onsemi EVBUM2875 D 500 W Gaming Power PSU Evaluation Board User Manual
- June 15, 2024
- onsemi
Table of Contents
- EVBUM2875 D 500 W Gaming Power PSU Evaluation Board
- Product Information
- Specifications
- Overview
- Block Diagram and BOARD Photos
- Step 1: Connecting the Power Supply
- Step 2: Connecting the Load
- Step 3: Powering On the Evaluation Board
- Step 4: Monitoring and Troubleshooting
- Q: What is the input voltage range for this evaluation
- Q: What is the output power of this evaluation board?
- Q: What is the output voltage and current specification?
- Q: What is the average efficiency of this evaluation
EVBUM2875 D 500 W Gaming Power PSU Evaluation Board
Product Information
Specifications
-
Product Name: 500 W Gaming Power PSU Evaluation Board
-
Model Number: EVBUM2875/D
-
Manufacturer: onsemi
-
Input Voltage: 90-264 Vac
-
Output Power: 500 W
-
Output Voltage: 12.8 V
-
Nominal Current: 39 A
-
Avg. Efficiency: >93.5% @ 12.8 V 39 A at board end, 115
& 230 Vac -
Ripple: N/A
-
Standby Power: N/A
-
Power Density: N/A
-
Protection: N/A
-
Size: N/A
Overview
This demo board uses the NCP1681 CCM multi-mode PFC controller,
the latest current mode LLC controller NCP13994, and the NCP4318 SR
controller for low profile and small dimension design, enabling
high power density PSU without FAN cooling.
The NCP13994 is a high-performance current mode controller for
half bridge resonant converters. This controller implements 700 V
gate drivers, simplifying fast response green mode then VPFC hiccup
between 395 V to 410 V.
Block Diagram and BOARD Photos
Product Usage Instructions
Step 1: Connecting the Power Supply
1. Connect the power supply to the input voltage socket located
on the evaluation board.
2. Ensure that the input voltage matches the specified range of
90-264 Vac.
Step 2: Connecting the Load
1. Connect the load to the output voltage socket on the
evaluation board.
2. Ensure that the load does not exceed the specified output
power of 500 W.
3. Make sure to properly secure and insulate all connections to
prevent any accidents or electrical hazards.
Step 3: Powering On the Evaluation Board
1. Once the power supply and load are connected, turn on the
power supply.
2. The evaluation board should now be powered on and ready for
use.
Step 4: Monitoring and Troubleshooting
1. Monitor the output voltage and current using suitable
measuring equipment.
2. If any issues or abnormalities are observed, refer to the
troubleshooting section of the user manual or contact technical
support for assistance.
FAQ
Q: What is the input voltage range for this evaluation
board?
A: The input voltage range is 90-264 Vac.
Q: What is the output power of this evaluation board?
A: The output power is 500 W.
Q: What is the output voltage and current specification?
A: The output voltage is 12.8 V and the nominal current is 39
A.
Q: What is the average efficiency of this evaluation
board?
A: The average efficiency is >93.5% at 12.8 V 39 A at board
end, 115 & 230 Vac.
EVAL BOARD USER’S MANUAL www.onsemi.com
500 W Gaming Power PSU Evaluation Board User’s Manual
EVBUM2875/D
SPECIFICATION
onsemi’s Device
NCP1681DR2G NCP13994AXDR2G
NCP4318BLC
Application Gaming PSU
Input Voltage 90-264 Vac
Output Power 500 W
Topology
CCM/DCM multi-mode totem pole PFC Half bridge LLC
Output Voltage Nominal Current
Output Specification 12.8 V 39 A
Avg. Efficiency
Ripple
Standby Power
Power Density
Protection
Size
Overview This demo board uses NCP1681 CCM multi-mode PFC
controller, latest current mode LLC controller NCP13994, and NCP4318 SR
controller for low profile and small dimension design, enabling high power
density PSU without FAN cooling.
The NCP1681 is a PFC controller IC designed to drive the bridgeless totem pole
PFC topology. The bridgeless totem pole PFC is a power factor correction
architecture that consists of a fast leg driven at the PWM switching frequency
and slow leg that operates at the AC line frequency. This topology eliminates
the diode bridge and significant improvement in the power stage efficiency,
especially at low line. The controller can be configured to operate in
continuous conduction mode (CCM) or multi-mode (CrM-CCM) operation.
The NCP13994 is a high performance current mode controller for half bridge
resonant converters. This controller implements 700 V gate drivers,
simplifying
93.5% @ 12.8 V 39 A at board end, 115 & 230 Vac
<200 mV
< 300 mW @ 12 V & 230 Vac (No cable plug in)
1 W/cm3; 16 W/inch3
Bulk UVP, OVP, SCP, OTP
183 mm x 93 mm x 30 mm
layout and reducing external component count. The built-in Brown-Out input function eases implementation of the controller in all applications. In applications where a PFC front stage is needed, the NCP13994 features a dedicated output to drive the PFC controller. This feature together with quiet skip mode technique further improves light load efficiency of the whole application.
NCP4318 is an advanced Synchronous Rectification (SR) controller for LLC resonant converter with minimum external components. It has two driver stages for driving the SR MOSFETs which are rectifying the outputs of the secondary transformer windings. The two gate driver stages have their own Drain and Source sensing inputs and operate independently of each other. The advanced adaptive dead time control compensates parasitic inductance voltage to minimize the body diode conduction and maximize the efficiency. The advanced turn-off control algorithm allows stable SR operation over entire load range.
© Semiconductor Components Industries, LLC, 2023
1
December, 2023 – Rev. 0
Publication Order Number: EVBUM2875/D
EVBUM2875/D
TABLE OF CONTENTS Overview . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Features . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 3 Block Diagram and BOARD Photos . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 3 TRN0370 PFC Choke Designs . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TRN0372
LLC-Lm Transformer Designs . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 13 TRN0371 LLC-Ls Transformer Designs . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 15 Standby Power & Efficiency @ 115 Vac / 230 Vac Input .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 17 Efficiency vs. Output Load Curves . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Ripple Noise – 1 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 19 Ripple Noise – 2 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Ripple Noise – 3 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 20 Ripple Noise – 4 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Ripple Noise – 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 21 Ripple Noise – 6 . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Dynamic Load –
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 23 Dynamic Load – 2 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Startup – 1 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 25 Rise Time – 1 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Hold Up Time –
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 26 PFC Stage Fast Leg – 1 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 27 PFC Stage Fast Leg – 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 28 PFC Stage Fast Leg – 3 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 29 PFC Stage Fast Leg – 4 . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PFC
Stage Fast Leg – 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 31 PFC Stage Fast Leg – 6 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 PFC Stage Fast Leg
– 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 33 PFC Stage Fast Leg – 8 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 34 PFC Stage Slow Leg – 1 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PFC Stage Slow Leg – 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 35 PFC Stage Slow Leg – 3 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PFC Stage Slow
Leg – 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 36 PFC Stage Slow Leg – 5 . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 37 PFC Stage Slow Leg – 6 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 PFC Stage Slow Leg – 7 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 38 PFC Stage Slow Leg – 8 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LLC Stage –
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 39 LLC Stage – 2 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 LLC Stage
– 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 41 LLC Stage – 4 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 LLC
Stage – 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 43 LLC Stage – 6 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SR Stage – 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 45 SR Stage – 2 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 46 SR Stage – 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 47 SR Stage – 4 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 48 SR Stage – 5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 49 SR Stage – 6 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 50 Thermal – 1 . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Thermal – 2 . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 52 Bill of Materials . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 55
www.onsemi.com 2
EVBUM2875/D
Key Features
· Universal AC input range (90-264 Vac) · No-Load Power Consumption < 300 mW ·
Avg. Efficiency: >93.5% @ 12.8 V/ 39 A at board end,
115 & 230 Vac
· Full Load Efficiency 93.9 % @ 115 Vac; 95.4 % @
230 Vac
· High power density: 1 W/cm3; 16 W/ inch3 without FAN
cooling
· Protection: OVP, OCP, SCP, Bulk UVP · PFC stage: NCP1681 for multi-mode
totem pole PFC · FCCrM to improve load range efficiency · Frequency fold back
to improve light load efficiency
Block Diagram and BOARD Photos
· Fast Line/Load transient compensation · Dedicate pin PFCok to inform LLC
startup · Totem pole PFC to implement best PFC efficiency · No STDBY or AUX
Power Stage · LLC stage: NCP13994 implements current mode with
fast response
· Automatic Dead Time, and Dead Time maximum clamp · Light load mode to
improve efficiency · Quiet skip mode to improve Acoustic noise · Normal
operating VPFC keeps 395 V, and No load trigger
green mode then VPFC hiccup between 395 V to 410 V
· Board size: 183 mm x 93 mm x 30 mm
Slow Leg NTBL050N65S3H
Fast Leg NCP58921*2
Half Bridge-LLC NTPF082N65S3F
*2
Sync FET NTMFS5C6284
Sync FET NTMFS5C6284
Vout
Secondary side OVP & CV Regulator
NCP432B*2
Totem pole PFC
NCP1681
PFCok PFCFB
PWM NCP13994
Sync Controller NCP4318*2
Photo Coupler FOD817B
Figure 1. Overall Block Diagram of 500 W Gaming PSU Solution
www.onsemi.com 3
EVBUM2875/D
Figure 2. Side View 1 of Demo Board
Figure 3. Side View 1 of Demo Board www.onsemi.com 4
EVBUM2875/D
Figure 4. Circuit Schematic – 1 www.onsemi.com 5
EVBUM2875/D
Figure 5. Circuit Schematic – 2 www.onsemi.com 6
EVBUM2875/D
Figure 6. Circuit Schematic – 3
www.onsemi.com 7
EVBUM2875/D
Figure 7. Top View of Mainboard’s PCB
Figure 8. Bottom View of PWM Control Board’s PCB www.onsemi.com 8
EVBUM2875/D
Figure 9. Top View of Slow Leg Daughter Card PCB Figure 10. Bottom View of
Slow Leg Daughter Card PCB
Figure 11. Top View of SR Daughter Card PCB
Figure 12. Bottom View of SR Daughter Card PCB
Figure 13. Top View of LLC Daughter Card PCB
Figure 14. Bottom View of LLC Daughter Card PCB
www.onsemi.com 9
EVBUM2875/D
Figure 15. Top View of Bulk Cap Daughter Card PCB Figure 16. Bottom View of
Bulk Cap Daughter Card PCB Figure 17. Top View of Fast Leg Daughter Card PCB
Figure 18. Bottom View of Fast Leg Daughter Card PCB
www.onsemi.com 10
TRN0370 PFC Choke Designs
EVBUM2875/D
Figure 19.
www.onsemi.com 11
EVBUM2875/D
Figure 20. www.onsemi.com
12
TRN0372 LLC-Lm Transformer Designs
EVBUM2875/D
Figure 21.
www.onsemi.com 13
EVBUM2875/D
Figure 22. www.onsemi.com
14
TRN0371 LLC-Ls Transformer Designs
EVBUM2875/D
Figure 23.
www.onsemi.com 15
EVBUM2875/D
Figure 24. www.onsemi.com
16
EVBUM2875/D
Standby Power & Efficiency @ 115 Vac / 230 Vac Input Test condition: all efficiency are tested at board end
Vac
Pin (W)
THD
PF
115
134 mW
–
–
115
0.459
–
–
115
30.447
–
–
115
58.1
–
0.68
115
83
5
0.48
115
107.5
8
0.981
115
133.4
6.6
0.98
115
158.9
7
0.989
115
184.6
6.53
0.99
115
211.1
6
0.988
115
238.2
6
0.987
115
265.5
5.8
0.988
115
291.2
5.3
0.989
115
317.6
4.82
0.992
115
344
4.8
0.992
115
370.8
4.7
0.993
115
397.3
4.7
0.993
115
424.4
4.6
0.993
115
451.4
4.6
0.993
115
478.3
4.6
0.993
115
505.3
4.6
0.993
115
532.4
4.6
0.993
Vo (V) –
12.733 12.733 12.734 12.734 12.735 12.736 12.736 12.737 12.737 12.738 12.737
12.745 12.746 12.748 12.749 12.75 12.751 12.752 12.755 12.756 12.757
Iout1 (A) 0.000 0.0223 2.092 3.935 5.902 7.867 9.849 11.797 13.749 15.701 17.683 19.653 10.79 11.761 12.744 13.734 14.709 15.691 16.681 17.651 18.631 19.603
Iout2 (A) 0.000 0 0 0 0 0 0 0 0 0 0 0 10.796 11.767 12.736 13.726 14.701 15.701 16.676 17.656 18.628 19.605
Po (W) 0
0.284 26.64 50.11 75.16 100.2 125.4 150.2 175.1 200 225.2 250.3 275.1 299.9
324.8 350.1 375 400.3 425.4 450.3 475.3 500.2
Figure 25.
% Load 0% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80%
85% 90% 95%
100% AVG
Efficiency –
61.86% 87.49% 86.24% 90.55% 93.20% 94.03% 94.55% 94.87% 94.73% 94.56% 94.28%
94.48% 94.42% 94.42% 94.41% 94.38% 94.32% 94.23% 94.15% 94.06% 93.95% 0.9416
www.onsemi.com 17
EVBUM2875/D
Efficiency vs. Output Load Curves Test condition: all efficiency are tested at board end
Vac
Pin (W)
THD
PF
Vo (V)
Iout1 (A) Iout2 (A) Po (W)
% Load
230
186 mW
–
–
–
0.000
0.000
0
0%
230
0.52
–
–
12.733
0.0223
0
0.284
0%
230
31.833
–
–
12.733
2.098
0
26.71
5%
230
57.534
0.134
12.734
3.941
0
50.18
10%
230
85.4
5.6
0.15
12.734
5.908
0
75.23
15%
230
111
9
0.19
12.735
7.888
0
100.5
20%
230
133.7
–
0.35
12.736
9.853
0
125.5
25%
230
159.6
76
0.388
12.736
11.803
0
150.3
30%
230
184.5
4.1
0.984
12.737
13.753
0
175.2
35%
230
209.6
3.8
0.987
12.737
15.705
0
200
40%
230
235.5
3.9
0.986
12.738
17.685
0
225.3
45%
230
261.3
5.5
0.968
12.739
19.648
0
250.3
50%
230
288
15
0.972
12.745
10.796
10.796
275.2
55%
230
314
14.3
0.975
12.746
11.769
11.767
300
60%
230
340
14
0.976
12.748
12.746
12.757
325.1
65%
230
366.4
13.5
0.978
12.749
13.745
13.736
350.4
70%
230
392.1
13
0.985
12.75
14.713
14.718
375.2
75%
230
418.2
7.7
0.985
12.751
15.695
15.703
400.4
80%
230
445
11
0.985
12.752
16.693
16.685
425.6
85%
230
471.6
7.3
0.984
12.754
17.673
17.683
450.9
90%
230
497.7
9.4
0.987
12.755
18.645
18.648
475.7
95%
230
523.6
9
0.987
12.758
19.603
19.605
500.2
100%
AVG
Figure 26.
Efficiency –
54.60% 83.92% 87.23% 88.09% 90.50% 93.86% 94.19% 94.94% 95.44% 95.66% 95.79%
95.55% 95.54% 95.62% 95.62% 95.70% 95.73% 95.65% 95.62% 95.57% 95.53% 0.9522
www.onsemi.com 18
EVBUM2875/D
Ripple Noise – 1 Test condition: 100% load ripple noise
Vac
Load
CH1
CH2
CH3
CH4
115
100%
Vo
X
X
ML
Vac
Load
CH1
CH2
CH3
CH4
230
100%
Vo
X
X
X
Vo_pkpk = 74 mV
Vo_pkpk = 83 mV
Figure 27.
Ripple Noise – 2 Test condition: 75% load ripple noise
Vac
Load
CH1
CH2
115
75%
Vo
X
CH3 X
CH4 X
Vac
Load
CH1
CH2
CH3
CH4
230
75%
Vo
X
X
X
Vo_pkpk = 85 mV
Vo_pkpk = 61 mV Figure 28.
www.onsemi.com 19
EVBUM2875/D
Ripple Noise – 3 Test condition: 50% load ripple noise
Vac
Load
CH1
CH2
CH3
CH4
115
50%
Vo
X
X
ML
Vac
Load
CH1
CH2
CH3
CH4
230
50%
Vo
X
X
X
Vo_pkpk = 65 mV
Vo_pkpk = 52 mV
Figure 29.
Ripple Noise – 4 Test condition: 25% load ripple noise
Vac
Load
CH1
CH2
CH3
CH4
115
25%
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
230
25%
Vo
X
X
X
Vo_pkpk = 56 mV
Vo_pkpk = 55 mV Figure 30.
www.onsemi.com 20
EVBUM2875/D
Ripple Noise – 5 Test condition: burst mode ripple noise
Vac
Load
CH1
CH2
CH3
CH4
115
4.8 A
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
4.8 A
Vo
X
X
X
Vo_pkpk = 104 mV
Vo_pkpk = 109 mV
Vac
Load
CH1
CH2
CH3
CH4
230
4.8 A
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
230
4.8 A
Vo
X
X
X
Vo_pkpk = 93 mV
Vo_pkpk = 85 mV Figure 31.
www.onsemi.com 21
EVBUM2875/D
Ripple Noise – 6 Test condition: burst mode ripple noise
Vac
Load
CH1
CH2
CH3
CH4
115
0 A
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
0 A
Vo
X
X
X
Vo_pkpk = 72 mV
Vo_pkpk = 76 mV
Vac
Load
CH1
CH2
CH3
CH4
230
0 A
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
230
0 A
Vo
X
X
X
Vo_pkpk = 60 mV
Vo_pkpk = 53 mV Figure 32.
www.onsemi.com 22
EVBUM2875/D
Dynamic Load – 1 Test condition: 0% load to 50% dynamic load ripple, 15 ms cycle, 2.5 A/ms
Dynamic
Vac
Load
CH1
115 0%-50% Vo
CH2 IO1
CH3 IO2
CH4 X
Dynamic
Vac
Load
CH1
115 0%-50% Vo
CH2 IO1
CH3 IO2
CH4 X
Vo_pkpk = 461 mV
Vo_pkpk = 442 mV
Dynamic
Vac
Load
CH1
230 0%-50% Vo
CH2 IO1
CH3 IO2
CH4 X
Dynamic
Vac
Load
CH1
230 0%-50% Vo
CH2 IO1
CH3 IO2
CH4 X
Vo_pkpk = 474 mV
Vo_pkpk = 467 mV Figure 33.
www.onsemi.com 23
EVBUM2875/D
Dynamic Load – 2 Test condition: 0% load to 100% dynamic load ripple, 15 ms cycle, 2.5 A/ms
Dynamic
Vac
Load
CH1
115 0%-100% Vo
CH2 IO1
CH3 IO2
CH4 X
Dynamic
Vac
Load
CH1
115 0%-100% Vo
CH2 IO1
CH3 IO2
CH4 X
Vo_pkpk = 429 mV
Vo_pkpk = 461 mV
Dynamic
Vac
Load
CH1
230 0%-100% Vo
CH2 IO1
CH3 IO2
CH4 X
Dynamic
Vac
Load
CH1
230 0%-100% Vo
CH2 IO1
CH3 IO2
CH4 X
Vo_pkpk = 480 mV
Vo_pkpk = 461 mV Figure 34.
www.onsemi.com 24
EVBUM2875/D
Startup – 1 Test condition: 100% load power on start up time
Vac
Load
CH1
CH2
CH3
CH4
115
100%
Vo
X
X
VAC
Vac
Load
CH1
CH2
CH3
CH4
230
100%
Vo
X
X
VAC
Start up time 1.1 s
Start up time 1.05 s
Figure 35.
Rise Time – 1 Test condition: 100% load power on rise time
Vac
Load
CH1
CH2
CH3
CH4
115
100%
Vo
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
230
100%
Vo
X
X
X
Rise time 21.4 ms
Rise time 23 ms Figure 36.
www.onsemi.com 25
EVBUM2875/D
Hold Up Time – 1 Test condition: 100% load power off hold up time
Vac
Load
CH1
CH2
CH3
CH4
115
100%
Vo
IO1
IO2
VAC
Vac
Load
CH1
230
100%
Vo
CH2 IO1
CH3 IO2
CH4 VAC
Hold up time 21 ms
Hold up time 21 ms Figure 37.
www.onsemi.com 26
EVBUM2875/D
PFC Stage Fast Leg – 1 Test condition: 115 Vac 25% load
Vac
Load
CH1
CH2
115
125 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
125 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 125 W output; ZCD_arm is 100 mV
115 Vac 125 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
115
125 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
125 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 125 W output; ZCD_arm is 100 mV
115 Vac 125 W output; ZCD_arm is 100 mV 1-D dead time is 119 ns
Figure 38.
www.onsemi.com 27
EVBUM2875/D
PFC Stage Fast Leg – 2 Test condition: 230 Vac 25% load
Vac
Load
CH1
CH2
230 125 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
125 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 125 W output; ZCD_arm is 100 mV
230 Vac 125 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
230
125 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
125 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 125 W output; ZCD_arm is 100 mV
230 Vac 125 W output; ZCD_arm is 100 mV 1-D dead time is around 122 ns
Figure 39.
www.onsemi.com 28
EVBUM2875/D
PFC Stage Fast Leg – 3 Test condition: 115 Vac 50% load
Vac
Load
CH1
CH2
115
250 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
250 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 250 W output; ZCD_arm is 100 mV
115 Vac 250 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
115
250 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
250 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 250 W output; ZCD_arm is 100 mV
115 Vac 250 W output; ZCD_arm is 100 mV 1-D dead time is 113 ns
Figure 40.
www.onsemi.com 29
EVBUM2875/D
PFC Stage Fast Leg – 4 Test condition: 230 Vac 50% load
Vac
Load
CH1
CH2
230
250 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
250 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 250 W output; ZCD_arm is 100 mV
230 Vac 250 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
230
250 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
250 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 250 W output; ZCD_arm is 100 mV 1-D turn off threshould is around 25 mV (Vilimit = 0.6 V/30 mV)
230 Vac 250 W output; ZCD_arm is 100 mV 1-D dead time is around 159 ns
Figure 41.
www.onsemi.com 30
EVBUM2875/D
PFC Stage Fast Leg – 5 Test condition: 115 Vac 75% load
Vac
Load
CH1
CH2
115
375 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
375 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 375 W output; ZCD_arm is 100 mV
115 Vac 375 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
115
375 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
375 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 375 W output; ZCD_arm is 100 mV 1-D turn off threshold becomes 100 mV, because Maximum duty clamp 96% x (1 / 65 kHz) = 14.77 ms
115 Vac 375 W output; ZCD_arm is 100 mV 1-D dead time is around 71 ns
Figure 42.
www.onsemi.com 31
EVBUM2875/D
PFC Stage Fast Leg – 6 Test condition: 230 Vac 75% load
Vac
Load
CH1
CH2
CH3
CH4
230
375 W PWML Vzcd
Vac
iL
Vac
Load
CH1
CH2
CH3
CH4
230
375 W PWML Vzcd
Vac
iL
230 Vac 375 W output; ZCD_arm is 100 mV
230 Vac 375 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
CH3
CH4
230
375 W PWML Vzcd
Vac
iL
Vac
Load
CH1
CH2
CH3
CH4
230
375 W PWML Vzcd
Vac
iL
230 Vac 375 W output; ZCD_arm is 100 mV 1-D turn off threshold is around 25 mV (Vilimit = 0.6 V / 30 mV)
230 Vac 375 W output; ZCD_arm is 100 mV 1-D dead time is around 97 ns
Figure 43.
www.onsemi.com 32
EVBUM2875/D
PFC Stage Fast Leg – 7 Test condition: 115 Vac 100% load
Vac
Load
CH1
CH2
115
500 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
500 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 500 W output; ZCD_arm is 100 mV
115 Vac 500 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
115
500 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
115
500 W PWML Vzcd
CH3 Vac
CH4 iL
115 Vac 500 W output; ZCD_arm is 100 mV 1-D turn off threshold becomes 200 mV, because Maximum duty clamp 96% x (1 / 65 kHz) = 14.77 ms
115 Vac 500 W output; ZCD_arm is 100 mV 1-D dead time is around 54 ns
Figure 44.
www.onsemi.com 33
EVBUM2875/D
PFC Stage Fast Leg – 8 Test condition: 230 Vac 100% load
Vac
Load
CH1
CH2
230
500 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
500 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 500 W output; ZCD_arm is 100 mV
230 Vac 500 W output; ZCD_arm is 100 mV
Vac
Load
CH1
CH2
230
500 W PWML Vzcd
CH3 Vac
CH4 iL
Vac
Load
CH1
CH2
230
500 W PWML Vzcd
CH3 Vac
CH4 iL
230 Vac 500 W output; ZCD_arm is 100 mV 1-D turn off threshold becomes 75 mV, because Maximum duty clamp 96% x (1 / 65 kHz) = 14.77 ms
230 Vac 500 W output; ZCD_arm is 100 mV 1-D dead time is around 84ns
Figure 45.
www.onsemi.com 34
EVBUM2875/D
PFC Stage Slow Leg – 1 Test condition: 115 Vac 25% load
Vac
Load
CH1
115
125 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
115
125 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 46.
PFC Stage Slow Leg – 2 Test condition: 115 Vac 50% load
Vac
Load
CH1
115
250 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
115
250 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 47.
www.onsemi.com 35
EVBUM2875/D
PFC Stage Slow Leg – 3 Test condition: 115 Vac 75% load
Vac
Load
CH1
115
375 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
115
375 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 48.
PFC Stage Slow Leg – 4 Test condition: 115 Vac 100% load
Vac
Load
CH1
115
500 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
115
500 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 49.
www.onsemi.com 36
EVBUM2875/D
PFC Stage Slow Leg – 5 Test condition: 230 Vac 25% load
Vac
Load
CH1
230
125 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
230
125 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 50.
PFC Stage Slow Leg – 6 Test condition: 230 Vac 50% load
Vac
Load
CH1
230
250 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
230
250 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 51.
www.onsemi.com 37
EVBUM2875/D
PFC Stage Slow Leg – 7 Test condition: 230 Vac 75% load
Vac
Load
CH1
230
375 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
230
375 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
z
Figure 52.
PFC Stage Slow Leg – 8 Test condition: 230 Vac 100% load
Vac
Load
CH1
230
500 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Vac
Load
CH1
230
500 W
SRL
CH2 SRH
CH3 SR_HB
CH4 IL
Figure 53.
www.onsemi.com 38
EVBUM2875/D
LLC Stage – 1 Test condition: 115 Vac / 230 Vac 100% load
Vac Load CH1 CH2 CH3 CH4
115 100% ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
115 100% ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
115 100% ML
IR
VHB
MU
Start up
Soft start sequence
Static state
Vac Load CH1 CH2 CH3 CH4
230 100% ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230 100% ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230 100% ML
IR
VHB
MU
Start up
Soft start sequence
Figure 54.
Static state
www.onsemi.com 39
LLC Stage – 2 Test condition: 115 Vac / 230 Vac 75% load
Vac Load CH1 CH2 CH3 CH4
115
75%
ML
IR
VHB
MU
EVBUM2875/D
Vac Load CH1 CH2 CH3 CH4
115
75%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
115
75%
ML
IR
VHB
MU
Start up
Soft start sequence
Static state
Vac Load CH1 CH2 CH3 CH4
230
75%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
75%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
75%
ML
IR
VHB
MU
Start up
Soft start sequence
Figure 55.
Static state
www.onsemi.com 40
LLC Stage – 3 Test condition: 115 Vac / 230 Vac 50% load
Vac Load CH1 CH2 CH3 CH4
115
50%
ML
IR
VHB
MU
EVBUM2875/D
Vac Load CH1 CH2 CH3 CH4
115
50%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
115
50%
ML
IR
VHB
MU
Start up
Soft start sequence
Static state
Vac Load CH1 CH2 CH3 CH4
230
50%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
50%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
50%
ML
IR
VHB
MU
Start up
Soft start sequence
Figure 56.
Static state
www.onsemi.com 41
LLC Stage – 4 Test condition: 115 Vac / 230 Vac 25% load
Vac Load CH1 CH2 CH3 CH4
115
25%
ML
IR
VHB
MU
EVBUM2875/D
Vac Load CH1 CH2 CH3 CH4
115
25%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
115
25%
ML
IR
VHB
MU
Start up
Soft start sequence
Static state
Vac Load CH1 CH2 CH3 CH4
230
25%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
25%
ML
IR
VHB
MU
Vac Load CH1 CH2 CH3 CH4
230
25%
ML
IR
VHB
MU
Start up
Soft start sequence
Figure 57.
Static state
www.onsemi.com 42
EVBUM2875/D
LLC Stage – 5 Test condition: 115 Vac / 230 Vac 2 A load
Vac
Load
CH1
CH2
CH3
CH4
115
2 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
115
2 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
230
2 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
230
2 A
ML
IR
VHB
MU
Figure 58.
www.onsemi.com 43
EVBUM2875/D
LLC Stage – 6 Test condition: 115 Vac / 230 Vac 1 A load
Vac
Load
CH1
CH2
CH3
CH4
115
1 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
115
1 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
230
1 A
ML
IR
VHB
MU
Vac
Load
CH1
CH2
CH3
CH4
230
1 A
ML
IR
VHB
MU
Figure 59.
www.onsemi.com 44
EVBUM2875/D
SR Stage – 1 Test condition: 115 Vac / 230 Vac 100% load
Vac
Load
CH1
CH2
CH3
CH4
115
100% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
115
100% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
230
100% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
230
100% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 60.
www.onsemi.com 45
EVBUM2875/D
SR Stage – 2 Test condition: 115 Vac / 230 Vac 75% load
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
115
75% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
115
75% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
230
75% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
230
75% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 61.
www.onsemi.com 46
EVBUM2875/D
SR Stage – 3 Test condition: 115 Vac / 230 Vac 50% load
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
115
50% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
115
50% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
230
50% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
230
50% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 62.
www.onsemi.com 47
EVBUM2875/D
SR Stage – 4 Test condition: 115 Vac / 230 Vac 25% load
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
115
25% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
115
25% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
230
25% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
230
25% SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 63.
www.onsemi.com 48
EVBUM2875/D
SR Stage – 5 Test condition: 115 Vac / 230 Vac 2 A load
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
115
2 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
115
2 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
230
2 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
230
2 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 64.
www.onsemi.com 49
EVBUM2875/D
SR Stage – 6 Test condition: 115 Vac / 230 Vac 1 A load
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
115
1 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
115
1 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Vac
Load
CH1
CH2
CH3
CH4
Vac
Load
CH1
CH2
CH3
CH4
230
1 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
230
1 A SR_VGS1 SR_VDS1 SR_VGS2 SR_VDS2
Figure 65.
www.onsemi.com 50
EVBUM2875/D
Thermal – 1 Test condition: 115 Vac 100% load @ room temp
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Figure 66.
www.onsemi.com 51
EVBUM2875/D
Thermal – 2 Test condition: 115 Vac 100% load @ room temp
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Vac
Load
CH1
CH2
CH3
CH4
115
100%
X
X
X
X
Figure 67.
Table 1.
Key Components
Thermal
Unit
Totem pole PFC Fast leg Dr.GaN
124
°C
Totem pole PFC Slow leg MOS
60
°C
LLC High Low side MOS
60
°C
PFC choke
50
°C
LLC main transformer
77
°C
LLC Leakage inductor
87
°C
SR MOS
83
°C
www.onsemi.com 52
EVBUM2875/D
Bill of Materials
Table 2. BOM
Description
1
INLET 3P 90° R-301SN (B13)
2
Wafer.4.2 mm. 2x4P 5102-07003L
3
FUSE CERAMIC 10 A / 250 V Time lag
4
MOV DIP, TVR10471KSV, 470 V ±10%
5
CAP X2 MP PC 275 VAC 0.68 mF K S15
6
CAP X2 MP PC 275 VAC 0.47 mF K S15
7
CAP Y1/X1 CD 250 VAC 220 pF K
8
CAP AL 100 mF 420 V 105°C 12.5 x 50 mm
9 CAP AL 2200 mF 16 V 105°C 10 x 25 mm GM
10 CAP AL 100 mF 50 V 105°C 8 x 11 mm WH
11 CAP AL 330 mF 50 V 105°C 10 x 16 mm WH
12
CAP MKP 0.1 mF 630 V 125°C ±10%
13 CAP SMD MC 1210 473P/630 V ±10% X7R 14 CAP SMD MC 1206 101 pF/1 kV ±10% X7R 15 CAP SMD MC 1206 221 pF/1 kV ±10% X7R 16 CAP SMD MC 1206 102 pF/1 kV ±10% X7R 17 CAP SMD MC 1206 105 pF/25 V ±10% X7R 18 CAP SMD MC 1206 225 pF/25 V ±10% X7R 19 CAP SMD MC 1206 475 pF/50 V ±10% X7R
20 CAP SMD MC 0805 224 pF/50 V ±10% X7R 21 CAP SMD MC 0805 105 pF/50 V ±10% X7R
22 CAP SMD MC 0805 225 pF/50 V ±10% X7R 23 CAP SMD MC 0603 101 pF/50 V ±10% X7R
24 CAP SMD MC 0603 221 pF/50 V ±10% X7R 25 CAP SMD MC 0603 331 pF/50 V ±10% X7R
26 CAP SMD MC 0603 102 pF/50 V ±10% X7R
27 CAP SMD MC 0603 222 pF/50 V ±10% X7R 28 CAP SMD MC 0603 472 pF/50 V ±10% X7R 29 CAP SMD MC 0603 103 pF/50 V ±10% X7R
30 CAP SMD MC 0603 104 pF/50 V ±10% X7R
31
BRIDGE DIODE 25 A 600 V
32
N-CH Power MOSFET 75 A/60 V 2.8 mW
33
N-CH SF3 650 V 82 mW FRFET
34
Super FET3 650 V 50 mW
35 NPN BJT 2 A/60 V Low Saturation Transistor
36
600 V / 1.0 A Fast Recovery Rectifier
37
200 V/ 0.8 A Fast Recovery Rectifier
38
UltraFast Power Rectifier 1 A/200 V
Package
5 Y 10 mm 10 mm f
11.5 x 19.5 x 17.5 mm Pitch = 15 mm
18 x 8.5 x 16.5 mm, Pitch = 15 mm
12.5 x 50 mm ,RADIAL 10 x 25,RADIAL
RR 8 x 11 ,RADIAL 10 x 16 RADIAL 0.1 mF DC630v 18 x 16 x 10 P = 15 L = 17
SMD 1210 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206
SMD 0805 SMD 0805
SMD 0805 SMD 0603
SMD 0603 SMD 0603
SMD 0603
SMD 0603 SMD 0603 SMD 0603
SMD 0603
TS-6P Power PAK 5 x 6
TO-220F TOLL
SOT-23 SMA
SOD-123
SMA
Vendor 9
- AISHI AISHI AISHI AISHI KEMET
onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi
Vendor P/N R-301SN (12B)
28-1001B11-00 TVR10471KSV HQX684KS275I
QPA 1 2 1 1 1
Parts CN1 CN2, CN3 F1 VAR1 CX1
PX474K3ID42H200D9R
2
CX2, CX3
CC-CD85-B2GA221KYAS 1
EWH2TM101W50OT
4
ERR1CM222G25OT
8
CY1 C5, C6, C7, C72 (PLM0438-4 daughter card)
C9, C10, C11, C12, C21, C22, C23, C31
EWH1HM101F11OPT
2
EWH1HM331G16OT
1
R76PI31005050J
1
C41, C46 C82 C18
DFB2560 NTMFS5C628NL NTPF082N65S3F NTBL050N65S3H
FSB560 RS1J
RS1DFA
ES1D
3
C77, C78, C79 (PLM0438-6 daughter card)
2
C4, C17
2
C25, C27 (PLM0438-5 daughter card)
4 C13, C52, C56, C57 (PLM0438-2 daughter card)
1
C45
2
C54, C55 (PLM0438-2 daughter card)
3
C44, C66
C29 (PLM0438-3 daughter card)
2
C26, C39 (PLM0438-5 daughter card)
6 C3, C16, C69, C74 (PLM0438-6 daughter card) C75, C76
1
C24 (PLM0438-3 daughter card)
6
C59, C62 (PLM0438-3 daughter card)
C60, C63, C64, C65
2
C51, C58
2
C28
C38 (PLM0438-5 daughter card)
4
C20, C32 (PLM0438-5 daughter card)
C47, C49
2
C35, C43
2
C30, C34 (PLM0438-5 daughter card)
7 C33, C40, C42, C71 (PLM0438-5 daughter card) C61
C2, C15 (PLM0438-6 daughter card)
5
C53
C67, C68, C70, C73 (PLM0438-6 daughter card)
1
BD1
8
Q14, Q16, Q17, Q18, Q31, Q32, Q33, Q34
(PLM0438-2 daughter card)
2
Q4, Q9
2
Q1, Q3 (PLM0438-3 daughter card)
1
Q25
5
D1, D2, D18
D11 (PLM0438-5 daughter card)
D17 (PLM0438-3 daughter card)
9 D3, D4, D5, D6, D14, D15 (PLM0438-6 daughter card)
D13, D16, D20
3
D8, D10, D23
www.onsemi.com 53
EVBUM2875/D
Table 2. BOM (continued)
Description
39
UltraFast Power Rectifier 3 A/200 V
40
Dual Switching Diode 100 mA/ 35 V
41
Diode Zener 4.7 V
42
Diode Zener 16 V
43
Dual PMOS -80 V, -2.1 A, 183 mW
44
Totem pole PFC controller
45
LLC controller
46
Programmable Precision Reference
47
Photo Coupler
48
Dual Driver SR controller
49
Driver GaN 50 mW 600 V
50
High low side Driver
51
Isolated high low side gate driver
52
LDO Regulator, 150 mA, 38 V
53
Differential choke 27 mH
54
Common mode choke 1 mH
55
Differential choke 10 mH
56
PFC choke 280 mH
57
LLC leakage inductor 55 mH
58
LLC main transformer 280 mH
59
SMT Current Sense Transformer
60
RES SMD R2512 0 W ±5%
61
RES SMD R2512 82 mW ±1%
62
RES SMD R1206 2.4 W ±5%
63
RES SMD R1206 3.9 W ±1%
64
RES SMD R1206 4.3 W ±1%
65
RES SMD R1206 10 W ±5%
66
RES SMD R1206 47 W ±5%
67
RES SMD R1206 4.3 kW ±5%
68
RES SMD R1206 4.7 kW ±5%
69
RES SMD R1206 20 kW ±5%
70
RES SMD R1206 300 kW ±5%
71
RES SMD R1206 2.21 MW ±1%
72
RES SMD R1206 3.3 MW ±5%
73
RES SMD R0805 0 W ±5%
74
RES SMD R0805 4.7 W ±5%
75
RES SMD R0805 22 W ±5%
76
RES SMD R0805 1.5 kW ±5%
77
RES SMD R0805 15 kW ±5%
78
RES SMD R0805 20 kW ±5%
79
RES SMD R0805 24 kW ±5%
80
RES SMD R0805 40.2 kW ±5%
81
RES SMD R0603 10 W ±5%
82
RES SMD R0603 12.4 W ±1%
83
RES SMD R0603 22.1 W ±5%
Package SMC
SOT-23 SOD-123 SOD-123
SO8 SO20 SO16 SOT-23 DIP4 SO8 QFN26 SO8 SO16 WB TSOP5
Vendor onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi onsemi
L27 x W14.5 mm _ 1 f x 2 pin pitch 10 mm
L 24 x W14 x H20 mm _ 1.5 f x 3 pin pitch 11 mm
QP3925V
YUJING
RM10
WE
PQ3220
WE
749251050
WE
SMD 2512
SMD 2512
SMD 1206
SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD 1206 SMD
1206 SMD 1206 SMD 0805 SMD 0805 SMD 0805 SMD 0805
SMD 0805 SMD 0805 SMD 0805 SMD 0805 SMD 0603 SMD 0603 SMD 0603
Vendor P/N ES3B
MMBD2835LT1G MMSZ5230BT1G MMSZ5246BT1G
FDS8935 NCP1681 NCP13994 NCP432BVSNT1G FOD817B NCP4318BLCDR2G NCP58921 NCP5183
NCP51561 NCP730ASNADJT1G
QPA 1 1 1 1 2 1 1 2 2 2 2 1 1 1 2 1
Parts D22 D12 ZD1 ZD6 U2, U3 (PLM0438-6 daughter card) U10 U4 (PLM0438-5 daughter card) U6, U7 U8, U11 U5, U9 (PLM0438-2 daughter card) U14, U15 (PLM0438-6 daughter card) U12 (PLM0438-3 daughter card) U16 U13 L1, L3 (TBD) L2
1
L7
11054-125v400210 750344733 750344731 749251050
1
L4
1
L6
2
TX1, TX2
2
CT1, CT2 (PLM0438-6 daughter card)
1
JP2
2
R5, R6
4
R41, R83 (PLM0438-5 daughter card)
R49 (PLM0438-3 daughter card)
R51
1
R19
1
R20
2
R70, R72 (PLM0438-3 daughter card)
4 R35, R36, R42, R45 (PLM0438-2 daughter card)
2
R2, R22 (PLM0438-6 daughter card)
1
R43 (PLM0438-5 daughter card)
2
R14, R32 (PLM0438-3 daughter card)
1
R12
3
R11, R13, R17
6
R37, R38, R52, R62, R64, R65
1
R21
2
R15, R44
2
R10, R26 (PLM0438-3 daughter card)
2
R48 (PLM0438-5 daughter card)
R66
1
R24
2
R16, R29
1
R102
2
R7, R25 (PLM0438-6 daughter card)
2
R71, R73
4 R40, R60, R77, R78 (PLM0438-2 daughter card)
3
R46 (PLM0438-5 daughter card)
R79, R81 (PLM0438-6 daughter card)
www.onsemi.com 54
EVBUM2875/D
Table 2. BOM (continued)
Description
84
RES SMD R0603 33 W ±5%
85
RES SMD R0603 1 kW ±5%
86
RES SMD R0603 1.24 kW ±1%
87
RES SMD R0603 1.5 kW ±5%
88
RES SMD R0603 2.4 kW ±5%
89
RES SMD R0603 6.19 kW ±1%
90
RES SMD R0603 6.81 kW ±1%
91
RES SMD R0603 15 kW ±5%
92
RES SMD R0603 20 kW ±5%
Package SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603
Vendor
93
RES SMD R0603 24.9 kW ±1%
94
RES SMD R0603 27.4 kW ±1%
95
RES SMD R0603 30 kW ±5%
96
RES SMD R0603 40.2 kW ±1%
97
RES SMD R0603 42.2 kW ±1%
98
RES SMD R0603 78.7 kW ±1%
99
RES SMD R0603 100 kW ±5%
100
RES SMD R0603 680 kW ±5%
101
NTC SMD 0603 100 kW ±1%
102
JUMP WIRE CU 1.5 x 40
103 MCH0672 L 49 mm x H 25 mm x W 10 mm
104 MCH0673 L 40 mm x H 25 mm x W 6.4 mm
105
SCREW 3 x 8
106 size = MCH0672 heat sink (Silicon pad)
107
SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD 0603 SMD
0603
L 49 mm x H 25 mm x W 10 mm
L 40 mm x H 25 mm x W 6.4 mm
M3 SCREW x 8 mm
THINKING
Vendor P/N
TSM2A104J455 MCH0672 MCH0673
References onsemi Datasheet for NCP1681, NCP13992, NCP13994, NCP4318, NCP431A onsemi Design Note DN05104/D
QPA 2 2 2 1 1 1 3 2 2
1 1 1 1 1 1 4 2 2 1 1
1
4 1
Parts R4, R23 (PLM0438-6 daughter card)
R74, R76 R63, R75 R57 (PLM0438-5 daughter card)
R27 R54 R8, R69, R80 R30, R39
R59, R61 R50 R34
R56 (PLM0438-5 daughter card) R82 R31 R55
R18, R53, R67, R68 R28, R47 (PLM0438-5 daughter card) RT1 (PLM0438-5 daughter
card) RT2
JP1 HS1
HS2
Q4, Q9, HS1 *2 MCH0672 heat sink PCB PLM0438V2
www.onsemi.com 55
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
ADDITIONAL INFORMATION
TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources
/technical-documentation onsemi Website: www.onsemi.com
ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>