KRAMER KM-KDX-0816A Small Air Cooled Condensers User Manual
- June 3, 2024
- Kramer
Table of Contents
- KM-KDX-0816A Small Air Cooled Condensers
- Standard Features
- Options
- Features and Options
- Condenser Selection
- ELEVATION CORRECTION
- SINGLE CIRCUIT CONDENSERS
- SELECTION EXAMPLE
- Head Pressure Control Options
- Physical Data
- **DRAWING – 2 FAN
- Specifications – 1075 RPM Fan Motors
- Performance Data – 850 RPM Fan Motors
- Documents / Resources
KM-KDX-0816A Small Air Cooled Condensers
User Manual
KM-KDX-0816A Small Air Cooled Condensers
Unicom
Efficient and Reliable
Kramer’s Remote Air Cooled Condensers’ innovative design provides a wide array
of solutions focusing on performance, energy efficiency, reduced sound output
and other requirements to meet the needs of the grocery, supermarket,
industrial cooling and commercial warehousing industries.
Standard Features
- Direct drive motor arrangement
- Vertical air flow
- 1075 or 850 RPM motors
- Motors with inherent thermal overload protection
- Copper tube, aluminum fin coils
- Leak tested at 450 PSIG
- Vinyl coated heavy gauge steel fan guards
- Heavy gauge galvanized steel construction for
- superior corrosion resistance
- Internal divider isolates fan cells (2 fan models)
Options
- Fan cycling head pressure control (2 fan models)
- Variable speed fan control (header end fan only)
- Flooded head pressure control
- Sub-cooling circuit
- Horizontal air flow
- Multi-circuited coils
- Wide selection of fin coatings and materials
Features and Options
| DESCRIPTION
---|---
GENERAL
CONSTRUCTION| Vertical Air Discharge Configuration| STANDARD
Horizontal Air Discharge Configuration| OPTIONAL
Galvanized Steel Casing| STANDARD
Stainless Steel 316 or Aluminum Casing| OPTIONAL
Protective Coating for External Casing| OPTIONAL
Heavy Gurage Galvanized Steel Legs| vertical Discharge – Leg Length 15″|
STANDARD
vertical Discharge – Leg Length 30″| OPTIONAL
CONDENSER
COIL AND
CIRCUITING| Aluminum Tube Sheets| STANDARD
Copper Tubes Mechanically Expanded into Aluminum Fins| STANDARD
Leak tested at 450 PSIG| STANDARD
Coil Circuiting:| Shingle Circuit| STANDARD
50/50| OPTIONAL
Multi-Circuiting| OPTIONAL
Sub-Cooling Circuits| OPTIONAL
FIN MATERIALS,
SPACING AND
COATINGS| Fin Spacing:| 10 Fins per inch| STANDARD
8,12 or 14 Fins Per Inch| OPTIONAL
Fin Materials:| Aluminum Fins| STANDARD
Copper Fins or Polyester-Coated Fin Stock| OPTIONAL
Fin Coatings:| None| STANDARD
aElectroFin. or Here site, or Energy Guard| OPTIONAL
FAN/ MOTOR| Welded Heavy Gauge Rod Mounting Frame| STANDARD
Fully Baffled Fan Modules S| STANDARD
Motor Type:| Open Type| STANDARD
Enclosed| OPTIONAL
ELECTRICAL
PANEL| Mounting Location:| Opposite Header End| STANDARD
Left hand or Right hand (viewing header) ipr Header End| OPTIONAL
Temp. or Press. Fan Cycling (2 fan models only)| OPTIONAL
Variable Speed Header End Fan Control – Pressure Controlled| OPTIONAL
REFRIGERANT
SPECIALTIES| Flooded-Condenser Control Valve System (Loose)| OPTIONAL
SHIPPING| Vertical Air Discharge Models – Legs Disassembled – Unit in Carton
or Crate| STANDARD
Horizontal Discharge Models – Legs Disassembled – Unit in Carton or Crate|
OPTIONAL
Horizontal discharge orientation is available using standard leg arrangement.
Condenser Selection
Air-cooled condenser capacity ratings are based on the total heat rejection of
the refrigeration system. Total heat of rejection is the sum of the net
refrigeration effect and heat of compression added to the refrigerant in the
compressor.
The heat of compression varies with the compressor design, so the compressor
manufacturer’s information should be used whenever possible. If the compressor
manufacturer’s heat of compression information is not available, Tables 1 and
2 (page 5) may be used to determine the heat of compression.
The following formulas may be used to calculate the total heat rejection (THR)
for systems that fall outside the normal limits of single stage compressor
applications, such as compound or cascade systems.
Suction cooled hermetic compressors:
THR = Compressor Capacity (BTUH) + (3,413 x KW)
Open Compressors
THR =Compressor Capacity (BTUH) + (2,545 x BHP)
ELEVATION CORRECTION
Elevation above sea level has an effect on the performance of air cooled condensers. Divide the required capacity by the Elevation Correction Factor in the table on page 5 to correct the requirement to Sea Level Conditions. The proper condenser can then be selected from the appropriate table on Pages 7 or 8.
SINGLE CIRCUIT CONDENSERS
All units are available for single circuit applications.
SELECTION EXAMPLE
Given:
Ambient Air Temperature =95° F
Maximum Condensing Temperature = 110° F
Evaporator Temperature = 20° F
Refrigerant = R-404A
Compressor Capacity= 50,000 BTU
Compressor Type= Suction Cooled Semi-Hermetic
Solution:
Multiply the compressor capacity by the heat of compression factor to
calculate the required total heat of rejection (THR).
Table 1 shows that for 110°F condensing temperature and 20° F evaporator
temperature, the heat of compression factor is 1.33. The required total heat
rejection (THR) is:
50,000 x 1.33 = 66,500 BTUH THR
Divide the THR by the design condensing temperature of 15F TD. (TD= Condensing
Temperature – Ambient Temperature)
66,500 ÷ 15 = 4,433 BTUH per 1°F TD
Convert BTUH to MBH.
4,433 BTUH ÷ 1,000 = 4.43 MBH per 1°F TD
The correct selection of a single fan width unit with 1140 RPM fan motors
(page 7) is a model KDS007A2812A 1 A with a capacity of 4.6 MBH@ 14FPI.
Since the unit selection will almost never have the exact required capacity,
the actual TD will vary slightly from the design TD.
The actual TD can be calculated using the following formula:
For this example the actual TD would be:
Table 1: Heat of Compression Factors
Suction Cooled Compressors
Evap
Temp
°F| Condensing Temperature °F
---|---
90| 95| 100| 105| 110| 115| 120| 125| 130
-40| 1.66| 1.7| 1.73| 1.76| 1.8| 1.9| 2| |
-35| 1.61| 1.64| 1.68| 1.7| 1.74| 1.82| 1.9| |
-30| 1.57| 1.6| 1.62| 1.65| 1.68| 1.74| 1.8| |
-25| 1.53| 1.56| 1.58| 1.6| 1.63| 1.67| 1.72| |
-20| 1.49| 1.51| 1.53| 1.55| 1.58| 1.61| 1.65| |
-15| 1.46| 1.48| 1.5| 1.51| 1.54| 1.57| 1.61| |
-10| 1.42| 1.44| 1.46| 1.48| 1.5| 1.53| 1.57| 1.6| 1.64
-5| 1.39| 1.41| 1.43| 1.45| 1.47| 1.5| 1.53| 1.56| 1.6
0| 1.36| 1.38| 1.4| 1.42| 1.44| 1.47| 1.5| 1.53| 1.56
+5| 1.33| 1.35| 1.37| 1.39| 1.41| 1.43| 1.46| 1.49| 1.52
+10| 1.31| 1.32| 1.34| 1.36| 1.38| 1.4| 1.43| 1.46| 1.49
+15| 1.28| 1.3| 1.32| 1.33| 1.35| 1.37| 1.4| 1.43| 1.46
+20| 1.26| 1.27| 1.29| 1.31| 1.33| 1.35| 1.37| 1.4| 1.43
+25| 1.24| 1.25| 1.27| 1.29| 1.31| 1.33| 1.35| 1.37| 1.4
+30| 1.22| 1.23| 1.25| 1.26| 1.28| 1.3| 1.32| 1.34| 1.37
+35| 1.2| 1.21| 1.23| 1.25| 1.26| 1.27| 1.29| 1.31| 1.34
+40| 1.18| 1.19| 1.21| 1.23| 1.24| 1.25| 1.27| 1.29| 1.31
+45| 1.16| 1.17| 1.19| 1.21| 1.22| 1.23| 1.25| 1.26| 1.28
+50| 1.14| 1.15| 1.17| 1.19| 1.2| 1.22| 1.23| 1.24| 1.26
A. Beyond the normal limits for single stage compressor application.
Table 2: Heat of Compression Factors
Open Compressors
Evap Temp
°F| Condensing Temperature °F
---|---
90| 95| 100| 105| 110| 115| 120| 125| 130
-30| 1.37| 1.39| 1.42| 1.44| 1.47| | | |
-20| 1.33| 1.35| 1.37| 1.39| 1.42| 1.44| 1.47| |
-10| 1.28| 1.3| 1.32| 1.34| 1.37| 1.39| 1.42| 1.44| 1.47
0| 1.24| 1.26| 1.28| 1.3| 1.32| 1.34| 1.37| 1.39| 1.41
+10| 1.21| 1.23| 1.24| 1.26| 1.28| 1.3| 1.32| 1.34| 1.36
+20| 1.17| 1.18| 1.2| 1.22| 1.24| 1.26| 1.28| 1.3| 1.32
+30| 1.14| 1.15| 1.17| 1.18| 1.2| 1.22| 1.24| 1.25| 1.27
+40| 1.12| 1.14| 1.15| 1.16| 1.17| 1.18| 1.2| 1.21| 1.23
+50| 1.09| 1.11| 1.12| 1.13| 1.14| 1.16| 1.17| 1.19| 1.2
Table 3: Elevation Correction Factors
Elevation (ft)| 1,000| 2,000| ,000| 4,000| 5,000| 6,000| 8,000| 10,000|
12,000| 14,000| 16,000
---|---|---|---|---|---|---|---|---|---|---|---
Correction Factor| 0.94| 0.93| 0.90| 0.88| 0.86| 0.83| 0.79| 0.75| 0.71| 0.66|
0.62
Head Pressure Control Options
FLOODED CONDENSER
The Flooded Condenser Head Pressure Control Option maintains adequate
condensing pressure while operating in low ambient temperatures. By flooding
the condenser with liquid refrigerant, the amount of coil surface available
for condensing is reduced. The resulting reduction in capacity ensures proper
operation of the thermal expansion valve.
This option requires a modulating three-way valve, dependent on refrigerant
discharge pressure, be placed at the condenser outlet. A fall in ambient
temperature causes a corresponding fall in discharge pressure. The valve
modulates allowing discharge gas to flow to the receiver, creating a higher
pressure at the condenser outlet. This higher pressure reduces the flow out of
the condenser, causing liquid refrigerant to back up in the coil. Flooding the
condenser reduces the available condensing surface and raises the condensing
pressure so that adequate high-side pressure is maintained.
A larger receiver and additional refrigerant are required for systems with
flooded condenser control. The receiver can be conveniently installed directly
under the condenser in most applications. However, if the system will be
operational in ambient temperatures below 55° F, the receiver should be
located in a warm environment or heated. In this situation, a check valve
must be installed in the line between the receiver and condenser valve. This
prevents refrigerant migration from the receiver to the condenser.
The amount of additional refrigerant charge is based on the lowest expected
winter operating temperature and the design TD. In addition to the condenser
charge, the operating charges of the evaporator, receiver and refrigerant
lines must be added to determine the total system refrigerant charge. The
pump-down capacity (80% of full capacity) of the receiver must be at least
equal to the total system charge.
Physical Data
Model Number| Drawing| A| B| C| D| E|
F
---|---|---|---|---|---|---|---
KDS001A1| KDS001C1| 1| 12-1/2| 28| 25-9/16| 13-3/4| 26-5/8| 26-13/16
KDS002A1| KDS002C1| 1| 12-1/2| 28| 25-9/16| 13-3/4| 26-5/8| 26-13/16
KDS003A1| KD5003C1| 1| 14-3/8| 33| 30-9/16| 15-5/8| 31-5/8| 31-13/16
KDS005A1| KDS004C1| 1| 14-3/8| 33| 30-9/16| 15-5/8| 31-5/8| 31-13/16
KDS007A2| KDS006C2| 2| 14-3/8| 66| 30-9/16| 15-5/8| 64-5/8| 31-13/16
KDS009A2| KDS008C2| 2| 14-3/8| 66| 30-9/16| 15-5/8| 64-5/8| 31-13/16
KDS011A2| KDS009C2| 2| 14-3/8| 66| 30-9/16| 15-5/8| 64-5/8| 31-13/16
DRAWING – 1 FAN
**DRAWING – 2 FAN
** Performance Data – 1075 RPM Fan Motors
THR MBH 1 °F TD – R407A
Model Number | Fins Per Inch |
---|---|
8 | 10 |
KDS001A1B12A 1A | 0.67 |
--- | --- |
KDS002A 1B 12A 1 A | 1.16 |
KDS003*A 1B12A 1A | 1.52 |
KDS005*A 1B12A 1A | 2.18 |
KDS007A28 12A 1 A | 1/3/1900 |
KDS009* A2B 12A 1 A | 1/4/1900 |
KDSOl 1A2812A1A | 5.37 |
R MBH 1°F TD – R404A & R507
Fins Per Inch
8| 10| 12| 14
0.73| 0.84| 0.9| 1.04
---|---|---|---
1.17| 1.33| 1.45| 1.57
2| 1.81| 2| 2
2.23| 2.48| 2.68| 2.81
3.42| 3.89| 4.27| 4.6
5.46| 5.06| 5.45| 5.76
5.31| 5.79| 6.1| 6.45
* Each asterisk represents a variable character based upon voltage and
vintage ordered. See page 2 for complete nomenclature.
For R-22 capacity, multiply R404A unit capacity by 1.02| For R-407C capacity,
multiply R407A capacity by .98
---|---
For R-134a capacity multiply R-404A unit capacity by .97| For R-410A capacity,
multiply R404A capacity by 1.08
Notes:
- R-407A ratings are based on Mean Condensing Temperature which is the average of the Dew Point and Bubble Point temperatures corresponding to the refrigerant temperature at the condenser inlet.
Specifications – 1075 RPM Fan Motors
Model Number| Fans| Maximum
Circuit
Quantity| Connection
(Inches)| Connection
Quantity| Net
Weight
(Lbs.)| Unit
kW
---|---|---|---|---|---|---
Quantity| Diameter| CFM| dBA †
KDS001A1 Bl 2A1A| 1| 18| 3,020| 47| 5| 8-Jul| 2| 80| 0.28
---|---|---|---|---|---|---|---|---|---
KDS002A1 Bl 2A1A| 1| 18| 2,840| 47| 10| 8-Jul| 2| 86| 0.28
KDS003A1 Bl 2A1A| 1| 22| 4,450| 57| 12| 8-Jul| 2| 107| 0.47
KDS005A1 Bl 2A1A| 1| 22| 3,900| 57| 18| 8-Jul| 2| 116| 0.47
KDS007A2B12A1A| 2| 22| 8,640| 60| 18| 1/1/2008| 2| 164| 0.94
KDS009A2B12A1A| 2| 22| 7,780| 60| 27| 1/1/2008| 2| 179| 0.94
KDS011A2812A1A| 2| 22| 7,080| 60| 36| 1/1/2008| 2| 195| 0.94
Bald Eumteref| 208-230/1/60| 208-230/3/60| 460/1/60 I I| 460/3/60| 575/1/60
---|---|---|---|---|---
FLA| MCA| MOPD| FLA| MCA| MOPD| FLA| MCA| MOPD| FLA| MCA| IMOPD| FLA| MCA|
MOPD
KDS001A1B12A1A| 3.2| 15.0| 15| 1.8| 15.0| 15| 1.3| 15.0| 15| 0.9| 15.0| 15|
1.0| 15.0| 15
KDS002A1B12A1A| 3.2| 15.0| 15| 1.8| 15.0| 15| 1.3| 15.0| 15| 0.9| 15.0| 15|
1.0| 15.0| 15
KDS003A1B12A1A| 3.2| 15.0| 15| 1.8| 15.0| 15| 1.3| 15.0| 15| 0.9| 15.0| 15|
1.0| 15.0| 15
KDS005A1B12A1A| 3.2| 15.0| 15| 1.8| 15.0| 15| 1.3| 15.0| 15| 0.9| 15.0| 15|
1.0| 15.0| 15
KDS007A2B12A1A| 6.4| 15.0| 15| 3.6| 15.0| 15| 2.6| 15.0| 15| 2.| 15.0| 15|
2.0| 15.0| 15
KDS009A2B12A1A| 6.4| 15.0| 15| 3.6| 15.0| 15| 2.6| 15.0| 15| 2.| 15.0| 15|
2.0| 15.0| 15
KDS011A2B12A1A| 6.4| 15.0| 15| 3.6| 15.0| 15| 2.6| 15.0| 15 _| 2.| 15.0| 15|
2.0| 15.0| 15
- Each asterisk represents a variable character based upon voltage and vintage ordered. See page 2 for complete nomenclature.
Sound pressure dBA @ 1 0 feet.
A Standard connection sizes are for no circuit split. Header diameters are one size larger than connection sizes.
Variance from standard operating conditions may result in connection sizes which are different from those listed above.
Performance Data – 850 RPM Fan Motors
Model Number | Fins Per Inch |
---|---|
8 | 10 |
KDS0Ol *(1812A 1 A | 0.63 |
--- | --- |
KDS002C1812A1A | 1.05 |
KDS003C1812A1A | 1.38 |
KDS004C1812A1A | 1.97 |
KDS006C2812A1 A | 2.97 |
KDS008C2812A1 A | 1/4/1900 |
KDS009C2812A1 A | 1/4/1900 |
THR MBH 1°F TD – R404A & R507
Fins Per Inch
8| 10| 12| 14
0.68| 0.79| 0.88| 0.97
---|---|---|---
1.09| 1.24| 1.36| 1.47
1.44| 1.63| 1.79| 1.93
1.97| 2.19| 2.35| 2.49
3.09| 3.51| 3.86| 4.16
4.05| 4.51| 4.83| 5.11
4.53| 4.94| 5.21| 5.5
- Each asterisk represents a variable character based upon voltage and vintage ordered. See page 2 for complete nomenclature.
For R-22 capacity, multiply R404A unit capacity by 1.02| For R-407C capacity,
multiply R407 A capacity by .98
---|---
For R-134a capacity multiply R-404A unit capacity by .97| For R-410A capacity,
multiply R404A capacity by 1.08
Notes:
R-407A ratings are based on Mean Condensing Temperature which is the average
of the Dew Point and Bubble Point temperatures corresponding to the
refrigerant temperature at the condenser inlet.
Specifications – 850 RPM Fan Motors
Model Number| Fans| Maximum
Circuit
Quantity| Connection
(Inches)| Connection
Quantity| Net
Weight
(Lbs.)| Unit
kW
---|---|---|---|---|---|---
Quantity| Diameter| CFM| dBA †
KDS001C1812A1A| 1| 18| 2,470| 47| 5| 8-Jul| 2| 80| 0.11
---|---|---|---|---|---|---|---|---|---
KDS002C1812A1 A| 1| 18| 2,110| 47| 10| 44,750| 2| 86| 0-Jan
KDS003C1812A1 A| 1| 22| 3,290| 52| 12| 44,750| 2| 107| 0-Jan
KDS004C1812A1A| 1| 22| 2,880| 52| 18| 44,750| 2| 116| 0-Jan
KDS006C2B12A 1 A| 2| 22| 6,390| 55| 18| 39,448| 2| 164| 0-Jan
KDS008C2B12A 1 A| 2| 22| 5,760| 55| 27| 39,448| 2| 179| 1/0/1900
KDS009C2812A1 A| 2| 22| 5,170| 55| 36| 39,448| 2| 195| 1/0/1900
Model Number| 208-230/1/60| 208-230/3/60| 460/1/60| 460/3/60| 575/1/60
---|---|---|---|---|---
FLA| MCA| MOPD| FLA| MCA| MOPD| FLA| MCA| MOPD| FLA| MCA| MOPD| FLA| MCA|
MOPD
KDS001C1812A1A| 1.4| 15| 15| 1.1| 15| 15| 0.7| 15| 15| 0.6| 15| 15| –| –| –
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
KDS002C1812A1 A| 1.4| 15| 15| 1.1| 15| 15| 0.7| 15| 15| 0.6| 15| 15| –| –| –
KDS003C181 2A 1 A| 1.4| 15| 15| 1.1| 15| 15| 0.7| 15| 15| 0.6| 15| 15| –| –| –
KDS004C1812A1A| 1.4| 15| 15| 1.1| 15| 15| 0.7| 15| 15| 0.6| 15| 15| –| –| –
KDS006C2812A1 A| 2.8| 15| 15| 2.2| 15| 15| 1.4| 15| 15| 1.2| 15| 15| –| –| –
KDS008*C2B 12A 1 A| 2.8| 15| 15| 2.2| 15| 15| 1.4| 15| 15| 1.2| 15| 15| –| –|
–
KDS009C2812A 1 A| 2.8| 15| 15| 2.2| 15| 15| 1.4| 15| 15| 1.2| 15| 15| –| –| –
- Each asterisk represents a variable character based upon voltage and vintage ordered. See page 2 for complete nomenclature.
† Sound pressure dBA @ 10 feet.
A Standard connection sizes are for no circuit split. Header diameters are one size larger than connection sizes.
– Not available in 575V.
Variance from standard operating conditions may result in connection sizes which are different from those listed above.
Due to continuing product development, specifications are subject to change without notice.
01 Thomas French Drive
Scottsboro, AL 55769
PHONE256-259-7400
FAX256-259-7478
kramer.htpgusa.com
kramer.htpgusa.com
E-mail or call us for help:parts@htpgusa.com or
(800} 288-9488
parts@htpgusa.com
800-288-9488
Documents / Resources
|
KRAMER KM-KDX-0816A Small Air Cooled
Condensers
[pdf] User Manual
KM-KDX-0816A Small Air Cooled Condensers, KM-KDX-0816A, Small Air Cooled
Condensers, Air Cooled Condensers, Cooled Condensers, Condensers
---|---
References
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>