock time will be displayed in the right
top corner. Runs held measurement.
Switches between Combined, Fundamental and Nonfundamental view.
Shows measurements for phase L1. Shows measurements for phase L2. Shows
measurements for phase L3.
47
MI 2893 / MI 2892 / MI 2885
Power
1 2 3 T
1 23T
METER
F4
TREND
Shows brief view on measurements on all phases in a single screen. Shows measurement results for TOTAL power measurements. Switches to METER view. Switches to TREND view (available only during recording). Triggers Waveform snapshot. Returns to the “MEASUREMENTS” submenu.
3.6.2 Trend
During active recording TREND view is available (see section 3.14 for
instructions how to start GENERAL RECORDER).
Figure 34: Power trend screen
Table 15: Instrument screen symbols and abbreviations
P1±, P2±, P3±, Pt±
P1±, P2±, P3±, P+±
Ni1±, Ni2±, Ni3±, Nit±
Nc1±, Nc2±, Nc3±, Nct±
S1, S2, S3, Se
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
consumed (P1+, P2+, P3+, Ptot+) or generated (P1-, P2-, P3-, Ptot-) active
combined power for time interval (IP) selected by cursor.
View: Fundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed (Pfund1+, Pfund2+, Pfund3+, P+tot+) or generated (Pfund1-, Pfund2,
Pfund3, P+tot-) active fundamental power for time interval (IP) selected by
cursor.
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
consumed (N1ind+, N2ind+, N3ind+, Ntotind+) or generated (N1ind-, N2ind-,
N3ind-, Ntotind-) inductive combined nonactive power for time interval (IP)
selected by cursor.
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
consumed (N1cap+, N2cap+, N3cap+, Ntotcap+) or generated (N1cap-, N2cap-,
N3cap-, Ntotcap-) capacitive combined nonactive power for time interval (IP)
selected by cursor.
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
combined apparent power (S1, S2, S3, Setot) for time interval (IP) selected by
cursor.
48
MI 2893 / MI 2892 / MI 2885
Power
S1, S2, S3, S+
View: Fundamental power
Maximal ( ), average ( ) and minimal ( ) value of fundamental apparent power
(Sfund1, Sfund2, Sfund3, S+tot) for time interval (IP) selected by cursor.
PFi1±, PFi2±, PFi3±, PFit±
PFc1±, PFc2±, PFc3±, PFct±
Qi1±, Qi2±, Qi3±, Q+i±
Qc1±, Qc2±, Qc3±, Q+c±
DPFi1±, DPFi2±, DPFi3± DPF+it±
DPFc1±, DPFc2±, DPFc3± DPF+ct±
Sn1, Sn2, Sn3, Sen
Di1, Di2, Di3, Dei
Dv1, Dv2, Dv3, Dev
Ph1±, Ph2±, Ph3±, Pht±
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
inductive power factor (1st quadrant: PF1ind+, PF2ind+, PF3ind+, PFtotind+ and
3rd quadrant: PF1ind-, PF2ind-, PF3ind-, PFtotind-) for time interval (IP)
selected by cursor.
View: Combined power Maximal ( ), average ( ) and minimal ( ) value of
capacitive power factor (4th quadrant: PF1cap+, PF2cap+, PF3cap+, PFtotcap+
and 2nd quadrant: PF1cap-, PF2cap-, PF3cap-, PFtotcap-) for time interval (IP)
selected by cursor.
View: Fundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed (Q1ind+, Q2ind+, Q3ind+, Q+totind+) or generated (Q1ind-, Q2ind-,
Q3ind-, Q+totind-) fundamental reactive inductive power for time interval (IP)
selected by cursor.
View: Fundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed (Q1cap+, Q2cap+, Q3cap+, Q+captot+) or generated (Q1cap-, Q2cap-,
Q3cap-, Q+captot-) fundamental reactive capacitive power for time interval
(IP) selected by cursor.
View: Fundamental power Maximal ( ), average ( ) and minimal ( ) value of
inductive displacement power factor (1st quadrant: DPF1ind+, DPF2ind+,
DPF3ind+, DPFtotind+, and 3rd quadrant: DPF1ind-, DPF2ind-, DPF3ind-
DPFtotind-,) for time interval (IP) selected by cursor.
View: Fundamental power Maximal ( ), average ( ) and minimal ( ) value of
capacitive displacement power factor (4th quadrant: DPF1cap+, DPF2cap+,
DPF3cap+, DPFtotcap+, and 2nd quadrant: DPF1cap-, DPF2cap-, DPF3cap-,
DPFtotcap+) for time interval (IP) selected by cursor.
View: Nonfundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed or generated nonfundamental apparent power (S1, S2, S3, Setot) for
time interval (IP) selected by cursor.
View: Nonfundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed or generated phase current distortion power (Di1, Di2, Di3, Deitot)
for time interval (IP) selected by cursor.
View: Nonfundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed or generated phase voltage distortion power (Dv1, Dv2, Dv3, Devtot)
for time interval (IP) selected by cursor.
View: Nonfundamental power Maximal ( ), average ( ) and minimal ( ) value of
consumed (PH1+, PH2+, PH3+, PHtot+) or generated (PH1-, PH2-, PH3-, PHtot-)
active harmonic power for time interval (IP) selected by cursor.
49
MI 2893 / MI 2892 / MI 2885
Power
Table 16: Keys in Power (TREND) screens
F1
VIEW
Selects which measurement should instrument represent on graph:
· Consumed or Generated Measurements related to consumed (suffix: +) or
generated power (suffix: -).
· Combined, Fundamental or Nonfundamental Measurement related to fundamental
power, nonfundamental power or combined.
Keys in VIEW window:
Selects option.
ENTER
Confirms selected option.
Exits selection window without change.
If Combined power is selected:
P Ni Nc S PFi Pfc
Shows combined active power trend.
P Ni Nc S PFi Pfc
Shows combined inductive nonactive power trend.
P Ni Nc S PFi Pfc
Shows combined capacitive nonactive power trend.
P Ni Nc S PFi Pfc
Shows combined apparent power trend.
P Ni Nc S PFi Pfc
Shows inductive power factor trend.
P Ni Nc S Pfi PFc
Shows capacitive power factor trend.
If Fundamental power is selected:
P Qi Qc S DPFi DPfc
Shows fundamental active power trend.
F2
P Qi Qc S DPFi DPfc
Shows fundamental inductive reactive power trend.
P Qi Qc S DPFi DPfc
Shows fundamental capacitive reactive power trend.
P Qi Qc S DPFi DPfc
Shows fundamental apparent power trend.
P Qi Qc S DPFi DPfc
Shows inductive displacement power factor trend.
P Qi Qc S DPfi DPFc
Shows capacitive displacement power factor trend.
If Nonfundamental power is selected:
Sn Di Dv Ph
Shows nonfundamental apparent power trend.
Sn Di Dv Ph
Shows nonfundamental current distortion pow