PENTAIR PN Series Corrosion Resistant Shallow Well Jet Pumps Instruction Manual

September 10, 2024
Pentair

ENGINEERING MANUAL

FRICTION LOSSES THROUGH PIPE FITTINGS

FRICTI0N L0SSES THR0UGH PIPE FITTINGS IN TERMS 0F EQUIVALENT LENGTHS 0F STANDARD PIPE

| | | | | | | | |
---|---|---|---|---|---|---|---|---|---
SIZE OF PIPE (SMALL DIA.)| STANDARD ELBOW| MEDIUM RADIUS ELBOW| LONG RADIUS ELBOW| 45˚ ELBOW| TEE| RETURN BEND| GATE VALVE OPEN| GLOBE VALVE OPEN| ANGLE VALVE OPEN
LENGTH OF STRAIGHT PIPE GIVING EQUIVALENT RESISTANCE FLOW
1/2”| 1.5| I.4| 1.1| .77| 3.4| 3.8| .35| 16| 8.4
3/4”| 2.2| I.8| 1.4| 1.0| 4.5| 5.0| .47| 22| 12.
I”| 2.7| 2.3| 1.7| 1.3| 5.8| 6.I| .6| 27| 15.
1-1/4”| 3.7| 3.0| 2.4| 1.6| 7.8| 8.5| .8| 37| 18.
1-1/2”| 4.3| 3.6| 2.8| 2.0| 9.0| 10.| .95| 44| 22.
2”| 5.5| 4.6| 3.5| 2.5| II.| 13.| 1.2| 57| 28.
2-1/2”| 6.5| 5.4| 4.2| 3.0| 14.| 15.| I.4| 66| 33.
3”| 8.I| 6.8| 5.I| 3.8| 17.| 18.| I.7| 85| 42.
3-1/2”| 9.5| 8.0| 6.0| 4.4| 19.| 21.| 2.| 99| 50.
4”| II.| 9.I| 7.0| 5.0| 22.| 24.| 2.3| 110| 58.
4-1/2”| 12.| 10.| 7.9| 5.6| 24.| 27.| 2.6| 130| 61.
5”| 14.| 12.| 8.9| 6.I| 27.| 31.| 2.9| 140| 70.
6”| 16.| 14.| II.| 7.7| 33.| 37.| 3.5| 160| 83.
8”| 21.| 18.| 14.| 10.| 43.| 49.| 4.5| 220| 110.
10”| 26.| 22.| 17.| 13.| 56.| 61.| 5.7| 290| 140.
12”| 32.| 26.| 20.| 15.| 66.| 73.| 6.7| 340| 170.
14”| 36.| 31.| 23.| 17.| 76.| 85.| 8.| 390| 190.
16”| 42.| 35.| 27.| 19.| 87.| 100.| 9.| 430| 220.
18”| 46.| 40.| 30.| 21.| 100.| 110.| 10.2| 500| 250.
20”| 52.| 43.| 34.| 23.| 110.| 120.| 12.| 560| 280.
22”| 58.| 50.| 37.| 25.| 130.| 140.| 13.| 610| 310.
24”| 63.| 53.| 40.| 28.| 140.| 150.| 14.| 680| 340.
30”| 79.| 68.| 50.| 35.| 165.| 190.| 17.| 860| 420.
36”| 94.| 79.| 60.| 43.| 200| 220.| 20.| 1000| 500.
42”| 120.| 95.| 72.| 50.| 240| 260.| 23.| 1200| 600.
48”| 135.| 110.| 82.| 58.| 275| 300.| 26.| 1400| 680.

From “Engineering Data on Flow of Fluids In Pipes ” – Crane Co

PIPE FRICTION FOR OFFSET JET PUMPS

Friction Loss in Feet Per 100 Feet offset

FRICTION OF WATER IN PIPES

Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head Feet| Head Loss Ft. Per 100 Feet
---|---|---|---|---|---|---|---|---|---|---|---
1 2 Pipe (.622” I. D.)| 3 4 Pipe (.824” I. D.)| 1” Pipe (I.049” I. D.)
0.5| .52| .00| .6| I.5| .90| .01| 1.I| 2| .74| .01| .6
1.0| 1.06| .02| 2.1| 2.0| I.20| .02| 1.9| 3| 1.11| .02| 1.3
1.5| I.58| .04| 4.4| 2.5| 1.51| .04| 2.9| 4| 1.49| .03| 2.1
2.0| 2.11| .07| 7.6| 3.0| 1.81| .05| 4.1| 5| 1.86| .05| 3.2
2.5| 2.64| .11| 11.4| 3.5| 2.11| .07| 5.4| 6| 2.23| .08| 4.5
3.0| 3.17| .16| 16.0| 4.0| 2.41| .09| 6.9| 8| 2.97| .14| 7.7
3.5| 3.70| .21| 21.3| 4.5| 2.71| .11| 8.6| 10| 3.71| .21| 11.7
4.0| 4.23| .28| 27.3| 5| 3.01| .14| 10.5| 12| 4.46| .31| 16.4
4.5| 4.75| .35| 33.9| 6| 3.61| .20| 14.7| 14| 5.20| .42| 21.8
5.0| 5.28| .43| 41.2| 7| 4.21| .28| 19.6| 16| 5.94| .55| 27.9
5.5| 5.81| .52| 49.2| 8| 4.84| .36| 25.0| 18| 6.68| .69| 34.7
6.0| 6.34| .62| 57.8| 9| 5.42| .46| 31.1| 20| 7.43| .86| 42.1
6.5| 6.87| .73| 67.0| 10| 6.02| .56| 37.8| 22| 8.17| 1.04| 50.2
7.0| 7.39| .85| 76.8| 11| 6.62| .68| 45.1| 24| 8.91| 1.23| 59.0
7.5| 7.92| .97| 87.3| 12| 7.22| .81| 53.0| 26| 9.66| 1.45| 68.4
8.0| 8.45| 1.11| 98.3| 13| 7.82| .95| 61.5| 28| 10.4| 1.7| 78.5
8.5| 8.98| 1.25| 110.| 14| 8.43| 1.10| 70.5| 30| 11.1| 1.9| 89.2
9.0| 9.51| 1.4| 122.| 16| 9.63| 1.44| 90.2| 35| 13.0| 2.6| 119.
9.5| 10.0| 1.6| 135.| 18| 10.8| 1.8| 112.| 40| 14.9| 3.5| 152.
10| 10.6| 1.7| 149.| 20| 12.0| 2.2| 136| 45| 16.7| 4.3| 189.
1 1 4 Pipe (1.380” I. D.)| 1 1 2 Pipe (1.610” I. D.)| 2” Pipe (2.067” I. D.)
4| .86| .01| .6| 6| .95| .01| .6| 10| .96| .01| .4
5| 1.07| .02| .9| 8| I.26| .02| 1.0| 12| 1.15| .02| .6
6| 1.29| .03| 1.2| 10| 1.58| .04| 1.5| 14| 1.34| .03| .8
7| 1.50| .04| 1.6| 12| 1.89| .06| 2.0| 16| 1.53| .04| 1.0
8| 1.72| .05| 2.0| 14| 2.21| .08| 2.7| 18| 1.72| .05| 1.3
10| 2.15| .07| 3.1| 16| 2.52| .10| 3.5| 20| 1.91| .06| 1.6
12| 2.57| .10| 4.3| 18| 2.84| .13| 4.3| 22| 2.10| .07| 1.9
14| 3.00| .14| 5.7| 20| 3.15| .15| 5.2| 24| 2.29| .08| 2.2
16| 3.43| .18| 7.3| 22| 3.47| .19| 6.3| 26| 2.49| .10| 2.5
18| 3.86| .23| 9.1| 24| 3.78| .22| 7.3| 28| 2.68| .11| 2.9
20| 4.29| .29| 11.1| 26| 4.10| .26| 8.5| 30| 2.87| .13| 3.3
25| 5.36| .45| 16.8| 28| 4.41| .30| 9.8| 35| 3.35| .17| 4.4
30| 6.43| .64| 23.5| 30| 4.73| .35| 11.1| 40| 3.82| .23| 5.6
35| 7.51| .88| 31.2| 32| 5.04| .39| 12.5| 45| 4.30| .29| 7.0
40| 8.58| 1.14| 40.0| 34| 5.36| .45| 14.0| 50| 4.78| .36| 8.5
50| 10.7| 1.8| 60.4| 36| 5.67| .50| 15.5| 55| 5.26| .43| 10.1
60| 12.9| 2.6| 84.7| 38| 5.99| .56| 17.2| 60| 5.74| .51| 11.9
70| 15.0| 3.5| 114.| 40| 6.30| .62| 18.9| 65| 6.21| .60| 13.7
80| 17.2| 4.6| 144.| 42| 6.62| .68| 20.7| 70| 6.69| .70| 15.8
90| 19.3| 5.8| 179.| 44| 6.93| .75| 22.5| 75| 7.17| .80| 17.9
| | | | 46| 7.25| .82| 24.5| 80| 7.65| .91| 20.2
48| 7.57| .89| 27.1| 85| 8.13| I.03| 22.6
| | | | 50| 7.88| .97| 28.5| 90| 8.61| 1.15| 25.1
55| 8.67| 1.17| 34.0| 95| 9.08| 1.28| 27.7
| | | | 60| 9.46| 1.39| 40.0| 100| 9.56| 1.42| 30.5
65| 10.2| 1.6| 46.4| 110| 10.5| 1.7| 36.4
| | | | 70| 11.0| 1.9| 53.2| 120| 11.5| 2.1| 42.7
75| 11.8| 2.2| 60.4| 130| 12.4| 2.4| 49.6
| | | | 80| 12.6| 2.5| 68.1| 140| 13.4| 2.8| 56.9
85| 13.4| 2.8| 76.2| 150| 14.3| 3.2| 64.7
| | | | 90| 14.2| 3.1| 84.7| | | |
Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet
---|---|---|---|---|---|---|---|---|---|---|---
2 1 2 Pipe (2.469” I. D.)| 3” Pipe (3.068” I. D.)| 4” Pipe (4 .026” I. D.)
20| 1.34| .03| 0.7| 30| 1.30| .03| .48| 60| 1.51| .04| .5
25| 1.67| .05| 1.1| 35| 1.52| .04| .64| 80| 2.02| .06| .8
30| 2.02| .06| 1.4| 40| 1.74| .05| .82| 100| 2.52| .10| 1.2
35| 2.35| .09| 1.8| 45| 1.95| .06| 1.0| 120| 3.02| .14| 1.7
40| 2.68| .11| 2.4| 50| 2.17| .07| 1.2| 140| 3.53| .19| 2.2
45| 3.02| .14| 2.9| 60| 2.60| .11| 1.7| 160| 4.03| .25| 2.8
50| 3.35| .17| 3.6| 70| 3.04| .14| 2.3| 180| 4.54| .32| 3.5
55| 3.69| .21| 4.2| 80| 3.47| .19| 3.0| 200| 5.05| .40| 4.3
60| 4.02| .25| 5.0| 90| 3.99| .24| 3.7| 220| 5.55| .48| 5.1
65| 4.36| .30| 5.8| 100| 4.34| .29| 4.5| 240| 6.05| .57| 6.0
70| 4.69| .34| 6.6| 120| 5.21| .42| 6.3| 260| 6.55| .67| 7.0
75| 5.03| .39| 7.6| 140| 6.08| .57| 8.3| 280| 7.06| .77| 8.0
80| 5.36| .45| 8.5| 160| 6.94| .75| 10.7| 300| 7.57| .89| 9.1
85| 5.70| .50| 9.5| 180| 7.81| .95| 13.2| 320| 8.07| 1.01| 10.2
90| 6.03| .57| 10.6| 200| 8.68| 1.17| 16.1| 340| 8.58| 1.14| 11.5
95| 6.37| .63| 11.7| 220| 9.55| 1.42| 19.2| 360| 9.08| 1.28| 12.7
100| 6.70| .70| 12.8| 240| 10.4| 1.7| 22.6| 380| 9.59| 1.43| 14.1
110| 7.37| .84| 15.3| 260| 11.3| 2.0| 26.2| 400| 10.1| 1.6| 15.5
120| 8.04| 1.00| 18.0| 280| 12.2| 2.3| 30.0| 420| 10.6| 1.7| 16.9
130| 8.71| 1.18| 20.9| 300| 13.0| 2.6| 34.1| 460| 11.6| 2.1| 20.0
140| 9.38| 1.37| 23.9| 320| 13.9| 3.0| 38.4| 500| 12.6| 2.5| 23.4
160| 10.7| 1.8| 30.7| 340| 14.8| 3.4| 43.0| 550| 13.9| 3.0| 27.9
180| 12.1| 2.3| 38.1| 360| 15.6| 3.8| 47.8| 600| 15.1| 3.5| 32.8
200| 13.4| 2.8| 46.3| 380| 16.5| 4.2| 52.8| 650| 16.4| 4.2| 38.0
220| 14.7| 3.4| 55.3| 400| 17.4| 4.7| 58.0| 700| 17.6| 4.8| 43.6
240| 16.1| 4.0| 66.4| 420| 18.2| 5.1| 63.5| 750| 18.9| 5.6| 49.5
4” 0. D. Pipe (3.826” I. D.)| 5” Pipe (5.047” I. D.)| 5” 0. D. Pipe (4.813” I. D.)
60| 1.67| .04| .6| 100| 1.60| .04| .4| 100| 1.76| .05| .5
80| 2.23| .08| 1.0| 120| 1.92| .06| .6| 120| 2.11| .07| .7
100| 2.79| .12| 1.5| 160| 2.56| .10| 1.0| 160| 2.82| .12| 1.2
120| 3.35| .17| 2.1| 200| 3.20| .16| 1.4| 200| 3.52| .19| 1.8
140| 3.91| .24| 2.8| 250| 4.02| .25| 2.2| 250| 4.41| .30| 2.7
160| 4.47| .31| 3.6| 300| 4.81| .36| 3.0| 300| 5.29| .43| 3.8
180| 5.02| .39| 4.5| 350| 5.61| .49| 4.0| 350| 6.18| .60| 5.1
200| 5.58| .48| 5.5| 400| 6.41| .64| 5.2| 400| 7.05| .77| 6.5
220| 6.14| .59| 6.5| 450| 7.22| .81| 6.4| 450| 8.43| .98| 8.0
240| 6.70| .70| 7.7| 500| 8.02| 1.00| 7.8| 500| 8.82| 1.21| 9.8
260| 7.27| .82| 8.9| 550| 8.82| 1.21| 9.3| 550| 9.70| 1.46| 11.7
280| 7.82| .95| 10.2| 600| 9.62| 1.49| 10.9| 600| 10.6| 1.7| 13.7
300| 8.38| 1.09| 11.6| 650| 10.4| 1.7| 12.6| 650| 11.5| 2.1| 15.9
320| 8.94| 1.24| 13.1| 700| 11.2| 1.9| 14.5| 700| 12.3| 2.4| 18.3
340| 9.50| 1.40| 14.7| 750| 12.0| 2.2| 16.5| 750| 13.2| 2.7| 20.8
360| 10.0| 1.6| 16.3| 800| 12.8| 2.5| 18.6| 800| 14.1| 3.1| 23.4
380| 10.6| 1.7| 18.0| 850| 13.6| 2.9| 20.8| 850| 15.0| 3.5| 36.5
400| 11.2| 1.9| 19.8| 900| 14.4| 3.2| 23.1| 900| 15.9| 3.9| 29.1
420| 11.7| 2.1| 21.7| 950| 15.2| 3.6| 25.5| 950| 16.7| 4.3| 32.2
460| 12.8| 2.5| 25.7| 1000| 16.0| 4.0| 28.1| 1000| 17.6| 4.8| 35.4
500| 14.0| 3.0| 30.0| 1100| 17.6| 4.8| 33.5| 1100| 19.4| 5.8| 42.2
550| 15.3| 3.6| 35.7| 1200| 19.2| 5.7| 39.3| 1200| 21.1| 6.9| 49.5
600| 16.7| 4.3| 42.0| 1300| 20.8| 6.7| 45.6| 1300| 22.9| 8.2| 57.4
650| 18.1| 5.1| 48.7| 1400| 22.4| 7.8| 52.3| 1400| 24.7| 9.5| 65.9
700| 19.5| 5.9| 55.8| 1500| 24.0| 9.0| 59.4| 1500| 26.4| 10.8| 74.8
750| 20.9| 6.8| 63.4| 1600| 25.6| 10.2| 66.9| 1600| 28.2| 12.4| 84.3
Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet
---|---|---|---|---|---|---|---|---|---|---|---
6” Pipe (6.065” I. D.)| 6” 0. D. Pipe (5.761” I. D.)| 8” Pipe (7.981” I. D.)
200| 2.22| .08| .6| 200| 2.46| .09| .7| 400| 2.57| .10| .55
250| 2.78| .12| .9| 250| 3.08| .15| 1.1| 450| 2.88| .13| .69
300| 3.33| .17| 1.2| 300| 3.69| .21| 1.6| 500| 3.20| .16| .84
350| 3.89| .23| 1.6| 350| 4.31| .29| 2.1| 550| 3.52| .19| 1.00
400| 4.44| .31| 2.11| 400| 4.93| .38| 2.7| 600| 3.85| .23| 1.17
450| 5.00| .39| 2.62| 450| 5.54| .48| 3.4| 650| 4.17| .27| 1.36
500| 5.56| .48| 3.19| 500| 6.16| .59| 4.1| 700| 4.49| .31| 1.56
550| 6.11| .58| 3.80| 550| 6.77| .71| 4.9| 750| 4.81| .36| 1.77
600| 6.66| .69| 4.46| 600| 7.39| .85| 5.7| 800| 5.13| .41| 1.99
650| 7.22| .81| 5.17| 650| 8.00| .99| 6.6| 900| 5.77| .52| 2.48
700| 7.78| .94| 5.93| 700| 8.63| 1.16| 7.6| 1000| 6.41| .64| 3.0
750| 8.34| 1.08| 6.74| 750| 9.24| 1.33| 8.7| 1100| 7.05| .77| 3.6
800| 8.90| 1.23| 7.60| 800| 9.85| 1.51| 9.8| 1200| 7.69| .92| 4.2
850| 9.45| 1.39| 8.50| 850| 10.5| 1.7| 10.9| 1300| 8.33| 1.08| 4.9
900| 10.0| 1.6| 9.44| 900| 11.1| 1.9| 12.1| 1400| 8.97| 1.25| 5.6
950| 10.5| 1.7| 10.2| 950| 11.7| 2.1| 13.4| 1500| 9.61| 1.44| 6.4
1000| 11.1| 1.9| 11.5| 1000| 12.3| 2.4| 14.7| 1600| 10.3| 1.7| 7.20
1100| 12.2| 2.3| 13.7| 1100| 13.5| 2.8| 17.6| 1800| 11.5| 2.1| 9.0
1200| 13.3| 2.7| 16.1| 1200| 14.8| 3.4| 20.7| 2000| 12.8| 2.5| 10.9
1300| 14.4| 3.2| 18.6| 1300| 16.0| 4.0| 23.9| 2200| 14.1| 3.1| 13.0
1400| 15.6| 3.8| 21.4| 1400| 17.2| 4.6| 27.5| 2400| 15.4| 3.7| 15.2
1600| 17.8| 4.9| 27.4| 1600| 19.7| 6.0| 35.2| 2600| 16.7| 4.3| 17.7
1800| 20.0| 6.2| 34.0| 1800| 22.2| 7.7| 43.7| 2800| 18.0| 5.0| 20.3
2000| 22.2| 7.7| 41.4| 2000| 24.6| 9.4| 53.1| 3000| 19.2| 5.7| 23.0
2200| 24.4| 9.3| 49.4| 2200| 27.1| 11.4| 63.4| 3500| 22.4| 7.8| 30.6
2400| 26.7| 11.1| 58.0| 2400| 29.6| 13.6| 74.5| 4000| 25.6| 10.2| 39.2
8” 0. D. Pipe (7.625” I. D.)| 10” Pipe (10.02” I. D.)| 10” 0. D. Pipe (9.750” I. D.)
400| 2.81| .12| .69| 700| 2.85| .13| .56| 700| 3.01| .14| .59
450| 3.16| .15| .86| 800| 3.25| .16| .66| 800| 3.46| .19| .75
500| 3.51| .19| 1.05| 900| 3.66| .21| .82| 900| 3.87| .23| .94
550| 3.86| .23| 1.25| 1000| 4.07| .26| 1.00| 1000| 4.30| .29| 1.14
600| 4.22| .28| 1.46| 1100| 4.48| .31| 1.19| 1100| 4.73| .35| 1.36
650| 4.57| .32| 1.70| 1200| 4.89| .37| 1.40| 1200| 5.16| .41| 1.60
700| 4.92| .38| 1.95| 1300| 5.30| .44| 1.62| 1300| 5.59| .49| 1.85
750| 5.27| .43| 2.21| 1400| 5.70| .50| 1.86| 1400| 6.01| .56| 2.12
800| 5.62| .49| 2.49| 1500| 6.10| .58| 2.11| 1500| 6.44| .64| 2.41
900| 6.32| .62| 3.10| 1600| 6.51| .66| 2.4| 1600| 6.88| .74| 2.72
1000| 7.03| .77| 3.77| 1800| 7.32| .83| 2.96| 1800| 7.74| .93| 3.38
1100| 7.83| .95| 4.49| 2000| 8.14| 1.03| 3.60| 2000| 8.60| 1.15| 4.11
1200| 8.43| 1.10| 5.28| 2200| 8.95| 1.24| 4.29| 2200| 9.45| 1.39| 4.90
1300| 9.13| 1.30| 6.12| 2400| 9.76| 1.48| 5.04| 2400| 10.3| 1.6| 5.76
1400| 9.83| 1.50| 7.02| 2600| 10.6| 1.7| 5.84| 2600| 11.2| 1.9| 6.67
1500| 10.5| 1.7| 7.98| 2800| 11.4| 2.0| 6.70| 2800| 12.0| 2.2| 7.65
1600| 11.2| 2.0| 8.99| 3000| 12.2| 2.3| 7.61| 3000| 12.9| 2.6| 8.70
1800| 12.6| 2.5| 11.2| 3200| 13.0| 2.7| 8.58| 3200| 13.8| 3.0| 9.80
2000| 14.1| 3.1| 13.6| 3400| 13.8| 3.0| 9.60| 3400| 14.6| 3.3| 11.0
2200| 15.5| 3.7| 16.6| 3600| 14.6| 3.3| 10.7| 3600| 15.5| 3.7| 12.2
2400| 16.9| 4.4| 19.0| 3800| 15.5| 3.7| 11.8| 3800| 16.3| 4.1| 13.5
2600| 18.3| 5.2| 22.1| 4000| 16.3| 4.1| 13.0| 4000| 17.2| 4.6| 14.8
2800| 19.7| 6.0| 25.3| 4500| 18.3| 5.2| 16.1| 4500| 19.3| 5.8| 18.4
3000| 21.1| 6.9| 28.8| 5000| 20.3| 6.4| 19.6| 5000| 21.5| 7.2| 22.4
3500| 24.6| 9.4| 38.3| 5500| 22.4| 7.8| 23.4| 5500| 23.6| 8.7| 26.7
4000| 28.1| 12.3| 49.0| 6000| 24.4| 9.3| 27.5| 6000| 25.8| 10.3| 31.4
Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet
---|---|---|---|---|---|---|---|---|---|---|---
12” Pipe (12.000” I. D.)| 12” 0. D. Pipe (11.750” I. D.)| 14” 0. D. Pipe (13.25“ I. D.)
1000| 2.84| .13| .42| 1000| 2.96| .14| .46| 700| 1.63| .04| .13
1100| 3.12| .15| .50| 1100| 3.25| .16| .55| 800| 1.86| .05| .17
1200| 3.41| .18| .58| 1200| 3.55| .20| .64| 900| 2.09| .07| .21
1300| 3.69| .21| .67| 1300| 3.84| .23| .74| 1000| 2.33| .08| .26
1400| 3.98| .25| .77| 1400| 4.14| .27| .85| 1100| 2.56| .10| .31
1500| 4.26| .28| .88| 1500| 4.44| .31| .97| 1200| 2.79| .12| .36
1600| 4.55| .32| .99| 1600| 4.73| .35| 1.10| 1300| 3.02| .14| .42
1800| 5.11| .41| 1.23| 1800| 5.33| .44| 1.36| 1400| 3.26| .17| .48
2000| 5.68| .50| 1.50| 2000| 5.92| .54| 1.66| 1500| 3.49| .19| .54
2200| 6.25| .61| 1.78| 2200| 6.51| .66| 1.98| 1600| 3.72| .22| .61
2400| 6.81| .72| 2.10| 2400| 7.10| .78| 2.32| 1700| 3.95| .24| .68
2600| 7.38| .85| 2.43| 2600| 7.69| .92| 2.69| 1800| 4.19| .27| .76
2800| 7.95| .98| 2.78| 2800| 8.28| 1.07| 3.09| 1900| 4.42| .30| .84
3000| 8.52| 1.13| 3.17| 3000| 8.88| 1.23| 3.51| 2000| 4.65| .34| .92
3500| 9.95| 1.54| 4.21| 3500| 10.3| 1.6| 4.67| 2500| 5.81| .52| 1.40
4000| 11.4| 2.0| 5.39| 4000| 11.8| 2.2| 5.97| 3000| 6.98| .76| 1.96
4500| 12.8| 2.5| 6.70| 4500| 13.3| 2.7| 7.43| 3500| 8.15| 1.03| 2.60
5000| 14.2| 3.1| 8.15| 5000| 14.8| 3.4| 9.03| 4000| 9.31| 1.35| 3.32
5500| 15.6| 3.8| 9.72| 5500| 16.3| 4.1| 10.8| 4500| 10.5| 1.7| 4.13
6000| 17.0| 4.5| 11.4| 6000| 17.7| 4.9| 12.6| 5000| 11.6| 2.1| 5.03
6500| 18.4| 5.3| 13.2| 6500| 19.2| 5.7| 14.7| 6000| 14.0| 3.0| 7.05
7000| 19.9| 6.2| 15.2| 7000| 20.7| 6.7| 16.8| 7000| 16.3| 4.1| 9.38
7500| 21.3| 7.1| 17.3| 7500| 22.2| 7.7| 19.1| 8000| 18.6| 5.4| 12.0
8000| 22.7| 8.0| 19.4| 8000| 23.7| 8.7| 21.5| 9000| 20.9| 6.8| 14.9
8500| 24.2| 9.1| 21.7| 8500| 25.1| 8.8| 24.1| 10000| 23.3| 8.4| 18.1
9000| 25.6| 10.2| 24.2| 9000| 26.6| 11.0| 26.8| 11000| 25.6| 10.2| 21.6
16” 0. D. Pipe (15.25” I. D.)| 18” 0. D. Pipe (17.18” I. D.)| 20” 0. D. Pipe (19.18“ I. D.)
700| 1.23| .02| .07| 700| .97| .01| .04| 1200| 1.33| .03| .06
800| 1.41| .03| .09| 800| 1.11| .02| .05| 1400| 1.55| .04| .08
900| 1.58| .04| .11| 900| 1.25| .02| .06| 1600| 1.78| .05| .10
1000| 1.76| .05| .13| 1000| 1.38| .03| .07| 1800| 2.00| .06| .13
1200| 2.11| .07| .18| 1200| 1.66| .04| .10| 2000| 2.22| .08| .15
1400| 2.46| .09| .24| 1400| 1.94| .06| .13| 2500| 2.78| .12| .23
1600| 2.81| .12| .31| 1600| 2.21| .08| .17| 3000| 3.33| .17| .32
1800| 3.16| .16| .38| 1800| 2.49| .10| .22| 3500| 3.89| .24| .43
2000| 3.51| .19| .47| 2000| 2.77| .12| .26| 4000| 4.45| .31| .55
2500| 4.39| .30| .70| 2500| 3.46| .19| .39| 5000| 5.55| .48| .83
3000| 5.27| .43| .99| 3000| 4.15| .27| .55| 6000| 6.67| .69| 1.17
3500| 6.15| .59| 1.31| 3500| 4.85| .37| .74| 7000| 7.78| .94| 1.55
4000| 7.03| .77| 1.68| 4000| 5.54| .48| .94| 8000| 8.89| 1.2| 1.98
4500| 7.91| .97| 2.09| 4500| 6.23| .60| 1.17| 10000| 11.1| 1.9| 3.00
5000| 8.79| 1.2| 2.54| 5000| 6.92| .74| 1.42| 12000| 13.3| 2.7| 4.20
6000| 10.5| 1.7| 3.56| 6000| 8.31| 1.1| 1.99| 14000| 15.5| 3.7| 5.59
7000| 12.3| 2.4| 4.73| 7000| 9.70| 1.5| 2.65| 15000| 16.7| 4.3| 6.35
8000| 14.1| 3.1| 6.06| 8000| 11.1| 1.9| 3.39| 16000| 17.8| 4.9| 7.15
9000| 15.8| 3.9| 7.53| 9000| 12.5| 2.4| 4.22| 18000| 20.0| 6.2| 8.90
10000| 17.6| 4.8| 9.15| 10000| 13.8| 3.0| 5.12| 20000| 22.2| 7.7| 10.80
11000| 19.3| 5.8| 10.9| 12000| 16.6| 4.3| 7.18| 22000| 24.4| 9.3| 12.90
12000| 21.1| 6.9| 12.8| 14000| 19.4| 5.8| 9.55| 24000| 26.7| 11.1| 15.10
13000| 22.8| 8.1| 14.9| 16000| 22.1| 7.6| 12.2| 25000| 27.8| 12.0| 16.30
14000| 24.6| 9.4| 17.1| 18000| 24.9| 9.6| 15.2| 26000| 28.9| 13.0| 17.60
15000| 26.3| 10.7| 19.2| 20000| 27.7| 11.9| 18.5| 28000| 31.1| 15.0| 20.10
16000| 28.1| 12.3| 21.8| 22000| 30.3| 14.3| 22.0| 30000| 33.3| 17.2| 22.90
Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet| Gallons Per Minute| Velocity Ft. Per Sec.| Velocity Head In Feet| Head Loss Ft. Per 100 Feet
---|---|---|---|---|---|---|---|---|---|---|---
24” 0. D. Pipe (23.5” I. D.)| 30” 0. D. Pipe (29.5” I. D.)| 36” 0. D. Pipe (35.5” I. D.)
1600| 1.18| .01| .02| 2500| 1.27| .03| .02| 3500| 1.14| .02| .01
1800| 1.33| .02| .03| 3000| 1.52| .04| .02| 4000| 1.30| .03| .02
2000| 1.48| .02| .03| 3500| 1.77| .05| .03| 4500| 1.46| .03| .02
2500| 1.70| .03| .05| 4000| 2.02| .06| .04| 5000| 1.63| .04| .02
3000| 2.22| .05| .07| 4500| 2.28| .08| .05| 6000| 1.95| .06| .03
3500| 2.59| .07| .09| 5000| 2.53| .10| .06| 7000| 2.28| .08| .05
4000| 2.96| .09| .120| 6000| 3.18| .15| .09| 8000| 2.60| .10| .06
4500| 3.33| .11| .150| 7000| 3.54| .19| .11| 9000| 2.82| .12| .07
5000| 3.70| .14| .183| 8000| 4.05| .26| .15| 10000| 3.25| .16| .09
6000| 4.44| .20| .259| 9000| 4.55| .32| .18| 11000| 3.58| .20| .11
7000| 5.18| .27| .348| 10000| 5.06| .40| .22| 12000| 3.91| .24| .13
8000| 5.92| .35| .448| 11000| 5.57| .48| .27| 13000| 4.23| .28| .15
9000| 6.66| .44| .560| 12000| 6.08| .58| .32| 14000| 4.56| .32| .17
10000| 7.40| .55| .685| 13000| 6.59| .68| .37| 15000| 4.88| .37| .20
11000| 8.14| .66| .821| 14000| 7.09| .79| .43| 20000| 6.51| .66| .34
12000| 8.88| .79| .968| 15000| 7.60| .90| .49| 25000| 8.14| 1.0| .52
13000| 9.62| .93| 1.127| 20000| 10.12| 1.59| .84| 30000| 9.76| 1.5| .73
14000| 10.4| 1.68| 1.297| 25000| 12.66| 2.48| 1.28| 35000| 11.40| 2.0| .98
15000| 11.1| 1.92| 1.479| 30000| 15.19| 3.59| 1.81| 40000| 13.00| 2.6| 1.26
20000| 14.8| 3.41| 2.545| 35000| 17.72| 4.89| 2.43| 45000| 14.60| 3.3| 1.58
25000| 17.0| 4.50| 3.890| | | | | 50000| 16.30| 4.1| 1.93
42” 0. D. Pipe (41.5” I. D.)| 48” 0. D. Pipe (47.5” I. D.)|
4500| 1.07| .02| .01| 6000| 1.09| .02| .01
5000| 1.19| .02| .01| 7000| 1.27| .03| .01
6000| 1.43| .03| .02| 8000| 1.45| .03| .01
7000| 1.67| .04| .02| 9000| 1.63| .04| .02
8000| 1.90| .06| .03| 10000| 1.82| .05| .02
9000| 2.14| .07| .03| 11000| 1.99| .06| .03
10000| 2.38| .09| .04| 12000| 2.18| .07| .03
11000| 2.62| .11| .05| 13000| 2.36| .09| .04
12000| 2.86| .13| .06| 14000| 2.54| .10| .04
13000| 3.09| .15| .07| 15000| 2.72| .11| .05
14000| 3.33| .17| .08| 20000| 3.63| .20| .08
15000| 3.56| .20| .09| 25000| 4.54| .32| .12
20000| 4.76| .35| .15| 30000| 5.44| .46| .18
25000| 5.95| .55| .24| 35000| 6.36| .63| .24
30000| 7.14| .79| .34| 40000| 7.26| .82| .30
35000| 8.33| 1.0| .47| 45000| 8.17| 1.0| .38
40000| 9.51| 1.4| .59| 50000| 9.06| 1.3| .46
45000| 10.70| 1.8| .74| 55000| 9.98| 1.5| .56
50000| 11.89| 2.2| .90| 60000| 10.87| 1.8| .66
55000| 13.08| 2.7| 1.12| 70000| 12.68| 2.5| .88
60000| 14.27| 3.2| 1.27| 80000| 14.49| 3.3| 1.13
70000| 16.62| 4.3| 1.48| 90000| 16.30| 4.1| 1.42

RESISTANCE OF VALVES AND FITTINGS TO FLOW OF FLUIDS

A simple way to account for the resistance offered to flow by valves and fittings is to add to the length of pipe in the line a length which will give a pressure drop equal to that which occurs in the valves and fittings in the line
Example: The dotted line shows that the resistance of a 6-inch Standard Elbow is equivalent to approximately 16 feet of 6-inch Standard Steel Pipe
Note: For sudden enlargements or sudden contractions, use the smaller diameter on the nominal pipe size scale

FRICTION LOSS IN PLASTIC PIPE – SCHEDULE 4O
Velocity measured in ft /sec , Loss in feet of water head per 100 ft of pipe *Data shown is calculated from Williams and Hazen formula H = using C-150 For water at 60°F
Where H = head loss, V = fluid velocity ft /sec , D = diameter of pipe, ft , C = coefficient representing roughness of pipe interior surface

FRICTION LOSS IN PLASTIC PIPE – SCHEDULE 😯
Velocity measured in ft /sec , Loss in feet of water head per 100 ft of pipe *Data shown is calculated from Williams and Hazen formula H = using C-150 For water at 60°F
Where H = head loss, V = fluid velocity ft /sec , D = diameter of pipe, ft , C = coefficient representing roughness of pipe interior surface

WATER FRICTION IN 100 FEET OF SMOOTH BORE HOSE
For various flows and hose sizes, table gives velocity of water and feet of head lost in friction in 100 feet of smooth bore hose
SIZE OF HOSE SHOWN ARE ACTUAL INSIDE DIAMETERS

THEORETICAL DISCHARGE OF NOZZLES IN U.S. GPM

Head| Velocity of Discharge Feet Per Second| DIAMETER OF NOZZLE IN INCHES
---|---|---
Pounds| Feet| 1/16| 1/8| 3/16| 1/4| 3/8| 1/2| 5/8| 3/4| 7/8
10| 23.1| 38.6| 0.37| 1.48| 3.32| 5.91| 13.3| 23.6| 36.9| 53.1| 72.4
15| 34.6| 47.25| 0.45| 1.84| 4.06| 7.24| 16.3| 28.9| 45.2| 65.0| 88.5
20| 46.2| 54.55| 0.52| 2.09| 4.69| 8.35| 18.8| 33.4| 52.2| 75.1| 102
25| 57.7| 61.0| 0.58| 2.34| 5.25| 9.34| 21.0| 37.3| 58.3| 84.0| 114
30| 69.3| 66.85| 0.64| 2.56| 5.75| 10.2| 23.0| 40.9| 63.9| 92.0| 125
35| 80.8| 72.2| 0.69| 2.77| 6.21| 11.1| 24.8| 44.2| 69.0| 99.5| 135
40| 92.4| 77.2| 0.74| 2.96| 6.64| 11.8| 26.6| 47.3| 73.8| 106| 145
45| 103.9| 81.8| 0.78| 3.13| 7.03| 12.5| 28.2| 50.1| 78.2| 113| 153
50| 115.5| 86.25| 0.83| 3.30| 7.41| 13.2| 29.7| 52.8| 82.5| 119| 162
S5| 127.0| 90.4| 0.87| 3.46| 7.77| 13.8| 31.1| 55.3| 86.4| 125| 169
60| 138.6| 94.5| 0.90| 3.62| 8.12| 14.5| 32.5| 57.8| 90.4| 130| 177
65| 150.1| 98.3| 0.94| 3.77| 8.45| 15.1| 33.8| 60.2| 94.0| 136| 184
70| 161.7| 102.1| 0.98| 3.91| 8.78| 15.7| 35.2| 62.5| 97.7| 141| 191
75| 173.2| 105.7| 1.01| 4.05| 9.08| 16.2| 36.4| 64.7| 101| 146| 198
80| 184.8| 109.1| 1.05| 4.18| 9.39| 16.7| 37.6| 66.8| 104| 150| 205
85| 196.3| 112.5| 1.08| 4.31| 9.67| 17.3| 38.8| 68.9| 108| 155| 211
90| 207.9| 115.8| 1.11| 4.43| 9.95| 17.7| 39.9| 70.8| 111| 160| 217
95| 219.4| 119.0| 1.14| 4.56| 10.2| 18.2| 41.0| 72.8| 114| 164| 223
100| 230.9| 122.0| 1.17| 4.67| 10.0| 18.7| 42.1| 74.7| 117| 168| 229
105| 242.4| 125.0| 1.20| 4.79| 10.8| 19.2| 43.1| 76.5| 120| 172| 234
110| 254.0| 128.0| 1.23| 4.90| 11.0| 19.6| 44.1| 78.4| 122| 176| 240
115| 265.5| 130.9| 1.25| 5.01| 11.2| 20.0| 45.1| 80.1| 125| 180| 245
120| 277.1| 133.7| 1.28| 5.12| 11.5| 20.5| 46.0| 81.8| 128| 184| 251
125| 288.6| 136.4| 1.31| 5.22| 11.7| 20.9| 47.0| 83.5| 130| 188| 256
130| 300.2| 139.1| 1.33| 5.33| 12.0| 21.3| 48.0| 85.2| 133| 192| 261
135| 311.7| 141.8| 1.36| 5.43| 12.2| 21.7| 48.9| 86.7| 136| 195| 266
140| 323.3| 144.3| 1.38| 5.53| 12.4| 22.1| 49.8| 88.4| 138| 199| 271
145| 334.8| 146.9| 1.41| 5.62| 12.6| 22.5| 50.6| 89.9| 140| 202| 275
150| 346.4| 149.5| 1.43| 5.72| 12.9| 22.9| 51.5| 91.5| 143| 206| 280
175| 404.1| 161.4| 1.55| 6.18| 13.9| 24.7| 55.6| 98.8| 154| 222| 302
200| 461.9| 172.6| 1.65| 6.61| 14.8| 26.4| 59.5| 106| 165| 238| 323
Head| Velocity of Discharge Feet Per Second| DIAMETER OF NOZZLE IN INCHES
---|---|---
Pounds| Feet| 1| 1 1/8| 1 1/4| 1 3/8| 1 1/2| 1 3/4| 2| 2 1/4| 2 1/2
10| 23.1| 38.6| 94.5| 120| 148| 179| 213| 289| 378| 479| 591
15| 34.6| 47.25| 116| 147| 181| 219| 260| 354| 463| 585| 723
20| 46.2| 54.55| 134| 169| 209| 253| 301| 409| 535| 676| 835
25| 57.7| 61.0| 149| 189| 234| 283| 336| 458| 598| 756| 934
30| 69.3| 66.85| 164| 207| 256| 309| 368| 501| 655| 828| 1023
35| 80.8| 72.2| 177| 224| 277| 334| 398| 541| 708| 895| 1106
40| 92.4| 77.2| 188| 239| 296| 357| 425| 578| 756| 957| 1182
45| 103.9| 81.8| 200| 253| 313| 379| 451| 613| 801| 1015| 1252
50| 115.5| 86.25| 211| 267| 330| 399| 475| 647| 845| 1070| 1320
55| 127.0| 90.0| 221| 280| 346| 418| 498| 678| 886| 1121| 1385
60| 138.6| 94.5| 231| 293| 362| 438| 521| 708| 926| 1172| 1447
65| 150.1| 98.3| 241| 305| 376| 455| 542| 737| 964| 1220| 1506
70| 161.7| 102.1| 250| 317| 391| 473| 563| 765| 1001| 1267| 1565
75| 173.2| 105.7| 259| 327| 404| 489| 582| 792| 1037| 1310| 1619
80| 184.8| 109.1| 267| 338| 418| 505| 602| 818| 1010| 1354| 1672
85| 196.3| 112.5| 276| 349| 431| 521| 620| 844| 1103| 1395| 1723
90| 207.9| 115.8| 284| 359| 443| 536| 638| 868| 1136| 1436| 1773
95| 219.4| 119.0| 292| 369| 456| 551| 656| 892| 1168| 1476| 1824
100| 230.9| 122.0| 299| 378| 467| 565| 672| 915| 1196| 1512| 1870
105| 242.2| 125.0| 306| 388| 479| 579| 689| 937| 1226| 1550| 1916
110| 254.0| 128.0| 314| 397| 490| 593| 705| 960| 1255| 1588| 1961
115| 265.5| 130.9| 320| 406| 501| 606| 720| 980| 1282| 1621| 2005
120| 277.1| 133.7| 327| 414| 512| 619| 736| 1002| 1310| 1659| 2050
125| 288.6| 136.4| 334| 423| 522| 632| 751| 1022| 1338| 1690| 2090
130| 300.2| 139.1| 341| 432| 533| 645| 767| 1043| 1365| 1726| 2132
135| 311.7| 141.8| 347| 439| 543| 656| 780| 1063| 1390| 1759| 2173
140| 323.3| 144.3| 354| 448| 553| 668| 795| 1082| 1415| 1790| 2212
145| 334.8| 146.9| 360| 455| 562| 680| 809| 1100| 1440| 1820| 2250
150| 346.4| 149.5| 366| 463| 572| 692| 824| 1120| 1466| 1853| 2290
175| 404.1| 161.4| 395| 500| 618| 747| 890| 1210| 1582| 2000| 2473
200| 461.9| 172.6| 423| 535| 660| 799| 950| 1294| 1691| 2140| 2645

NOTE – The actual quantities will vary from these figures, the amount of variation depending upon the shape of nozzle and size of pipe at the point where the pressure is determined. With smooth toper nozzles the actual discharge is about 94 per cent of the figures given in the tables.

‘’YARDSTICK” WATER MEASURING METHOD

THE GPM FLOW FROM PIPES MAY BE APPROXIMATED BY MEASURING THE DISTANCE “X” IN INCHES WHEN THE VERTICAL DISTANCE IS 12” (OR 6”, SEE NOTE BELOW TABLE) AND FIND VALUE IN TABLE 1

FOR PIPES FLOWING FULL

TABLE I
GALLONS PER MINUTE

Dia. Pipe = D Horizontal Distance = “X”
12” 14”
26” 28”
2” 41
3” 90
4” 150
6” 352
8” 610
10” 960
12” 1378

APPROXIMATE FLOWS FROM PIPE RUNNING FULL
*IF 6” VERTICAL DISTANCE IS USED MULTIPLY GPM BY 1 4
FOR PIPES FLOWING PARTIALLY FULL FLOW FROM PARTIALLY FILLED PIPES
Divide “E” by “D” for percent factor Multiply flow for full pipe of “D” diameter (Table I) by factor obtained from Table 2
E – Measure of empty portion of pipe
D – Measure of inside diameter of full pipe
TABLE 2

E/D Factor E/D Factor
10 0.95 50 0.50
20 0.86 60 0.38
25 0.81 65 0.31
30 0.75 70 0.25
35 0.69 80 0.14
40 0.63 90 0.05
45 0.56 100 0.00

PERFORMANCE CORRECTION CHART

EXAMPLE Select a pump to deliver 750 gpm at 100 feet total head of a liquid having a viscosity of 1000 SSU and a specific gravity of 0 90 at the pumping temperature Enter the chart (Fig BF-19) with 750 gpm, go up to 100 feet head, over to 1000 SSU, and then up to the correction factors: Select a pump for a water capacity of 790 gpm at 109 feet head The selection should be at or close to the maximum efficiency point for water performance If the pump selected has an efficiency on water of 81 percent at 790 gpm, then the efficiency for the viscous liquid will be as follows:
EVIS= 0 635 X 81% = 51 5 percent
The brake horsepower for pumping the viscous liquid will be:

ENGINEERING DATA & CONVERSION FACTORS

VOLUME

1 U S  Gallon| 231
0.137
3.785
.00379
0.833
.0238| cu.in
cu. ft
.litres
cu.meters
Imp .gal
.42-gal  .barrel
---|---|---
1 Imperial Gallon| 1.2| U.S.gal
1 Cubic Foot| 7.48
0.0283| U. S. gal
cu .meter
1 Barrel (Oil)| 42| U.S.gal
1 Litre| .2642| U.S .gal
1 Cubic Meter| 35.314
264.2| cu. ft
U.S.gal
 1 Acre Foot| 43,560
325,829| cu.ft

U.S.gal

1 Acre Inch| 3,630
27,100| cu .ft
U .S  .gal

CAPACITY

1 Cubic Foot per Second (2nd foot) (c f s ) 449 g p m
1 Acre Foot Per Day 227 g p m
1 Acre Inch Per Hour 454 g p m
1 Litre Per Second 15 85 g p m
1 Cubic Meter Per Minute 264 2 g p m
1 Miner’s Inch (Idaho, Kans , Neb , N M ,N D , S D , Utah, Wash ) 9 0 g p m
1 Miner’s Inch (Ariz , Calif , Mont , Nev ,and Ore ) 11 22 g p m
1, 000,000 gal per day 695 g p m

HEAD

1 Pound Per Square Inch (psi)| 2.31 ft. head of water
2.04 in.mercury
0.07 kg.per.sq .cm
---|---
1 Foot of Water| 0.433.lb.per.sq .in
.885 in.mercury
1 Inch of Mercury (or vacuum)| 1.132.ft. of water
1 Kilogram Per Square Cm| 14.22 lb.per.sq.in
1 Atmosphere (at sea level)| 14.7.lb.per sq.in
34.0.ft .of water
10.35 meters of water
1 Meter of Water| 3.28 feet of water

WEIGHT

1.U.S.Gallon of Water 8.33 lb.= 8-1/3 lbs
1 Cubic Foot of Water 62.35 lb.
1 Kilogram or Litre 2.2 lb
1 Imperial Gallon 10.0.lb

LENGTH

1 Inch 2.54 centimeters
1 Meter 3.28 feet

39.37 inches
1 Rod| 16.5 feet
1 Mile| 5280 ft .(1.61 kilometers)

HORSEPOWER

1 H P   =|  746 kilowatts or 746 watts
33,000 ft  lbs  per minute
550ft  lbs  per second
---|---
H P  Input  =| Horsepower input to motor
1 34 x kilowatts input to motor
Water H P   =|  H P  required to lift water at a
definite rate to a given distance
assuming 100% efficiency

Brake H P   =| H P delivered by motor
H P required by pump
H P input x motor efficiency
1 34 x KW input x motor efficiency

EFFICIENCY

Efficiency =|
---|---
Motor Efficiency =|
Pump Efficiency =|
Plant Efficiency =|

**ELECTRICAL DATA

**

SIZE OF FUSES FOR CROSS LINE STARTING FOR BRANCH CIRCUITS AND APPROXIMATE FULL LOAD AMPERES OF MOTORS

HP Rating of Motors| Alternating Current Motors| Direct Current Compound Wound Motors
---|---|---
Single Phase 60 Cycle| Three Phase 60 Cycle
Ampere Rating of Motor and Max. Fuse Size| Ampere Rating of Motor and Max. Fuse Size
115V| Fuse| 230V| Fuse| 220V| Fuse| 440V| Fuse| 32V| Fuse| 115V| Fuse| 230V| Fuse
1/4| 5.8| 20| 2.9| 15| | | | | 9.7| 15| 2.9| 15| 1.5| 15
1/3| 7.2| 25| 3.6| 15| | | | | 14.4| 25| 3.6| 15| 1.8| 15
1/2| 9.8| 30| 4.9| 15| 2.0| 15| 1.0| 15| 17.8| 30| 5.2| 15| 2.6| 15
3/4| 13.8| 45| 6.9| 25| 2.8| 15| 1.4| 15| 24.5| 40| 7.4| 15| 3.7| 15
1| 16| 50| 8| 25| 3.5| 15| 1.8| 15| 30.0| 45| 9.4| 15| 4.7| 15
1 1/2| 20| 60| 10| 30| 5.0| 15| 2.5| 15| | | 13.2| 20| 6.6| 15
2| 24| 80| 12| 40| 6.5| 25| 3.3| 15| | | 17| 30| 8.5| 15
3| 34| 110| 17| 60| 9.0| 30| 4.5| 15| | | 25| 40| 12.2| 20
5| 56| 175| 28| 90| 15| 45| 7.5| 25| Fuses are recommended only to protect the wiring in case of accidental ground or short circuit.
Thermal overload heaters in a starter provide protection for the motor and should be selected on the basis of motor current obtained from the motor nameplate and the type of starter enclosure.
For three phase power 3 heater elements are recommended for maximum protection. If fusetrons are used instead of the instantaneous type fuse the size should be selected based on motor current similarly to thermal overload elements.
7 1/2| 80| 250| 40| 125| 22| 70| 11.0| 35
10| 100| 300| 50| 150| 27| 80| 14| 45
15| | | | | 40| 125| 20| 60
20| | | | | 52| 175| 26| 80
25| | | | | 64| 200| 32| 100
30| | | | | 78| 250| 39| 125
40| | | | | 104| 350| 52| 175
50| | | | | 125| 400| 63| 200
60| | | | | 150| 450| 75| 225
75| | | | | 185| 600| 93| 300
100| | | | | 246| 800| 123| 400
125| | | | | | | 155| 500
150| | | | | | | 180| 600
200| | | | | | | 240| 800

Above figures from NEC 1962 (NBFU Bul. No.70)
ALLOWABLE CURRENT-CARRYING CAPACITIES OF INSULATED COPPER CONDUCTORS IN AMPERES

RUBBER
Type R – Type RW – Type RU- Type RUW (14-2)
Type RH-RW – Thermoplastic – Type T – Type TW

Size AWG,MCM| Amperes
14| 15
12| 20
10| 30
8| 40
6| 55
4| 70
3| 80
2| 95
1| 110
0| 125
00| 145
000| 165
0000| 195
250| 215
300| 240
350| 260
400| 280
500| 320

TYPICAL MOTOR EFFICIENCY (%) 60 CYCLE

MOTOR HP Single phase 3 phase
1750 RPM 3450 RPM 1750 RPM
1/3 60 59
1/2 64 61
3/4 68 65
1 70 66
1 1/2 72 72
2 76 73
3 76 75
5 76 78
7 1/2
10
15
20
25
30
40
50
60
75
100
125
150

USEFUL PUMP DATA

EFFECT OF SMALL CHANGES OF PUMP SPEED

  1. The capacity varies directly as the speed
  2. The head varies as the square of the speed
  3. The brake horsepower varies as the cube of the speed

EFFECT OF SMALL CHANGES OF IMPELLER DIAMETER

  1. The capacity varies directly as the diameter
  2. The head varies as the square of the diameter
  3. The brake horsepower varies as the cube of the diameter

EFFECT OF SPECIFIC GRAVITY
Brake horsepower varies directly with specific gravity If the liquid has a specific gravity other than water (1 0) multiply the brake horsepower for water by the specific gravity of the liquid to be handled A centrifugal pump will always develop the same head in feet no matter what the specific gravity of the liquid pumped However, the pressure (in pounds per square inch) will be increased or decreased in direct proportion to the specific gravity

EFFECT OF VISCOSITY
Viscous liquids tend to reduce pump capacity, head and efficiency and to increase pump brake horsepower and increase pipe line friction See page 11 for correction factors
EFFECT OF ALTITUDE
Suction lift data are based on values at sea level Therefore, above sea level the total suction lift must be reduced
EFFECT OF HOT LIQUIDS
Hot liquids vaporize at higher absolute pressures than cold liquids, therefore the suction lift must be reduced when handling hot liquids When handling liquids with a high vapor pressure or at high temperatures the liquid must flow to the pump suction under pressure

PNEUMATIC TANK SELECTION TABLE

The following table indicates the minimum size pressure tank recommended for an automatic water system based on the capacity of the pump and the operating pressures

PRESSURE (Lbs. per Sq. In.)

Cut in| 20| 20| 30| 40| 50| 50| 60| 60| 70| Cut in
Cut out| 35| 40| 50| 60| 80| 70| 90| 80| 100| Cut out
Average| 27.5| 30| 40| 50| 65| 60| 75| 70| 85| Average
Tank Size| Capacity in Gals. per Hr. at Average Pressure| Tank Size
18| 185| 230| 145| 100| 90| 80| 80| 60| 65| 18
32| 325| 400| 260| 185| 155| 140| 150| 110| 120| 32
42| 430| 530| 340| 240| 200| 180| 190| 140| 155| 42
82| 840| 1020| 660| 475| 400| 355| 365| 270| 295| 82
120| 1230| 1500| 970| 695| 585| 520| 550| 400| 445| 120
144| 1470| 1800| 1160| 830| 700| 620| 650| 480| 525| 144
180| 1830| 2250| 1460| 1040| 860| 770| 820| 600| 660| 180
220| 2250| 2760| 1760| 1265| 1060| 940| 990| 730| 800| 220
315| 3240| 3930| 2550| 1810| 1520| 1350| 1410| 1040| 1150| 315
525| 5360| 6545| 4260| 3030| 2540| 2250| 2360| 1740| 1900| 525
1000| 10,400| 12,500| 8100| 5760| 4850| 4300| 4500| 3310| 3650| 1000
1500| 15,300| 18,800| 12,180| 8650| 9700| 6420| 6750| 4980| 5450| 1500
2000| 20,400| 25,000| 16,200| 11,500| 13,000| 8520| 9000| 6600| 7250| 2000
3000| 30,600| 37,500| 24,300| 17,300| 19,500| 12,800| 13,500| 9950| 10,900| 3000
5000| 51,000| 62,500| 40,500| 28,800| 32,400| 21,700| 22,500| 16,550| 18,300| 5000
7500| 76,000| 94,000| 61,000| 45,000| 48,500| 32,400| 33,700| 25,000| 27,400| 7500
10,000| 102,000| 130,000| 81,000| 57,600| 64,800| 43,400| 45,000| 33,100| 36,600| 10,000

NOTE 1 Capacity is based on atmospheric initial charge at sea level
NOTE 2 If no air charger is employed, increase tonk size by approximately 50%
NOTE 3 Tank capacity should be increased 25% for elevations above 5000 feet

WATER REQUIRED PER MINUTE TO FEED BOILERS

One Boiler Horse-Power equals 34 5 lbs of water evaporated per hour from and at 212 degrees Fahrenheit
One Gallon of Water weighs 8 34 lbs at 60 degrees Fahrenheit
Boiler H P times 069 Gallons per minute Feed Water required

H.P. G.P.M. H.P. G.P.M. H.P. G.P.M. H.P. G.P.M. H.P. G.P.M.
20 1.38 60 4.14 110 7.59 190 13.1 400 27.6
25 1.73 65 4.49 120 8.29 200 13.8 450 31.1
30 2.07 70 4.83 130 8.97 225 15.5 500 34.5
35 2.42 75 5.18 140 9.66 250 17.3 600 41.4
40 2.76 80 5.52 150 10.40 275 19.0 700 48.3
45 3.11 85 5.87 160 11.10 300 20.7 800 55.2
50 3.45 90 6.21 170 11.70 325 22.5 900 62.1
55 3.80 100 6.90 180 12.40 350 24.2 1000 69.0

In selecting Boiler Feed pumps, the fact that boilers are often run 200 and 300 percent of rating should be taken into consideration The above figures are of the actual Boiler Horse-Power developed

APPROXIMATE BOILER FEED PUMP PRESSURES

Boiler Pressure Boiler Feed Pump Discharge Pressure
200 250
400 475
800 925
1200 1350

MATERIAL SELECTION DATA REQUIREMENTS

  1. SOLUTION TO BE PUMPED (Give common name, where possible, such as “spinning bath,” “black liquor,” “spent pickle,” etc )

  2. PRINCIPAL CORROSIVES (H2S04, HC1, etc )….. % by weight (In the case of mixtures, state definite percentages by weight For example: mixture contains 2% acid, in terms of 96 5% H2S04)

  3. pH (if aqueous solution) ……….at ………..F

  4. IMPURITIES OR OTHER CONSTITUENTS NOT GIVEN IN “2” (List amounts of any metallic salts such as chlorides, sulphates, sulphides, chromates, and any organic materials which may be present even though in percentages as low as 01% Indicate, where practical, whether they act as accelerators or inhibitors on the pump material )…………

  5. SPECIFIC GRAVITY (solution pumped) ……………at …………. F

  6. TEMPERATURE OF SOLUTION: Maximum……………….. F, Minimum ……………………F, Normal ………………F

  7. VAPOR PRESSURES AT ABOVE TEMPERATURES: ……………….Maximum ……………………Minimum ……………Normal (Indicate units used, such as pounds gauge, inches water, millimeters mercury )

  8. VISCOSITY ………………SSU; or ………………centistokes; ……………at…………………. F

  9. AERATION: Air-Free ……………..Partial……………… Saturated ………….Does liquid have tendency to foam?

  10. OTHER GASES IN SOLUTION ………ppm, or …………………cc per liter

  11. SOLIDS IN SUSPENSION: (state types)……………………… Specific gravity of solids………….. % by weight Quantity of solids: ……….. Quantity of solids: ………….% by weight Particle size: mesh …………….% by weight mesh…………………………….. % by weight
    mesh …………………………….% by weight Character of solids: Pulpy……….. Gritty …………………Hard …………………..Soft

  12. CONTINUOUS OR INTERMITTENT SERVICE……………Will pump be used for circulation in closed system or for transfer?……………….Will pump be operated at times against closed discharge? ……………..If intermittent, how often is pump started? …….. times per ……………..Will pump be flushed and drained when not in service? …………

  13. TYPE OF MATERIAL IN PIPE LINES TO BE CONNECTED TO PUMP……………
    If desirable, are insulated joints practical?………………………..
    If so, what percentage of element (Fe, Ni, Cu, etc ) is objectionable?…………………

  14. IS METAL CONTAMINATION UNDESIRABLE?……………………….

  15. PREVIOUS EXPERIENCE Have you pumped this solution previously?………..
    If so, of what material or materials was pump made?………………….
    Service life in months?……………
    In case of trouble, what parts were affected?……………
    Was trouble primarily due to corrosion?…………….
    erosion?………………. galvanic action? ……………… stray current?…………………. Was attack uniform? ………………………….. If localized , what parts were involved?………………..
    If galvanic action, name materials involved…………………
    If pitted, describe size, shape and location (A sketch will be helpful in an analysis of problem)……………..

  16. WHAT IS CONSIDERED AN ECONOMIC LIFE?………………………… (If replacement does not become too frequent, the use of inexpensive pump materials may be the most economical)

MATERIALS OF CONSTRUCTION FOR PUMPING VARIOUS LIQUIDS

Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Acetaldehyde| | C2H4O| 0.78| C
Acetate Solvents| | | | A, B, C, 8, 9, 10, 11
Acetone| | C3H6O| 0.79| B,C
Acetic Anhydride| | C4H6O3| 1.08| 8, 9, 10, 11, 12
Acid, Acetic| Conc. Cold| C2H4O2| 1.05| 8, 9, 10, 11, 12
Acid, Acetic| Dil. Cold| | | A, 8, 9, 10, 11, 12
Acid, Acetic| Conc. Boiling| | | 9, 10, 11, 12
Acid, Acetic| Dil. Boiling| | | 9, 10, 11, 12
Acid, Arsenic, Ortho-| | H3AsO4. 1⁄2H2O| 2.0-2.5| 8, 9, 10, 11, 12
Acid, Benzoic| | C7H6O2| 1.27| 8, 9, 10, 11
Acid, Boric| Aqueous Sol.| H3BO3| | A, 8, 9, 10, 11, 12
Acid, Butyric| Conc.| C4H8O2| 0.96| 8, 9, 10, 11
Acid, Carbolic| Conc. (M.P. 106 F)| C6H6O| 1.07| C, 8, 9, 10, 11
Acid, Carbolic| (See Phenol)| | | B, 8, 9, 10, 11
Acid, Carbonic| Aqueous Sol.| CO2 + H2O| | A
Acid, Chromic| Aqueous Sol.| Cr2O3 + H2O| | 8, 9, 10, 11, 12
Acid, Citric| Aqueous Sol.| C6H8O7 + H2O| | A, 8, 9, 10, 11, 12
Acids, Fatty (Oleic, Palmitic, Stearic, etc.)| | | | A, 8, 9, 10, 11
Acid, Formic| | CH2O2| 1.22| 9, 10, 11
Acid, Fruit| | | | A, 8, 9, 10, 11, 14
Acid, Hydrochloric| Coml. Conc.| HCI| 1.19 (38%)| 11, 12
Acid, Hydrochloric| Dil. Cold| | | 10, 11, 12, 14, 15
Acid, Hydrochloric| Dil. Hot| | | 11, 12
Acid, Hydrocyanic| | HCN| 0.70| C, 8, 9, 10, 11
Acid, Hydrofluoric| Anhydrous, with Hydro Carbon| HF + HXCX| | 3, 14
Acid, Hydrofluoric| Aqueous Sol.| HF| | A, 14
Acid, Hydrofluosilicic| | H2SiF6| 1.30| A, 14
Acid, Lactic| | C3H6O3| 1.25| A, 8, 9, 10, 11, 12
Acid, Mine Water| | | | A, 8, 9, 10, 11
Acid, Mixed| Sulfuric + Nitric| | | C, 3, 8, 9, 10, 11, 12
Acid, Muriatic| (See Acid, Hydrochloric)| | |
Acid, Naphthenic| | | | C, 5, 8, 9, 10, 11
Acid, Nitric| Conc. Boiling| HNO3| 1.50| 6, 7, 10, 12
Acid, Nitric| Dilute| | | 5, 6, 7, 8, 9, 10, 12
Acid, Oxalic| Cold| C2H2O4. 2H2O| 1.65| 8, 9, 10, 11, 12
Acid, Oxalic| Hot| C2H2O4. 2H2O| | 10, 11, 12
Acid, Ortho-Phosphoric| | H3PO4| 1.87| 9, 10, 11
Acid, Picric| | C6H3N3O7| 1.76| 8, 9, 10, 11, 12
Acid, Pyrogallic| | C6H6O3| 1.45| 8, 9, 10, 11
Acid, Pyroligneous| | | | A, 8, 9, 10, 11
Acid, Sulfuric| > 77% Cold| H2SO4| 1.69-1.84| C, 10, 11, 12
Acid, Sulfuric| 65 / 93% > 175 F| | | 11, 12
Acid, Sulfuric| 65 / 93% < 175 F| | | 10, 11, 12
Acid, Sulfuric| 10-65%| | | 10, 11, 12
Acid, Sulfuric| < 10%| | | A, 10, 11 , 12, 14
Acid, Sulfuric (Oleum)| Fuming| H2SO4 + SO3| 1.92-1.94| 3, 10, 11
Acid, Sulfurous| | H2SO3| | A, 8, 9, 10, 11
Acid, Tannic| | C14H10O9| | A, 8, 9, 10, 11, 14
Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Acid, Tartaric| Aqueous Sol.| C4H6O6. H2O| | A, 8, 9, 10, 11, 14
Alcohols| | | | A, B
Alum| (See Aluminum Sulphate and Potash Alum)| | |
Aluminum Sulphate| Aqueous Sol.| AI2(SO4)3| | 10, 11, 12, 14
Ammonia, Aqua| | NH4OH| | C
Ammonium Bicarbonate| Aqueous Sol.| NH4HCO3| | C
Ammonium Chloride| Aqueous Sol.| NH4CI| | 9, 10, 11, 12, 14
Ammonium Nitrate| Aqueous Sol.| NH4NO3| | C, 8, 9, 10, 11, 14
Ammonium Phosphate, Dibasic| Aqueous Sol.| (NH4)2HPO4| | C, 8, 9, 10, 11, 14
Ammonium Sulfate| Aqueous Sol.| (NH4)2SO4| | C, 8, 9, 10, 11
Ammonium Sulfate| With sulfuric acid| | | A, 9, 10, 11, 12
Aniline| | C6H7N| 1.02| B, C
Aniline Hydrochloride| Aqueous Sol.| C6H5NH2HC1| | 11, 12
Asphalt| Hot| | 0.98-1.4| C, 5
Barium Chloride| Aqueous Sol.| BaCI2| | C, 8, 9, 10, 11
Barium Nitrate| Aqueous Sol.| Ba(NO3)2| | C, 8, 9, 10, 11
Beer| | | | A, 8
Beer Wort| | | | A, 8
Beet Juice| | | | A, 8
Beet Pulp| | | | A, B, 8, 9, 10, 11
Benzene| | C6H6| 0.88|
Benzine| (See Petroleum ether)| | |
Benzol| (See Benzene)| | | B, C
Bichloride of Mercury| (See Mercuric Chloride)| | |
Black Liquor| (See Liquor, Pulp Mill)| | |
Bleach Solutions| (See type)| | |
Blood| | | | A, B
Boiled Feedwater| (See Water, Boiler Feed)| | |
Brine, Calcium Chloride| pH > 8| CaCI2| | C
Brine, Calcium Chloride| pH < 8| | | A, 10, 11, 13, 14
Brine, Calcium & Magnesium Chlorides| Aqueous Sol.| | | A, 10, 11, 13, 14
Brine, Calcium & Sodium Chloride| Aqueous Sol.| | | A, 10, 11, 13, 14
Brine, Sodium Chloride| Under 3% Salt, Cold| NaCI| | A, C, 13
Brine, Sodium Chloride| Over 3% Salt, Cold| | 1.02-1.20| A, 8, 9, 10, 11, 13, 14
Brine, Sodium Chloride| Over 3% Salt, Hot| | | 9, 10, 11, 12, 14
Brine, Sea Water| | | 1.03| A, B, C
Butane| | C4H10| 0.60 @ 32 F| B, C, 3
Calcium Bisulfite| Paper Mill| Ca(HSO3)2| 1.06| 9, 10, 11
Calcium Chlorate| Aqueous Sol.| Ca(CIO3)22H2O| | 10, 11, 12
Calcium Hypochlorite| | Ca(OCI)2| | C, 10, 11, 12
Calcium Magnesium Chloride| (See Brines)| | |
Cane Juice| | | | A, B, 13
Carbon Bisulfide| | CS2| 1.26| C
Carbonate of Soda| (See Soda Ash)| | |
Carbon Tetrachloride| Anhydrous| CCI4| 1.50| B, C
Carbon Tetrachloride| Plus Water| | | A, 8
Catsup| | | | A, 8, 9, 10, 11
Caustic Potash| (See Potassium Hydroxide)| | |
Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Caustic Soda| (See Sodium Hydroxide)| | |
Cellulose Acetate| | | | 9, 10, 11
Chlorate of Lime| (See Calcium Chlorate)| | |
Chloride of Lime| (See Calcium Hypochlorite)| | |
Chlorine Water| (Depending on conc.)| | | 9, 10, 11, 12
Chlorobenzene| | C6H5CI| 1.1| A, B, 8
Chloroform| | CHCI3| 1.5| A, 8, 9, 10, 11, 14
Chrome Alum| Aqueous Sol.| CrK(SO4)2. 12H2O| | 10, 11, 12
Condensate| (See Water, Distilled)| | |
Copperas, Green| (See Ferrous Sulfate)| | |
Copper Ammonium Acetate| Aqueous Sol.| | | C, 8, 9, 10, 11
Copper Chloride (Cupric)| Aqueous Sol.| CuCI2| | 11, 12
Copper Nitrate| | Cu(NO3)2| | 8, 9, 10, 11
Copper Sulfate, Blue Vitriol| Aqueous Sol.| CuSO4| | 8, 9, 10, 11, 12
Creosote| (Sec Oil, Creosote)| | |
Cresol, Meta| | C7H8O| 1.03| C, 5
Cyanide| (See Sodium Cyanide and Potassium Cyanide)| | |
Cyanogen| In Water| (CN)2Gas| | C
Diphenyl| | C6H5. C6H5| .99| C, 3
Enamel| | | | C
Ethanol| (See Alcohols)| | |
Ethylene Chloride (di-chloride)| Cold| C2H4CI2| 1.28| A, 8, 9, 10, 11, 14
Ferric Chloride| Aqueous Sol.| FeCI3| | 11, 12
Ferric Sulphate| Aqueous Sol.| Fe2(SO4)3| | 8, 9, 10, 11, 12
Ferrous Chloride| Cold, Aqueous| FeCI2| | 11, 12
Ferrous Sulphate (Green Copperas)| Aqueous Sol.| FeSO4| | 9, 10, 11, 12, 14
Formaldehyde| | CH2O| 1.08| A, 8, 9, 10, 11
Fruit Juices| | | | A, 8, 9, 10, 11, 14
Furfural| | C5H4O2| 1.16| A, C, 8, 9, 10, 11
Gasoline| | | 0.68-0.75| B, C
Glaubers Salt| (See Sodium Sulfate)| | |
Glucose| | | | A, B
Glue| Hot| | | B, C
Glue Sizing| | | | A
Glycerol (Glycerin)| | C3H8O3| 1.26| A, B, C
Green Liquor| (See Liquor, Pulp Mill)| | |
Heptane| | C7H16| 0.69| B, C
Hydrogen Peroxide| Aqueous Sol.| H2O2| | 8, 9, 10, 11
Hydrogen Sulfide| Aqueous Sol.| H2S| | 8, 9, 10, 11
Hydrosulfite of Soda| (See Sodium Hydrosulfite)| | |
Hyposulfite of Soda| (See Sodium Thiosulfate)| | |
Kaolin Slip| Suspension in Water| | | C, 3
Kaolin Slip| Suspension in Acid| | | 10, 11, 12
Kerosene| (See Oil, Kerosene)| | |
Lard| Hot| | | B, C
Lead Acetate (Sugar of Lead)| Aqueous Sol.| Pb(C2H3O2)2. 3H2O| | 9, 10, 11, 14
Lead| Molten| | | C, 3
Lime Water (Milk of Lime)| | Ca(OH)2| | C
Liquor–Pulp Mill: Black| | | | C, 3, 9, 10, 11, 12, 14
Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Liquor–Pulp Mill: Green| | | | C, 3, 9, 10, 11, 12, 14
Liquor–Pulp Mill: White| | | | C, 3, 9, 10, 11, 12, 14
Liquor–Pulp Mill: Pink| | | | C, 3, 9, 10, 11, 12, 14
Liquor–Pulp Mill: Sulfite| | | | 9, 10, 11
Lithium Chloride| Aqueous Sol.| LiCI| | C
Lye, Caustic| (See Potassium & Sodium Hydroxide)| | |
Magnesium Chloride| Aqueous Sol.| MgCI2| | 10, 11, 12
Magnesium Sulfate (Epsom Salts)| Aqueous Sol.| MgSO4| | C, 8, 9, 10, 11
Manganese Chloride| Aqueous Sol.| MnCI2. 4H2O| | A, 8, 9, 10, 11, 12
Manganous Sulfate| Aqueous Sol.| MnSO4. 4H2O| | A, C, 8, 9, 10, 11
Mash| | | | A, B, 8
Mercuric Chloride| Very Dilute Aqueous Sol.| HgCI2| | 9, 10, 11, 12
Mercuric Chloride| Coml. Conc. Aqueous Sol.| HgCI2| | 11, 12
Mercuric Sulfate| In Sulfuric Acid| HgSO4 + H2SO4| | 10, 11, 12
Mercurous Sulfate| In Sulfuric Acid| Hg2SO4 + H2SO4| | 10, 11, 12
Methyl Chloride| | CH3CI| 0.52| C
Methylene Chloride| | CH2CI2| 1.34| C, 8
Milk| | | 1.03-1.04| 8
Milk of Lime| (See Lime Water)| | |
Mine Water| (See Acid, Mine Water)| | |
Miscella| (20% Soybean Oil & Solvent)| | 0.75| C
Molasses| | | | A, B
Mustard| | | | A, 8, 9, 10, 11, 12
Naphtha| | | 0.78-0.88| B, C
Naphtha, Crude| | | 0.92-0.95| B, C
Nicotine Sulfate| | (C10H14N2)2H2SO4| | 10, 11, 12, 14
Nitre| (See Potassium Nitrate)| | |
Nitre Cake| (See Sodium Bisulphate)| | |
Nitro Ethane| | C2H5NO2| 1.04| B, C
Nitro Methane| | CH3NO2| 1.14| B, C
Oil, Coal Tar| | | | B, C, 8, 9, 10, 11
Oil, Coconut| | | 0.91| A, B, C, 8, 9, 10, 11, 14
Oil, Creosote| | | 1.04-1.10| B, C
Oil, Crude| Cold| | | B, C
Oil, Crude| Hot| | | 3
Oil, Essential| | | | A, B, C
Oil, Fuel| | | | B, C
Oil, Kerosene| | | | B, C
Oil, Linseed| | | 0.94| A, B, C, 8, 9, 10, 11, 14
Oil, Lubricating| | | | B, C
Oil, Mineral| | | | B, C
Oil, Olive| | | 0.90| B, C
Oil, Palm| | | 0.90| A, B, C, 8, 9, 10, 11, 14
Oil, Quenching| | | 0.91| B, C
Oil, Rapeseed| | | 0.92| A, 8, 9, 10, 11, 14
Oil, Soya Bean| | | | A, B, C, 8, 9, 10, 11, 14
Oil, Turpentine| | | 0.87| B, C
Paraffin| Hot| | | B, C
Perhydrol| (See Hydrogen Peroxide)| | |
Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Peroxide of Hydrogen| (See Hydrogen Peroxide)| | |
Petroleum Ether| | | | B, C
Phenol| | C6H6O| 1.07|
Pink Liquor| (See Liquor, Pulp Mill)| | |
Photographic Developers| | | | 8, 9, 10, 11
Plating Solutions| (Varied and complicated, consult pump mfgrs.)| | |
Potash| Plant Liquor| | | A, 8, 9, 10, 11, 13, 14
Potash Alum| Aqueous Sol.| AI2(SO4)3K2SO4.24H2O| | A, 9, 10, 11, 12, 13, 14
Potassium Bichromate| Aqueous Sol.| K2Cr2O7| | C
Potassium Carbonate| Aqueous Sol.| K2CO3| | C
Potassium Chlorate| Aqueous Sol.| KCIO3| | 8, 9, 10, 11, 12
Potassium Chloride| Aqueous Sol.| KCI| | A, 8, 9, 10, 11, 14
Potassium Cyanide| Aqueous Sol.| KCN| | C
Potassium Hydroxide| Aqueous Sol.| KOH| | C, 5, 8, 9, 10, 11, 13, 14, 15
Potassium Nitrate| Aqueous Sol.| KNO3| | C, 5, 8, 9, 10, 11
Potassium Sulfate| Aqueous Sol.| K2SO4| | A, 8, 9, 10, 11
Propane| | C3H8| 0.59 @ 48 F| B, C, 3
Pyridine| | C5H5N| 0.98| C
Pyridine Sulphate| | | | 10, 12
Rhidolene| | | | B
Rosin (Colophony)| Paper Mill| | | C
Sal Ammoniac| (See Ammonium Chloride)| | |
Salt Lake| Aqueous Sol.| Na2SO4 + impurities| | A, 8, 9, 10, 11, 12
Salt Water| (See Brines)| | |
Sea Water| (See Brines)| | |
Sewage| | | | A, B, C
Shellac| | | | A
Silver Nitrate| Aqueous Sol.| AgNO3| | 8, 9, 10, 11, 12
Slop, Brewery| | | | A, B, C
Slop, Distillers| | | | A, 8, 9, 10, 11
Soap Liquor| | | | C
Soda Ash| Cold| Na2CO3| | C
Soda Ash| Hot| | | 8, 9, 10, 11, 13, 14
Sodium Bicarbonate| Aqueous Sol.| NaHCO3| | C, 8, 9, 10, 11, 13
Sodium Bisulfate| Aqueous Sol.| NaHSO4| | 10, 11, 12
Sodium Carbonate| (See Soda Ash)| | |
Sodium Chlorate| Aqueous Sol.| NaCIO3| | 8, 9, 10, 11, 12
Sodium Chloride| (See Brines)| | |
Sodium Cyanide| Aqueous Sol.| NaCN| | C
Sodium Hydroxide| Aqueous Sol.| NaOH| | C, 5, 8, 9, 10, 11, 13, 14, 15
Sodium Hydrosulfite| Aqueous Sol.| Na2S2O4. 2H2O| | 8, 9, 10, 11
Sodium Hypochlorite| | NaOCI| | 10, 11, 12
Sodium Hyposulfite| (See Sodium Thiosulfate)| | |
Sodium Meta Silicate| | | | C
Sodium Nitrate| Aqueous Sol.| NaNO3| | C, 5, 8, 9, 10, 11
Sodium Phosphate: Monobasic| Aqueous Sol.| NaH2PO4. H2O| | A, 8, 9, 10, 11
Sodium Phosphate: Dibasic| Aqueous Sol.| Na2HPO4. 7H2O| | A, C, 8, 9, 10, 11
Sodium Phosphate: Tribasic| Aqueous Sol.| Na3PO4. 12H2O| | C
Sodium Phosphate: Meta| Aqueous Sol.| Na4P4O12| | A, 8, 9, 10, 11
Sodium Phosphate: Hexameta| Aqueous Sol.| (NaPO3)6| | 8, 9, 10, 11
Column 1| Column 2| Column 3| Column 4| Column 5
---|---|---|---|---
Liquid| Condition of Liquid| Chemical Symbol| Specific Gravity| Material Selection
Sodium Plumbite| Aqueous Sol.| | | C
Sodium Sulfate| Aqueous Sol.| Na2SO4| | A, 8, 9, 10, 11
Sodium Sulfide| Aqueous Sol.| Na2S| | C, 8, 9, 10, 11
Sodium Sulfite| Aqueous Sol.| Na2SO3| | A, 8, 9, 10, 11
Sodium Thiosulfate| Aqueous Sol.| Na2S2O3. 5H2O| | 8, 9, 10, 11
Stannic Chloride| Aqueous Sol.| SnCI4| | 11, 12
Stannous Chloride| Aqueous Sol.| SnCI2| | 11, 12
Starch| | (C6H10O5)x| | A, B
Strontium Nitrate| Aqueous Sol.| Sr(NO3)2| | C, 8
Sugar| Aqueous Sol.| | | A, 8, 9, 10, 11, 13
Sulfite Liquor| (See Liquor, Pulp Mill)| | |
Sulfur| In Water| S| | A, C, 8, 9, 10, 11
Sulfur| Molten| S| | C
Sulfur Chloride| Cold| S2CI2| | C
Syrup| (See Sugar)| | |
Tallow| Hot| | 0.90| C
Tanning Liquors| | | | A, 8, 9, 10, 11, 12, 14
Tar| Hot| | | C, 3
Tar & Ammonia| In Water| | | C
Tetrachloride of Tin| (See Stannic Chloride)| | |
Tetraethyl Lead| | Pb(C2H5)4| 1.66| B, C
Toluene (Toluol)| | C7H8| 0.87| B, C
Trichloroethylene| | C2HCI3| 1.47| A, B, C, 8
Urine| | | | A, 8, 9, 10, 11
Varnish| | | | A, B, C, 8, 14
Vegetable Juices| | | | A, 8, 9, 10, 11, 14
Vinegar| | | | A, 8, 9, 10, 11, 12
Vitriol, Blue| (See Copper Sulfate)| | |
Vitriol, Green| (See Ferrous Sulfate)| | |
Vitriol, Oil of| (See Acid, Sulfuric)| | |
Vitriol, White| (See Zinc Sulfate)| | |
Water, Boiler Feed| Not evaporated      pH > 8.5| | 1.00| C
High Makeup| pH < 8.5| | | B
Low Makeup| Evaporated, any pH| | 1.66| 4, 5, 8, 14
Water, Distilled| High Purity| | 0.87| A, 8
Water, Distilled| Condensate| | | A, B
Water, Fresh| | | 1.00| B
Water, Mine| (See Acid, Mine Water)| | |
Water, Salt & Sea| (See Brines)| | |
Whiskey| | | | A, 8
White Liquor| (See Liquor, Pulp Mill)| | |
White Water| Paper Mill| | | A, B, C
Wine| | | | A, 8
Wood Pulp (Stock)| | | | A, B, C
Wood Vinegar| (See Acid Pyroligneous)| | |
Wort| (See Beer Wort)| | |
Xylol (Xylene)| | C8H10| 0.87| B, C, 8, 9, 10, 11
Yeast| | | | A, B
Zinc Chloride| Aqueous Sol.| ZnCI2| | 9, 10, 11, 12
Zinc Sulfate| Aqueous Sol.| ZnSO4| | A, 9, 10, 11

MATERIALS TABULATION SUMMARY

A- designates an All Bronze pump
B- designates a Bronze Fitted pump
C- designates an All Iron pump
The following tabulation summarizes the selections and associatedSociety* designations covered by the previous paragraph:
SUMMARY OF MATERIAL SELECTIONS AND NATIONAL SOCIETY STANDARDS DESIGNATIONS

Materials Selection #| Corresponding National Society* Standards Designation| Remarks
---|---|---
ASTM| ACI| AISI
1| A48, Classes 20, 25, 30, 35, 40 & 50| | | Gray lron-six grades
2| B143, 1B & 2A; B144, 3A; B145, 4A| | | Tin Bronze-six grades (includes two grades not covered by ATM Specifications as explained above under Selection

2)

3| A216, WCB| | 1030| Carbon Steel
4| A217, C5| | 501| 5% Chromium Steel
5| A296, CA15| CA15| 410| 13% Chromium Steel
6| A296, CB30| CB30| | 20% Chromium Steel
7| A296, CC50| CC50| 446| 28% Chromium Steel
8| A296, CF-8| CF-8| 304| 18-8 Austenitic Steel
9| A296, CF-8M| CF-8M| 316| 18-8 Molybdenum Austenitic Steel
10| | CN-7M| | A series of highly-alloyed steels normally used where the corrosive conditions are severe
11| | | | A series of nickle-base alloys
12| | | | High-silicon cast iron
13| | | | Austenitic cast iron
14| | | | Monel metal
15| | | | Nickel

  • ASTM–denotes American Society for Testing Materials
    ACI–denotes Alloy Casting Institute
    AISI–denotes American Iron and Steel Institute

BELT DRIVE SELECTION OF “V” BELT SECTION AND SHEAVE

HP Section Pitch Dia. Normal
Sm. Sheave Sm. Sheave
1/4 to 5 A 3.0 to 6” 4.2
2 – 25 B 5.4 to 11 6.4
15 – 75 C 9.6 to 16 9.6
50 – 100 D 13 to 22 14.2
Over 100 E 21.6 & Over 23.2

BELT SPEED
For satisfactory operation and belt life, the pulleys should be as large as possible without exceeding a belt speed of 5000 feet per minute Belt Speed = S = 26D x RPM = Feet per minute as may be determined from the following table
The pulley should not be greater than 5 ⁄2’’ for 3500 RPM
Example: If the pulley diameter (D) is 6”, and its speed is 1750 rpm, then the belt speed = S = 26 x 6 x 1750 = 2740 feet per minute
The following table shows speed RPM which a pulley of diameter (D) may be run for a belt speed of 5000 feet per minute

Pulley dia. D (in.) RPM Pulley dia. D (in.) RPM
4 4800 10 1920
5 3850 11 1750
51⁄2 3500 12 1610
6 3220 13 1480
7 2750 14 1370
8 2400 15 1280
9 2140 16 1200

MINIMUM WIRE SIZE TABLE OF RUBBER INSULATED COPPER WIRE ON 32, 115, 230 VOLT LINE

Max. Line Load (Amps.) DISTANCE FROM MOTOR TO METER IN FEET
0’ – 50’ 50’ – 100’
300’** 300’ – 400’
32V 115V
230V 32V
2 14
14 14
3 14
12 14
4 14
10 14
5 14

12
6| 14| 14| 14| 10| 14| 14| 8| 14| 14| 8| 12| 14| 6| 12| 14| 5| 10| 12| 4| 8| 12
7| 12| 14| 14| 10| 14| 14| 8| 14| 14| 6| 12| 14| 5| 10| 14| 4| 10| 12| 3| 8| 12
8| 12| 14| 14| 10| 14| 14| 8| 12| 14| 6| 12| 14| 5| 10| 12| 4| 8| 12| 3| 8| 10
9| 12| 14| 14| 8| 14| 14| 6| 12| 14| 6| 12| 14| 4| 10| 12| 3| 8| 12| 2| 8| 10
10| 12| 14| 14| 8| 14| 14| 6| 12| 14| 6| 10| 14| 4| 8| 12| 3| 8| 10| 2| 6| 10
12| 10| 14| 14| 8| 12| 14| 6| 12| 14| 5| 10| 12| 3| 8| 12| 2| 6| 10| 1| 6| 8
15| 10| 14| 14| 6| 12| 14| 5| 10| 14| 4| 8| 12| 2| 8| 10| 1| 6| 8| 0| 4| 8
20| 8| 12| 12| 6| 10| 12| 4| 8| 12| 3| 8| 10| 1| 6| 8| 0| 5| 8| 00| 4| 6
25| 8| 10| 10| 5| 10| 10| 3| 8| 10| 2| 6| 10| 0| 5| 8| 00| 4| 6| 000| 3| 6
30| 6| 8| 8| 4| 8| 8| 2| 8| 8| 1| 6| 8| 00| 5| 8| 000| 3| 6| 0000| 2| 5
35| 6| 8| 8| 3| 8| 8| 1| 6| 8| 0| 6| 8| 000| 4| 6| 0000| 3| 6| | 2| 5
40| 6| 6| 6| 2| 6| 6| 1| 6| 6| 0| 5| 6| 000| 3| 6| 0000| 2| 5| | 1| 4
45| 5| 6| 6| 2| 6| 6| 0| 6| 6| 00| 5| 6| 0000| 3| 6| | 2| 5| | 1| 4
50| 5| 6| 6| 2| 6| 6| 0| 5| 6| 00| 4| 6| 0000| 2| 5| | 1| 4| | 0| 3
55| 4| 5| 5| 1| 5| 5| 00| 5| 5| 000| 4| 5| | 2| 5| | 1| 4| | 0| 3
60| 4| 4| 4| 1| 4| 4| 00| 4| 4| 000| 3| 4| | 2| 4| | 0| 3| | 00| 2
70| 3| 4| 4| 0| 4| 4| 000| 4| 4| 0000| 3| 4| | 1| 4| | 0| 3| | 00| 2
80| 3| 3| 3| 0| 3| 3| 000| 3| 3| 0000| 2| 3| | 0| 3| | 00| 2| | 000| 1
90| 2| 2| 2| 00| 2| 2| 0000| 2| 2| | 1| 2| | 0| 2| | 00| 2| | 000| 1
100| 1| 1| 1| 00| 1| 1| 0000| 1| 1| | 1| 1| | 00| 1| | 000| 1| | 0000| 0

ESTIMATION OF 50 CYCLE PERFORMANCE

Point CAPACITY HEAD HORSEPOWER EFFICIENCY
FROM 60 CURVE 60 CAP X.
833 = 50 CAP FROM 60 CURVE 60 HD X
.694 = 50 HD FROM 60 CURVE 60 HP X
.579 =50 H P 50 CAP X 50 HD 3960 X 50 HP
Shut Off 0 0 74 52
A 30 25 77 54
B 60 50 73 51
C 90 75 63 44
D 120 100 44 31

FIG 2
The above example is based on the published curves for BERKELEY Model 1 1⁄2YPH which indicate a speed of 1760 RPM for 60 cycles To estimate the performance of this pump using 50 cycle current, proceed as follows:
Step 1 Select points on the Head/Capacity curve (Fig I) in the approximate area in which you expect to work
Label them as indicated Pick corresponding points on the BHP and Efficiency curves directly below the above points
Step 2 Construct a table (Fig 2 ) as shown above and insert the 60 cycle values for Capacity, Head and Horsepower
Step 3 Calculate the new values for 50 cycles
Step 4 Plot the new Head/Capacity and Horsepower points and draw the performance curves
Step 5 Determine the new efficiency curve by moving the points on the 60 cycle curve horizontally to the left to the new capacity values OR calculate the corresponding efficiencies by means of the formula and plot the new Efficiency Curve If the area of concern is known quite closely it is frequently only necessary to select one set of points and to make the necessary calculations Plot the new points and then draw small segments of the new performance curves parallel to the 60 cycle ones

ESTIMATION OF PERFORMANCE With Trimmed Impeller

Point CAPACITY HEAD HORSEPOWER EFFICIENCY
FROM 81⁄4” DIA. CURVE 81⁄4” CAP X
.833 =6-7/8” CAP FROM 81⁄4” DIA. CURVE 81⁄4” HD X
.694 =6-7/8” HD FROM 81⁄4” DIA. CURVE 81⁄4” HP X
.579 =6-7/8” HP __6-7/8” CAP X 6-7/8” HD  3960 X 6-7/8’’ HP
Shut Off 0 0 74 52
A 30 25 77 54
B 60 50 73 51
C 90 75 63 44
D 120 100 44 31

FIG 4

The above example is based on the published curves for BERKELEY Model 1 1⁄2 YPH (1760 RPM) which indicates an impeller diameter of 8 1⁄4” To estimate the performance of this pump using an impeller of 6 7/8” diameter proceed as follows:
Step 1 Select points on the Head/Capacity curve (Fig 3) in the approximate area in which you expect to work Label them as indicated Pick corresponding points on the Horsepower and Efficiency curves directly below the above points
Step 2 Construct a table (Fig 4) as shown above and insert the 8 1⁄4” diameter values for Capacity, Head and Horsepower
Step 3 Calculate the new values for 6 7/8” diameter
Step 4 Plot the new Head/Capacity and Horsepower points and draw the performance curves
Step 5 Determine the new efficiency curve by moving the points on the 81⁄4” diameter curve horizontally to the left to the new capacity values OR calculate the corresponding efficiencies by means of the formula and plot the new Efficiency curve If the area of concern is known quite closely it is frequently only necessary to select one set of points and to make the necessary calculations Plot the new points and then draw small segments of the new performance curves parallel to the 8 14” diameter ones

SUCTION LIMITS – TDSL

Suction limit correction for altitude and temperature
Several factors must be controlled for satisfactory performance of a centrifugal pump One of these is arrival of the water at the inlet to the pump in a condition that is within the suction ability of the pump Operation with on excessive Total Dynamic Suction Lift DEMAND (TDSL Demand) for the supply piping system will usually reduce the capacity and efficiency of the pump, and may lead to serious trouble through vibration and cavitation To ovoid this, the TDSL DEMAND for the suction piping system may be calculated, and compared against the TDSL ABILITY of the pump, which is shown as “TDSL” on the pump performance curve

TO CALCULATE TDSL DEMAND FOR SUCTION PIPING SYSTEM

  1. Measure the vertical lift (HL in feet) from the surface of the water source to the center line of the impeller eye
  2. Calculate the EQUIVALENT LENGTH of the suction piping system Include pipe, fittings, strainer, etc Refer to Table of Equivalent Lengths for Fittings (see Engineering 9020)
  3. Calculate the Friction Loss (H L in feet) at the required GPM flow rate through the equivalent length of the size and type of pipe used (see Engineering 9020) 4 Determine the Velocity Head (H in feet) shown in the Pipe Friction Table, at the required GPM, for the pipe size for which the pump inlet is machined (Note: ALWAYS use the Velocity Head for the pump inlet size, even though larger pipe is used for the main run and reduced to pump inlet size at the pump )
  4.  Add the three values found above: HE+ HL+ HVV= TDSL DEMAND for the suction piping system

TO MEASURE TDSL DEMAND FOR THE SUCTION PIPING SYSTEM FOR AN EXISTING PUMP

  1. Install a vacuum gauge in the suction pipe about one pipe diameter upstream from the pump inlet opening, preferably into a piece of pipe the same size as the pump inlet
  2. Operate the pump at the required flow rate Read the vacuum  gauge
  3.  Multiply the vacuum gauge reading, in inches of mercury, times 1 13, to convert to feet of water This is the TDSL DEMAND for the suction piping system at the observed flow rate (Note: If the vacuum gauge must be installed in a pipe that is larger than the pump inlet opening, compute the difference between the velocity heads for the different pipe sizes, and ADD the difference to the vacuum gauge reading to obtain the TDSL DEMAND )

COMPARISON OF TDSL DEMAND AGAINST TDSL ABILITY OF PUMP

  1. Obtain the TDSL at the required GPM from the pump performance curve This is the TDSL ABILITY of the pump when pumping WATER, at 70˚F or less, at Sea Level For higher water temperatures, or higher altitude, find the correction in the Table below, and SUBTRACT it from the pump TDSL ABILITY
  2. Compare the TDSL DEMAND (either calculated or measured) against the corrected TDSL ABILITY
  3. If the TDSL DEMAND is LESS than the TDSL ABILITY, the suction condition is acceptable
  4. If the TDSL DEMAND is EQUAL TO or GREATER THAN the TDSL ABILITY, cavitation can be expected

SYSTEM CORRECTIONS If the TDSL DEMAND exceeds the adjusted TDSL ABILITY of the pump, it may be possible to reduce the TDSL DEMAND by lowering the pump to reduce the vertical lift, or by using a larger size pipe to reduce the Friction Loss If these adjustments ore still not adequate, select a different pump with a greater TDSL ABILITY

TOTAL DYNAMIC SUCTION LIFT (TDSL) CORRECTION FOR ALTITUDE AND TEMPERATURE EXPRESSED IN FEET OF WATER

Altitude In Feet Temperature of Water in °F.
40-70 100
Sea Level 0
2000 2.4
4000 4.7
6000 6.8
8000 8.8
10000 10.5

METER TYPES

Table for determining horsepower demand from RPM of watthour meter disc.

MAKE| Single Element (2 and 3 W 1 Ph.)| Two Element (3 and 4 W , 3 Ph.)| Three Element (4 W-Y 3 Ph.)
---|---|---|---
General Electric| | 1-16,20 30,50,55

A-S

| | 1-60 (A-S)| D-6 D-7| | D-14 V-2, 3 A-S V-6  A-S| V-62-63 V-66 Series| | D-15 V-4A, 7A 10A| V-65 A-S
Westinghouse| All Except DA-DS| DA-DS| | | | OA, OB, OC CA, C5 Series| DA-DS Series| | CA-3, 9
CS-3, 9| |
Sangamo| HC HFA-S HFC| JA-JS| J-2 (A-S)| | | L-2| LC-2
Series| P-2 Series CL-100 CL-200| | L-3 LC-3| PS
Duncan| MF (A-S)| MK (A-S)| MK CL-100 CL-200| | | MF-MG
Series| MH
Series| | | MH
Series|
Basic-Kh| I/3| .6| 1.0| 1.2| .6| 2/3| 1.2| 2.4| 1.0| 1.8| 3.6
Volts| Amps. or Class| | MULTIPLY VALUES BELOW BY RPM OF METER TO GET HP DEMAND
100
to 120| 2.5| .0134| .0241| .0402| .483| .0241| .0268| .0483| .0965| .0402| .0724| .1447
5| .0268| .0483| .0804| .0965| .0483| .0536| .0965| .1930| .0804| .1447| .2894
12.5-15| .0670| .1206| | | | | | | | |
15| .0804| .1448| .2413| .2895| .1448| .1609| .2895| .5791| .2413| .4341| .8683
25| .1340| .2413| | | | | | | | |
50| .2681| .4826| | | | .5362| .9651| 1.9303| .8040| 1.4472| 2.8944
CL-100| | | .2413| .2895| | | .2895| .5791| .2413| .4341| .8683
CL-200| | | .4826| .5791| | | .5791| 1.1583| .4826| .8682| 1.7364
200
to 240| 2.5| .0268| .0483| .0804| .0965| .0483| .0536| .0965| .1930| .0804| .1447| .2894
5| .0536| .0965| .1609| .1930| .0965| .1072| .1930| .3861| .1609| .2894| .5788
12.5-15| .1340| .2413| | | | | | | | |
15| .1609| .2895| .4826| .5791| .2895| .3217| .5791| 1.1583| | |
25| .2681| .4826| | | .4826| .5362| .9651| | | |
50| .5362| .9651| 1.6086| | .9651| 1.0724| 1.9303| 3.8610| | |
CL-100| | .2895| | .5791| | | .5791| 1.1583| | |
CL-200| | .5791| | 1.1583| | | 1.1583| 2.3164| | |
to 480| 2.5| | | | | .0965| .1072| .1930| .3861| | |
5| | | | | .1930| .2145| .3861| .7721| | |
15| | | | | .5791| .6434| 1.1583| 2.3164| | |
25| | | | | .9651| 1.0724| 1.9300| 3.8610| | |
50| | | | | 1.9303| 2.1448| 3.8610| 7.7210| | |
CL-100| | | | | | | | | | |
500 to 600| 2.5| | | | | .1206| .1340| .2413| | | |
5| | | | | .2413| .2681| .4826| | | |
15| | | | | .7239| .8043| 1.4477| | | |
25| | | | | 1.2064| 1.3405| 2.4129| | | |
50| | | | | 2.4129| 2.6810| 4.8257| | | |

Above values represent horsepower constant of the meter They are determined by multiplying Kh value (stamped on nameplate of meter) by 0 0804 For meters not listed above, horsepower constants can be calculated from Kh value
EXAMPLE: G E Meter (two element) Type V2-A 240V 50 Amp
Meter Disk RPM = 15
H P Demand = 1 9303 x 15 = 28 95 HP

COMPUTING HP FROM RPM OF WATTHOUR METER DISC

An accurate method of measuring power consumption is of general interest to the owner or operator of electrically driven equipment including pumps The watthour meter is used to measure the power consumed The meter is usually mounted on the power pole or wall of pump housing adjacent to the motor control equipment
Current and/or potential transformers are required for larger units to reduce line current and voltage to the capacity of the watthour meter When computing the horsepower consumption by this method, it is important that the horsepower consumption obtained from the watthour meter be multiplied by the ratio of both current and potential transformers to obtain the correct power consumption of the motor
CURRENT TRANSFORMERS (C T s) Basic rating of all standard C T s used in metering is 5 amps secondary and, in general, no smaller than 200 amps primary (there are still in use C T s of the following ratios: 100:5 and 150:5 – these ratios are very seldom supplied on new installations) C T s most commonly used and in current issue are called 200, 400, 600 and 800 amp C T s with the 5 being understood

POTENTIAL TRANSFORMERS (P T s – for metering purposes )
100-120 volt and 200-240 volt systems do not require P T s
Most 400 to 480 volt systems now metered without P T s
There are, however, some 400 to 480 volt systems using 4:1
P T ‘s with 120 volt meters
Most 2300 volt systems use 20:1 P T s with 120 volt meters, 4000 volt WYE (or Star) – 2300 volt Delta
7200 volt Delta or 12,000 volt WYE (or Star) use a 60:1 P T s
HORSEPOWER CONSTANTS OF THE METER All meters now installed have the Kh value stamped on the nameplate This Kh value represents the number of watt hours passed through the meter while the disc makes one revolution The Kh value multiplied by 60/746, or 0 0804, gives the horsepower constant of the meter The horsepower constant of the meter multiplied by the RPM of the disc gives the horsepower input to motor .
Where Kh is not available, use the chart on Page 29 to obtain the proper horsepower constant For example: Westinghouse 2 element meter, type DA, 480 volt, 50 ampere
Horsepower constant = 3 861
Horsepower input = 3 861 x meter disc RPM
USE OF CURRENT AND POTENTIAL TRANSFORMERS Where current and potential transformers are used, the horsepower constant of the meter must be multiplied by a factor M to obtain the true horsepower constant Example: Assume a G E Meter type V-62 series, 2 element,120 volt, 5 amp, Kh amp, =
Meter disc makes 5 revolutions in 2 min 38 seconds (158 seconds)
Current transformer rated 200:5
Potential transformer rated 480:120
Basic horsepower constant:
(1) (from chart) 0 1930
(2) (by computation) using True horsepower constant 0 1930 X 160 = 30 88
RPM of disc = 1 9
Horsepower 30 88 X 1 9 = 58 7

USA
293 WRIGHT STREET, DELAVAN, WI 53115 WWW.PENTAIR.COMPH: 262-728-5551 ORDERS FAX: 262-728-7323

CANADA
269 TRILLIUM DRIVE, KITCHENER, ONTARIO, CANADA N2G 4W5
PH: 519-748-5470 ORDERS FAX: 888-606-5484
Because we are continuously improving our products and services, Pentair reserves the right to change specifications without prior notice.
© 2013 Pentair Ltd. All Rights Reserved.
B-9020 (REV 03/21/13)

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Pentair User Manuals

Related Manuals