KLEA 4 Quadrant Energy Analyzer User Manual
- June 16, 2024
- KLEA
Table of Contents
4 Quadrant Energy Analyzer
4 Quadrant Energy Analyzer
Specifications
- KLEA Order Number: 606130, 606131, 606132, 606133
- Description:
- Klea 320P-D base model
- Klea 320P-D optional digital IO model
- Klea 320P-D optional 2 analog outputs model
- Klea 320P-D optional 4 analog outputs model
Product Usage Instructions
Section 1: General Information
1.1 Symbols
Caution: Wherever used, this symbol indicates that there is
important information that must be taken into consideration.
Danger of Electric Shock: This symbol indicates that there is
dangerous voltage or current.
1.2 General Warnings
Please read and follow all warnings and precautions mentioned in
the user manual before using the product.
1.3 Receipt Control and Contents of Delivery
When you receive the package, please ensure the following:
-
Check if the KLEA Order Number matches the one you
ordered. -
Verify the contents of the delivery, which should include the
base model or any optional models you selected.
Section 2: Installation
This section provides instructions on how to install the 4
Quadrant Energy Analyzer. Please refer to the user manual for
detailed installation steps.
Section 3: Menus
This section explains the various menus available on the Energy
Analyzer. Please refer to the user manual for detailed information
about each menu and its functions.
Section 4: Modbus Protocol
This section provides information about the Modbus protocol used
by the Energy Analyzer. Please refer to the user manual for
specific details.
Section 5: Factory Default Settings
This section outlines the factory default settings of the Energy
Analyzer. Please refer to the user manual for more information.
Section 6: Technical Specifications
This section provides the technical specifications of the Energy
Analyzer. Please refer to the user manual for detailed
specifications.
FAQ
Q: What should I do if I see the “Caution” symbol on the Energy
Analyzer?
A: If you see the “Caution” symbol, it means there is important
information that you should take into consideration. Please refer
to the user manual for more details on the specific cautionary
message.
Q: How can I verify the contents of the delivery?
A: When you receive the package, check if the KLEA Order Number
matches your order, and ensure that you have received the base
model or any optional models you selected.
4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
Net woKr kLEAAn alyze r
User Manual
1
4 Quadrant
Energy Analyzer
TABLE OF CONTENTS
SECTION 1
1.1 1.2 1.3 1.4 1.5 1.6 1.7
GENERAL INFORMATION……………………………………………….8
Symbols…………………………………………………………………………………………………….. 9 General Warnings
…………………………………………………………………………………… 9 Receipt Control and Contents of Delivery
………………………………………….. 9 KLEA Energy Analyzer ……………………………………………………………………………10
KleaCom Software………………………………………………………………………………….11 KLEA Front
Panel…………………………………………………………………………………….12 Four-Quadrant Represantation
…………………………………………………………… 13
SECTION 2
2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4
INSTALLATION ……………………………………………………………..14
Preparing for Installation ………………………………………………………………………15 MOUNTING
……………………………………………………………………………………………..15 Wiring Diagrams
…………………………………………………………………………………….18 Three Phase Connection With Neutral (3P4W)
………………………………….18 Three Phase Connection No Neutral (3P3W) ……………………………………19
Three Phase No Neutral Aron Connection …………………………………………19 Digital Output
Connection Diagram …………………………………………………..20 Dimensions
…………………………………………………………………………………………….. 20
SECTION 3
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.2.1 3.2.1.1 3.2.1.1.1
3.2.1.1.1.1 3.2.1.1.1.2 3.2.1.1.1.3 3.2.1.1.1.4 3.2.1.1.1.5 3.2.1.1.2
3.2.1.1.2.1 3.2.1.1.2.2 3.2.1.1.2.3 3.2.1.1.2.4 3.2.1.1.2.5 3.2.1.1.3
3.2.1.1.3.1 3.2.1.1.3.2 3.2.1.1.3.3 3.2.1.1.3.4
MENUS …………………………………………………………………………21
“First Power-on” Settings………………………………………………………………………22 Dil / Language
………………………………………………………………………………………..22 Date
…………………………………………………………………………………………………………23 Time
…………………………………………………………………………………………………………. 24 Current Transformer Ratio (CTR)
………………………………………………………….24 Voltage Transformer Ratio
(VTR)………………………………………………………….25 Connection
…………………………………………………………………………………………….. 26 Start
………………………………………………………………………………………………………….27 Startup Screen
………………………………………………………………………………………..27 Settings
…………………………………………………………………………………………………..28 Setup Menu
…………………………………………………………………………………………….28 Network
Menu………………………………………………………………………………………..29 Current Transformer
Ratio…………………………………………………………………….30 Voltage Transformer
Ratio…………………………………………………………………….30 Connection
…………………………………………………………………………………………….. 31 Demand Period
………………………………………………………………………………………31 Power Unit
……………………………………………………………………………………………..32 Device Menu
…………………………………………………………………………………………..32
Language………………………………………………………………………………………………… 33
Contrast…………………………………………………………………………………………………… 33 Password Protection and New
Password……………………………………………34 Display on
Selection………………………………………………………………………………34 Display on Time
……………………………………………………………………………………..35 Energy
Menu…………………………………………………………………………………………..35 T1_1 start
time………………………………………………………………………………………..35 T1_2 start
time………………………………………………………………………………………..36 T1_3 start
time………………………………………………………………………………………..37 Start of
day………………………………………………………………………………………………38
2
4 Quadrant
Energy Analyzer
3.2.1.1.3.5 3.2.1.1.3.6 3.2.1.1.3.7 3.2.1.1.3.8 3.2.1.1.3.9 3.2.1.1.3.10 3.2.1.1.3.11 3.2.1.1.3.12 3.2.1.1.3.13 3.2.1.1.3.14 3.2.1.1.3.15 3.2.1.1.3.16 3.2.1.1.3.17 3.2.1.1.4 3.2.1.1.4.1 3.2.1.1.4.1.1 3.2.1.1.4.1.2 3.2.1.1.4.2 3.2.1.1.4.3 3.2.1.1.4.4 3.2.1.1.4.5 3.2.1.1.4.6 3.2.1.1.4.7 3.2.1.1.5 3.2.1.1.5.1 3.2.1.1.5.2 3.2.1.1.5.3 3.2.1.1.5.4 3.2.1.1.5.5 3.2.1.1.5.6 3.2.1.1.5.7 3.2.1.1.6 3.2.1.1.6.1 3.2.1.1.6.1.1 3.2.1.1.6.1.2 3.2.1.1.6.1.3 3.2.1.1.6.1.4 3.2.1.1.6.1.5 3.2.1.1.6.2 3.2.1.1.6.3 3.2.1.1.6.4 3.2.1.1.7 3.2.1.1.7.1 3.2.1.1.7.2 3.2.1.1.8 3.2.1.1.8.1 3.2.1.1.8.2 3.2.1.1.8.3 3.2.1.1.8.4
Start of month ……………………………………………………………………………………….38 T1
kWh……………………………………………………………………………………………………..38 T1 kWh E.
…………………………………………………………………………………………………38 T1 kWh Imp. I.
…………………………………………………………………………………………38 T1 kWh Imp. C.
……………………………………………………………………………………….38 T1 kVArh Exp. I.
………………………………………………………………………………………38 T1 kVArh Exp.
C……………………………………………………………………………………….38 T2 kWh
…………………………………………………………………………………………………….39 T2 kWh E.
………………………………………………………………………………………………..39 T2 kVArh Imp. I.
………………………………………………………………………………………39 T2 kVArh Imp. C..
…………………………………………………………………………………….39 T2 kVArh Exp. I.
………………………………………………………………………………………39 T2 kVArh Exp. C.
……………………………………………………………………………………..39 Digital Input
Menu…………………………………………………………………………………40 Input1
Menu……………………………………………………………………………………………41 Mode
……………………………………………………………………………………………………….41 Delay
………………………………………………………………………………………………………..42 Input 2
Menu…………………………………………………………………………………………..42 Input 3 Menu
(optional)………………………………………………………………………..43 Input 4 Menu
(optional)………………………………………………………………………..43 Input 5 Menu
(optional)………………………………………………………………………..43 Input 6 Menu
(optional)………………………………………………………………………..43 Input 7 Menu
(optional)………………………………………………………………………..43 Digital Output Menu
……………………………………………………………………………..43 Output1
Menu………………………………………………………………………………………..44 Output2
Menu………………………………………………………………………………………..46 Output3 Menu (optional)
……………………………………………………………………..46 Output4 Menu (optional)
……………………………………………………………………..46 Output5 Menu (optional)
……………………………………………………………………..46 Output6 Menu (optional)
……………………………………………………………………..46 Output7 Menu (optional)
……………………………………………………………………..46 Analog Output Menu
(Optional)………………………………………………………….47 Output1 Menu
………………………………………………………………………………………47 Input mode
……………………………………………………………………………………………48 Output connection
……………………………………………………………………………….49 Min. value
………………………………………………………………………………………………50 Max. value
……………………………………………………………………………………………..50 Multiplier
……………………………………………………………………………………………….50 Output2
Menu………………………………………………………………………………………..53 Output3
Menu………………………………………………………………………………………..53 Output4
Menu………………………………………………………………………………………..53 Communication
Menu…………………………………………………………………………..53 Baud Rate
Menu……………………………………………………………………………………..54 Slave Id
……………………………………………………………………………………………………54 Alarm
Menu…………………………………………………………………………………………….54 V(L-N)
Menu…………………………………………………………………………………………….55 V(L-L)
Menu……………………………………………………………………………………………..57 Current
Menu………………………………………………………………………………………….57 P Menu
…………………………………………………………………………………………………….57
3
4 Quadrant
Energy Analyzer
3.2.1.1.8.5 3.2.1.1.8.6 3.2.1.1.8.7 3.2.1.1.8.8 3.2.1.1.8.9 3.2.1.1.8.10 3.2.1.1.8.11 3.2.1.1.8.12 3.2.1.1.8.13 3.2.1.1.9 3.2.1.2 3.2.1.3 3.2.1.4 3.2.1.5 3.2.1.6 3.2.2 3.2.2.1 3.2.2.2 3.2.2.2.1 3.2.2.2.1.1 3.2.2.2.1.2 3.2.2.2.1.3 3.2.2.2.1.4 3.2.2.2.2 3.2.2.2.3 3.2.2.2.4 3.2.2.3 3.2.2.4 3.2.2.5 3.2.2.5.1 3.2.2.5.2 3.2.3 3.2.3.1 3.2.3.1.1 3.2.3.1.2 3.2.3.1.3 3.2.3.1.4 3.2.3.1.5 3.2.3.2 3.2.3.3 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.5 3.2.5.1.1 3.2.5.1.1.1 3.2.5.1.1.2
Q Menu…………………………………………………………………………………………………….57 S
Menu……………………………………………………………………………………………………..57 CosØ Menu
……………………………………………………………………………………………..57 PF Menu
…………………………………………………………………………………………………..58 IN
Menu……………………………………………………………………………………………………58 F
Menu……………………………………………………………………………………………………..58 Temp.
Menu…………………………………………………………………………………………….58 Harmonics V
Menu…………………………………………………………………………………59 Harmonics I Menu
………………………………………………………………………………….60 Clear
Menu………………………………………………………………………………………………60 Date / Time Menu
…………………………………………………………………………………..62 System Info
Menu…………………………………………………………………………………..62 Password
Menu………………………………………………………………………………………63 Restart
Menu…………………………………………………………………………………………..63 Default Settings
……………………………………………………………………………………..64 Measure
Menu………………………………………………………………………………………..64 Instantaneous Menu
……………………………………………………………………………..65 Demand Menu
………………………………………………………………………………………66 Current Month Menu
…………………………………………………………………………….67 Current
Menu………………………………………………………………………………………….68 Active power menu
……………………………………………………………………………….69 Reactive power
menu……………………………………………………………………………69 Apparent power
menu………………………………………………………………………….69 1 month Ago
Menu……………………………………………………………………………….69 2 Months Ago
Menu………………………………………………………………………………70 3 Months Ago
Menu………………………………………………………………………………70 Phasor Diagram
Menu………………………………………………………………………….70 Signals
Menu…………………………………………………………………………………………..70 Harmonics Menu
……………………………………………………………………………………71 Table Menu
……………………………………………………………………………………………..71 Graph
Menu…………………………………………………………………………………………….72 Meters Menu
…………………………………………………………………………………………..72 Imp. Active
Menu……………………………………………………………………………………72 T1
Tab……………………………………………………………………………………………………….73 T1 Rate1 Tab.
…………………………………………………………………………………………..73 T1 Rate2 Tab.
…………………………………………………………………………………………..74 T1 Rate3 Tab.
…………………………………………………………………………………………..74 T2
Tab……………………………………………………………………………………………………….75 Digital Input
Menu…………………………………………………………………………………76 Others Menu
…………………………………………………………………………………………..76 Alarms Menu
…………………………………………………………………………………………..76 Phase1
Menu…………………………………………………………………………………………..78 Phase2
Menu…………………………………………………………………………………………..79 Phase3
Menu…………………………………………………………………………………………..79 Other Menu
…………………………………………………………………………………………….79 Analysis
Menu…………………………………………………………………………………………79 Hourly
Menu……………………………………………………………………………………………80 Phase1
Menu…………………………………………………………………………………………..81 Phase2
Menu…………………………………………………………………………………………..81
4
4 Quadrant
Energy Analyzer
3.2.5.1.1.3 3.2.5.1.1.4 3.2.5.1.2 3.2.5.1.3 3.2.5.2 3.2.5.3
SECTION 4
4.1 4.2 4.3 4.4 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.2 4.5.3 4.5.3.1 4.5.3.2 4.5.3.3
4.5.4
SECTION 5 SECTION 6
FIGURES
Figure 1-1 Figure 1-2 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5
Figure 2-6 Figure 2-7 Figure 2-8 Figure 2-9 Figure 2-10 Figure 3-1 Figure 3-2
Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-9
Figure 3-10
Phase3 Menu…………………………………………………………………………………………..81 Other
……………………………………………………………………………………………………….. 81 Daily
Menu………………………………………………………………………………………………81 Monthly Menu
………………………………………………………………………………………..81 Maximum
Menu……………………………………………………………………………………..81 Average Menu
………………………………………………………………………………………..81
MODBUS PROTOCOL……………………………………………………82
RS485 Wiring Diagram ………………………………………………………………………….83 Computer Connection
…………………………………………………………………………83 Message Format and Data Types of MODBUS-RTU
Protocol ………….83 Implemented functions for MODBUS-RTU Protocol…………………………84
Data and Setting Parameters for KLEA ……………………………………………84 Measured and
Calculated Data ……………………………………………………………84 Alarm Flags
………………………………………………………………………………………….. 102 Digital Input Flags
………………………………………………………………………………. 103 KLEA Setting Parameters
…………………………………………………………………… 105 ARCHIVE (HISTORY) RECORDS
………………………………………………………….. 112 Hourly archive data
……………………………………………………………………………. 114 Daily archive data
……………………………………………………………………………… 116 Monthly archive data
……………………………………………………………………….. 117 Clear
……………………………………………………………………………………………………… 117
FACTORY DEFAULT SETTINGS…………………………………… 119 TECHNICAL
SPECIFICATIONS……………………………………. 123
KLEA Display……………………………………………………………………………………………12 Four-Quadrant Representation
……………………………………………………………13 Mounting KLEA into the Panel
…………………………………………………………….16 Fixing KLEA to the panel
……………………………………………………………………….16 Loosening of Terminal Block
Screws……………………………………………………16 Inserting Cable into the Terminal Block
…………………………………………….17 Fixing the Cable to the Terminal Block
……………………………………………….17 KLEA Star (WYE) Connection Diagram………………………………………………..18
KLEA 3 Phase Delta Connection Diagram…………………………………………..19 KLEA Aron Connection
Diagram………………………………………………………….19 Digital Output Connection Diagram
…………………………………………………..20 Dimensions …………………………………………………………………………………………….. 20
First Power-on Settings …………………………………………………………………………22 Dil / Language
………………………………………………………………………………………..22 Date
………………………………………………………………………………………………………….23 Example for Setting the
Date……………………………………………………………….23 Current Transformer
Ratio…………………………………………………………………….24 Entering Values to the Virtual Keyboard
…………………………………………….25 Voltage Transformer Ratio…………………………………………………………………….26
Connection Types…………………………………………………………………………………..26 Start
………………………………………………………………………………………………………….27 Startup Screen
………………………………………………………………………………………..27
5
4 Quadrant
Energy Analyzer
Figure 3-11 Figure 3-12 Figure 3-13 Figure 3-14 Figure 3-15 Figure 3-16 Figure 3-17 Figure 3-18 Figure 3-19 Figure 3-20 Figure 3-21 Figure 3-22 Figure 3-23 Figure 3-24 Figure 3-25 Figure 3-26 Figure 3-27 Figure 3-28 Figure 3-29 Figure 3-30 Figure 3-31 Figure 3-32 Figure 3-33 Figure 3-34 Figure 3-35 Figure 3-36 Figure 3-37 Figure 3-38 Figure 3-39 Figure 3-40 Figure 3-41 Figure 3-42 Figure 3-43 Figure 3-44 Figure 3-45 Figure 3-46 Figure 3-47 Figure 3-48 Figure 3-49 Figure 3-50 Figure 3-51 Figure 3-52 Figure 3-53 Figure 3-54 Figure 3-55 Figure 3-56 Figure 3-57 Figure 3-58 Figure 3-59
Settings Menu…………………………………………………………………………………………28 KLEA Save
Query…………………………………………………………………………………….29 Network
Menu………………………………………………………………………………………..29 Setting Current Transformer Ratio
……………………………………………………..30 Setting Voltage Transformer Ratio
………………………………………………………30 Connection …………………………………………………………………………………………….. 31
Demand Period ………………………………………………………………………………………31 Power Unit
Setup……………………………………………………………………………………32 Device Menu
…………………………………………………………………………………………..32 Language
Selection……………………………………………………………………………….33 Options for Contrast
……………………………………………………………………………..33 Entering New Password
………………………………………………………………………..34 Setting Display on Time
………………………………………………………………………..34 Energy
Menu…………………………………………………………………………………………..35 T1_1 start
time………………………………………………………………………………………..36 T1_2 start
time………………………………………………………………………………………..36 T1_3 start time
……………………………………………………………………………………….37 Digital Input
Menu…………………………………………………………………………………40 Digital Input Menu (With IO option)
…………………………………………………..40 Mode Selection ………………………………………………………………………………………41
Digital Input1 Counter…………………………………………………………………………..41 Delay
………………………………………………………………………………………………………..42 Tariff 1 or Tariff 2 ctivation
………………………………………………………………….42 Digital Output Menu
…………………………………………………………………………….43 Digital Output Menu (optional digital I/O
model)…………………………….44 Output1 Menu………………………………………………………………………………………..45 Analog
Output Menu…………………………………………………………………………….47
Output1…………………………………………………………………………………………………… 48 Input
mode……………………………………………………………………………………………..49 Output connection
………………………………………………………………………………..49 Vout1 -> ON ; Iout1 ->
OFF……………………………………………………………………49 Vout1 -> OFF; Iout1 ->
ON…………………………………………………………………….50 Multiplier
…………………………………………………………………………………………………51 Communication
Menu…………………………………………………………………………..53 Setting Baud Rate
………………………………………………………………………………….54 Slave Id
…………………………………………………………………………………………………….54 Alarm
Menu…………………………………………………………………………………………….54 V(L-N)
Menu…………………………………………………………………………………………….55 Alarm Relay Setup
………………………………………………………………………………….55 Alarm Time Setting
………………………………………………………………………………..56 Hysteresis
Setting…………………………………………………………………………………..56 Alarm Example
……………………………………………………………………………………….57 Setting for No
Alarm………………………………………………………………………………58 Invalid Limits message
………………………………………………………………………….59 Harmonics Menu
……………………………………………………………………………………59 THDV High Limit
Setting……………………………………………………………………….60 V3 – V21 Harmonic High Limit
……………………………………………………………..60 Clear Menu………………………………………………………………………………………………60
Before Clear …………………………………………………………………………………………….61
6
4 Quadrant
Energy Analyzer
Figure 3-60 Figure 3-61 Figure 3-62 Figure 3-63 Figure 3-64 Figure 3-65 Figure
3-66 Figure 3-67 Figure 3-68 Figure 3-69 Figure 3-70 Figure 3-71 Figure 3-72
Figure 3-73 Figure 3-74 Figure 3-75 Figure 3-76 Figure 3-77 Figure 3-78 Figure
3-79 Figure 3-80 Figure 3-81 Figure 3-82 Figure 3-83 Figure 3-84 Figure 3-85
Figure 3-86 Figure 3-87 Figure 3-88 Figure 3-89 Figure 3-90 Figure 3-91 Figure
3-92
Figure 4-1 Figure 4-2
TABLES
Table 4-1 Table 4-2 Table 4-3 Table 4-4 Table 4-5 Table 4-6 Table 4-7 Table
4-8
After Clear ……………………………………………………………………………………………….61 Initial Value, After Clear
Process …………………………………………………………..62 Date / Time Menu
…………………………………………………………………………………..62 System Info
……………………………………………………………………………………………..63
Password…………………………………………………………………………………………………. 63
Restart……………………………………………………………………………………………………… 64 Default Settings Command
………………………………………………………………….64 Measure Menu………………………………………………………………………………………..65
Instantaneous Menu ……………………………………………………………………………..65 Connecting the K-L ends
of Current Correctly…………………………………..66 Demand
Menu………………………………………………………………………………………..66 Demand
Example…………………………………………………………………………………..67 Current Month Menu
…………………………………………………………………………….67 Example of Current Month
Menu………………………………………………………..68 Current
Menu………………………………………………………………………………………….68 Phasor Diagram
Menu…………………………………………………………………………..70 Signals
Menu…………………………………………………………………………………………..71 Harmonics Menu
……………………………………………………………………………………71 Harmonics in Table Format
…………………………………………………………………..71 Harmonics in Graphical
Format……………………………………………………………72 Imp. Active
Menu……………………………………………………………………………………73 Imp. Active Energy Page
……………………………………………………………………….73 T1 rate1 import active energy
…………………………………………………………….74 T1 rate2 import active energy
…………………………………………………………….74 T1 rate3 import active
energy………………………………………………………………75 Tariff 2 impo t active energy
………………………………………………………………..75 Digital Input Menu(Dijital IO opsiyonlu model)
………………………………..76 Alarms Menu …………………………………………………………………………………………..78 Phase1
Menu…………………………………………………………………………………………..78 Other Menu
…………………………………………………………………………………………….79 Analysis
Menu…………………………………………………………………………………………80 Minimum Menu
…………………………………………………………………………………….80 Hourly
Menu……………………………………………………………………………………………80 RS485 Wiring
Diagram…………………………………………………………………………..83 Connection of KLEA to a
PC………………………………………………………………….83
Message Format……………………………………………………………………………………..83 int (32 bit) data
type………………………………………………………………………………84 Implemented functions for MODBUS RTU
Protocol …………………………84 Read-only Data……………………………………………………………………………………….85
Setting Parameters……………………………………………………………………………… 105 Description List
…………………………………………………………………………………… 111 Archive (History) Record
Table………………………………………………………….. 113 Clear Address
Table…………………………………………………………………………….. 118
7
4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
8
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
BÖLÜM 1 GENERAL INFORMATION
1.1 Symbols
Caution: Wherever used, this symbol indicates that there is important
information that must be taken into consideration.
Danger of Electric Shock: This symbol indicates that there is dangerous
voltage or current.
1.2 General Warnings
· Do not work under live supply conditions. Before installation, turn off the
power of the panel or any other related equipment.
· Installation, operation and commissioning (putting into service) of KLEA
must be performed by qualified personnel.
· The device must be put into service only after all connections are made. ·
KLEA is connected to current transformer(s). Before disconnecting current
transformer
leads, be sure that they are short circuited elsewhere or connected to a
parallel load which has sufficie tly low impedance. Otherwise dangerously high
voltages will be induced at the current transformer leads. Same phenomena also
apply for putting into service. · Keep and store away from moisture, dust,
vibration and wet environment. · For cleaning, remove the dust with a dry
cloth. Do not use abrasives, solvents or alcohol. · There are no user
serviceable parts inside. Maintenance and calibration can only be carried out
at manufacturer’s end. · It is recommend to connect circuit breakers or
automatic fuses between voltage inputs of Klea and the network.
1.3 Receipt Control and Contents of Delivery
When you receive the package, please be sure that,
· packing is in good condition, · product has not been damaged during
transportation, · product name and reference (order) number conforms to your
order.
9
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
KLEA Order Number: 606130 606131 606132 606133
Description: Klea 320P-D base model Klea 320P-D optional digital IO model Klea 320P-D optional 2 analog outputs model Klea 320P-D optional 4 analog outputs model
Please also check the contents of delivery as listed below:
· 1 pc. KLEA · 1 pc., CD-ROM (User manuel and KleaCom software) · 2 pcs.,
fixing brackets and screws · 1 pc., 4-pin female terminal block for alarm
outputs (NO, C/out2, C/out1, NO) · 1 pc., 6-pin female terminal block for
current inputs (I1 , k1 , I2 , k2 , I3 , k3) · 1 pc., 3-pin female terminal
block for supply input (Un) · 1 pc., 3-pin terminal block for digital inputs
(DI1, GND, DI2) · 1 pc., 4-pin female terminal block for voltage inputs (L1 ,
L2 , L3 , N) · 1 pc., 7-pin female terminal block for digital output and RS485
(B, GND1, A, DO1+,
DO1-, DO2+, DO2-) · 2 pcs., 10-pin female terminal block for digital IO
optional (KLEA – 606101) product
(DO3+, DO3- …), (DI3, GND3… ) · 1 pc., 4-pin female terminal block for two
analog output optional (KLEA – 606102)
product (AO1-GND, AO2-GND) · 1 pc., 8-pin female terminal block for four
analog output optional (KLEA – 606103)
product (AO1-GND, …, AO4-GND)
1.4 KLEA Energy Analyzer
KLEA is a multi functional energy analyzer. KLEA, Measures/calculates:
· Current, voltage and frequency · Active, reactive and apparent power ·
Current and voltage harmonics up to 51. harmonic · THDV, THDI · Power factor,
cosØ for each phase. KLEA has ” Import Active” , ” Export Active” , “Reactive
R1” , “Reactive R2” , “Reactive R3” , “Reactive R4” meters. These meters
record “1st tariff “, “T1_1” , “T1_2” and “T1_3” energy values. · There is an
isolated RS485 port in KLEA. · KLEA’s energy/meter values can be assigned to
digital outputs. · It has 2 pieces of relay outputs.
10
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
Besides, KLEA has numerous features such as;
· Setting alarms for various measurement parameters, · Monitoring official ene
gy meters by means of assigning initial values for Klea tariff
meters, · Compatibility for 3 phase/3 wire, 3 phase/4wire or aron connected
systems, · Avoiding unauthorized control by a 4-digit password.
KLEA Energy Analyzer has,
· 2 programmable alarm relay outputs, 2 digital outputs (totally 7 pieces in
optional digital IO model), 2 digital input (totally 7 pieces in optional
digital IO model), 1 piece of RS-485 communication port, 2/4 analog outputs
(optional), battery supported realtime clock and memory.
· There are 6 keys and 160×240 graphical LCD on the front panel. By means of
them, device settings and monitoring of measurement values can eaClear y be
accomplished.
1.5 KleaCom Software
Operator can remowirey reach a Klea device via KleaCom software. KleaCom
software can communicate with only one Klea at the same time; operator can
reach other Klea devices on the same network by changing the slave ID. All
measured/calculated parameters can be monitored with KleaCom. All settings of
Klea can be changed/read via KleaCom software. History (archive) data of Klea
can be downloaded using KleaCom and this data can be listed in an MS Excel or
WordPad file (selectable). KleaCom software is included in the CD-ROM received
with Klea package. Latest version of KleaCom software can be downloaded from
www.klemsan.com.tr.
11
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
1.6 KLEA Front Panel
Settings Measure Meters Alarms Analysis
Fig. 1-1 KLEA Display
1 Menus 2 L-N voltages belonging to three phases 3 Currents of three phases 4
Presence/Absence of currents-voltages belonging to three phases, and phase
sequence 5 Selected connection type 6 Alarm state symbol (for any alarm) 7
Temperature alarm state symbol (displayed only with a temperature alarm) 8
Alarm relay symbol (If 1st and/or 2nd alarm relay is assigned to any alarm and
also
if there is an alarm in the system at the same time, this symbol shall appear
on the screen. “1” stands for 1st Alarm Relay and “2” stands for 2nd Alarm
Relay) 9 KLEA digital output symbol ( “1” indicates, digital output 1; and “2”
indicates digital output 2. This symbol shall be displayed as long as width of
the output pulse.) 10 KLEA digital output symbol (if there is an output from
optional output3, output4, output5, output6 and output7, this symbol shall be
displayed.) 11 RS485 communication symbol 12 Klea system time 13 X Key (in
order to cancel any change or to return to the upper menu) 14 Left key 15 Up
key 16 Down key 17 Right key 18 OK key (pressed in order to save any change or
to access submenus)
12
4 Quadrant
Energy Analyzer
SECTION 1 GENERAL INFORMATION
1.7 Four-Quadrant Represantation
The angle(Ø) between voltage and current provides us information about the
direction of energy fl w. A positive sign for active/reactive power indicates
that active/reactive power is consumed. And also a negative sign for
active/reactive power indicates that active/ reactive power is generated.
QUADRANT -2
P
=> negative
Q => positive & capacitive
CosØ => capacitive
PF => negative
Meters Exp. Active & Ind. Reactive
Reactive Power
QUADRANT -1
P
=> positive
Q => positive & inductive
CosØ => inductive
PF => positive
Meters Imp. Active & Ind. Reactive
S Q
P
Active Power
QUADRANT -3
P
=> negative
Q => negative & inductive
CosØ => inductive
PF => negative
Meters Exp. Active & Cap. Reactive
QUADRANT -4
P
=> positive
Q => negative & capacitive
CosØ => capacitive
PF => positive
Meters Imp. Active & Cap. Reactive
Fig. 1-2 Four-Quadrant Representation
NOTE: If the signs of active and reactive power are examined, it can be defined the quadrant that Klea measures.
E.g.;
P= +10kWh,Q= +5kVAr => P= -10kWh, Q= +5kVAr => P= -10kWh, Q= -5kVAr => P= +10kWh,Q= -5kVAr =>
Quadrant-1 Quadrant-2 Quadrant-3 Quadrant-4
13
4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
14
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
BÖLÜM 2 INSTALLATION
This section provides the information about installation, mounting, cable
routing and connections of Klea.
2.1 Preparing for Installation
The purchased KLEA may not include all hardware options referred in this
document. This situation does not constitute an impediment to the electrical
installation.
Assembly and related connections of KLEA, must be implemented by authorized
persons in accordance with the instructions of user manual. The device must
not be put into service if the operator is not sure that all connections are
correctly accomplished.
2.2 Mounting
KLEA is placed vertically into the gap located in the panel.
Fig. 2-1 Mounting KLEA into the Panel
After the KLEA is placed into the panel, fixing brackets should be installed
on Klea and Klea should be fixed to the panel wall with the screws.
15
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
NetwoKrkLEAAnalyzer
Fig. 2-2 Fixing KLEA to the panel
There are 2.5mm2 and 1.5mm2 screwed female terminal blocks connected to fixed
male terminal blocks on KLEA. Remove female terminal blocks and loosen their
screws.
Fig. 2-3 Loosening of Terminal Block Screws
Before wiring up voltage and current ends to KLEA, you must be sure that the
power is cut.
16
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
KLEA is connected to current transformer(s). Before disconnecting current transformer leads, be sure that they are short circuited elsewhere or connected to a parallel load which has sufficie tly low impedance. Otherwise dangerously high voltages will be induced at the current transformer leads. Same phenomena also apply for putting into service. The cable is placed into the related opening.
Fig. 2-4 Inserting Cable into the Terminal Block
After the cable is placed, the screws are tightened and the cable is fixed.
Fig. 2-5 Fixing the Cable to the Terminal Block
The Terminal Block is inserted into its seat located on KLEA.
17
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
If KLEA is used together with current transformers, please pay attention to
the following warning. Threshold values for proper operation of current
transformers differ according to the type and size of the transformers being
used. Before applying the points mentioned in the following warning, please
check that the measured current value is larger than the current threshold
value of the current transformer (Refer to manual or datasheet of the current
transformer).
For both of the warnings below, there must be a current in the system which is
higher than the threshold value of the current transformer (if any).
If KLEA is placed in a panel which consumes power; The signs on
Measure/Instantaneous/Active Power screen, should be positive, as the phases
consume power. If there is a negative sign, turn off the device, cut off the
panel power and then cross connect K and L ends of the current inputs
belonging to the related phase(s). After that, check that all values are
positive on Measure => Instantaneous => Active Power screen. If KLEA is placed
in a panel which generates power; The signs on Measure/Instantaneous/Active
Power screen, should be negative, as the phases generate power. If there is a
positive sign, turn off the device, cut off the panel power and then cross
connect K and L ends of the current inputs belonging to the related phase(s).
After that, check that all values are negative on Measure => Instantaneous =>
Active Power screen.
2.3 Wiring Diagrams 2.3.1 Three Phase Connection With Neutral (3P4W)
L1 L2 L3 N
out1 out2
2A 2A 2A 2A
A. Out1 GND A. Out2 GND A. Out3 GND A. Out4 GND B GND1 A DI2 GND DI1 DI3 GND
DI7 GND
DO1DO1+ DO2DO2+ DO3DO3+ DO7DO7+
C
C
NO
NO
Alarm Relay Outputs
N L3 L2 L1
K1 11 K2 12 K3 13
N L
Power Supply Current Measurement Voltage Measurement
Inputs
Inputs
Analog Outputs (Optional)
RS485
Digital Inputs (Optional) …
Digital Outputs (Optional)
Fig. 2-6 KLEA Star (WYE) Connection Diagram
18
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
2.3.2 Three Phase Connection No Neutral (3P3W)
L1 L2 L3
2A
2A
2A
L1
L2
L3
k1 l1 k2
l2 k3 l3
Current Measurement Voltage Measurement
Inputs
Inputs
Fig. 2-7 KLEA 3 Phase Delta Connection Diagram
2.3.3 Three Phase No Neutral Aron Connection
L1 L2 L3
2A
2A
2A
L1
L2
L3
k1 l1 k2
l2 k3 l3
Current Measurement Inputs
Voltage Measurement Inputs
Fig. 2-8 KLEA Aron Connection Diagram
19
4 Quadrant
Energy Analyzer
SECTION 2 INSTALLATION
NOTE: Any two-phase current can be connected to the current measuring inputs.
L1 and L3 are used in the figure above.
2.3.4 Digital Output Connection Diagram
DO (+)
DO (-)
External DC Power Supply must be connected. (5-30VDC)
load
–
Fig. 2-9 Digital Output Connection Diagram
2.4 Dimensions
Dimensions are in millimeters.
Fig. 2-10 Dimensions
20
4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
21
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
BÖLÜM 3 MENUS
3.1 “First Power-on” Settings
After its receipt, when KLEA is switched on”for the first time”, the following
page appears.
Startup Settings
Language Date Time CTR VTR Connection Start
English 07 January 2013 17:45:28 1 1.0 3phase 4wire
Fig. 3-1 First Power-on Settings
3.1.1 Dil / Language
When OK key is pressed on this tab,”Türkçe”,”English”and”P”options appear on
the screen as seen below. Operator can scroll inside the options by pressing
up and down keys and then should press “OK” to select the desired option. If
language is selected as English, other tabs within this page will also be in
English.
Startup Settings
Language Date Time CTR VTR Connection Start
E10177n:g4Jla5isn:hTPE2u8ü~na°rgrk°ylçis2eh013 1.0 3phase 4wire
Startup Settings
Language Date Time CTR VTR Connection Start
English 07 January 2013 17:45:28 1 1.0 3phase 4wire
Fig. 3-2 Dil / Language
22
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.1.2 Date
In order to change the date, operator should press OK key, when”Date”tab is
highlighted. Press right and left to move between day, month and year entries.
Press up and down keys to change the values. Press OK key to complete date
setting.
Startup Settings
Language Date Time CTR VTR Connection Start
English 07 January 2013 17:45:28 1 1.0 3phase 4wire
Example:
Fig. 3-3 Date
In order to enter “7 January 2013”:
1
Date
06 December 2012
2
Date
07 December 2012
3
Date
07 December 2012
4
Date
07 January 2012
5
Date
07 January 2012
6
Date
07 January 2013
7
Date
07 January 2013
Fig. 3-4 Example for Setting the Date
23
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.1.3 Time
Time setting for KLEA is accomplished as explained in 3.1.2 Date menu.
3.1.4 Current Transformer Ratio (CTR)
In this tab, current transformer ratio is entered. The current transformer
ratio can be adjusted between 1-5000. When this tab is highlighted; if the
operator presses OK key, KLEA Virtual Keyboard will appear on the screen.
Startup Settings
Language Date Time CTR VTR Connection Start
E07ngJlaisnhu1ary 2013
17:45:28 1 2 3 4
1 1.0
5678
3phase 4w9ire 0 . –
ok clr
Low limit 1
High limit 5000
Fig. 3-5 Current Transformer Ratio
Use arrow keys (left, right, up and down) of Klea to navigate inside the
virtual keyboard. In order to enter any number in the virtual keyboard as a
value, when that number is highlighted, press OK key of Klea. When ok’ box of virtual keyboard is highlighted, press
OK’ key of Klea to complete current
transformer setting.
In case an incorrect digit is entered, scroll inside the virtual keyboard to
select clr box. Then pres `OK’ key of Klea to erase erroneous entered
digit(s).
Caution: In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.
24
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
E.g.:
1
1
1234
5678
90 . –
ok clr Low limit 1 High limit 5000
2
1
1234
5678
90 . –
ok clr Low limit 1 High limit 5000
3
2
1234
5678
90 . –
ok clr Low limit 1 High limit 5000
4
2
1234
5678
90 . –
ok clr Low limit 1 High limit 5000
5
20
1234
5678
90 . –
ok clr
Low limit 1 High limit 5000
6
20
1234
5678
90 . –
ok clr
Low limit 1 High limit 5000
1
2
Startup Settings
Language Date Time CTR VTR Connection Start
English 07 January 2013 17:45:28 20 1.0 3phase 4wire
Fig. 3-6 Entering Values to the Virtual Keyboard
To enter a decimal value, enter the integer part of the decimal number first.
Then scroll inside virtual keyboard till . box is highlighted. Press OK key of
Klea to insert the decimal point. Following the point, enter the decimal part
of the desired value. To enter a negative value, enter the number, move inside
the virtual keyboard point to the negative sign – box and press OK.
3.1.5 Voltage Transformer Ratio (VTR)
In this tab voltage transformer ratio is entered. (For Virtual Keyboard Refer
to 3.1.4 E.g.). The voltage transformer ratio can be adjusted between 1 –
5000. To enter a decimal value, enter the integer part of the decimal number
first. Then scroll inside virtual keyboard till . box is highlighted. Press OK
key of Klea to insert the decimal point. Following the point, enter the
decimal part of the desired value.
25
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Startup Settings
Language Date Time CTR VTR Connection Start
English1 07 January 2013
17:45:28 1 2 3 4
1 1.0
5678
3phase 4w9ire 0 . –
ok clr
Low limit 1.0
High limit 5000.0
Fig. 3-7 Voltage Transformer Ratio
In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.
3.1.6 Connection
This menu contains information about how to connect KLEA to the
panel/electrical network. There are 3 connection types: · 3 phase 4 wire
connection · 3 phase 3 wire connection · Aron connection
Startup Settings
Language Date Time CTR VTR Connection Start
E1077n:g4Jla5isn:h33A2upp8raohhrnaayss2ee0431ww3 iirree 1 1.0 3phase 4wire
Initializing ……………………..
Fig. 3-8 Connection Types
26
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.1.7 Start
When Start tab is selected, press OK key to initialize Klea.
Startup Settings
Language Date Time CTR VTR Connection Start
English 07 January 2013 17:45:28 1 1.0 3phase 4wire
Initializing ……………………..
Fig. 3-9 Start
KLEA “first power-on” settings page only appears when KLEA is powered up for
the first time after factory production. Following this first initialization,
all the required settings (including “first power-on” page settings) can be
accomplished via Settings menu of KLEA.
3.2 Startup Screen
After KLEA is turned on, following page appears.
Settings Measure Meters Alarms Analysis
V1 2 2 0 . 0 V I1
5.0 A
V2 2 2 0 . 0 V I2
5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-10 Startup Screen
27
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
At the top of the screen, there are multiple selection menus. In the middle,
instantaneous voltage and current values pertaining to each phase are shown.
At the bottom left of the screen, current and voltage values of the three
phases and connection type are shown. At the bottom right corner, system clock
(KLEA time) is shown. Operator can navigate between the multiple selection
menus by pressing right and left arrow keys. Press OK key to enter into any
multiple selection menu.
When 3phase-4wire or ARON connection is selected, VL-N voltages are shown in
startup screen. When 3phase-3wire connection is selected, VL-L voltages are
shown in startup screen
3.2.1 Settings
KLEA settings are made in this menu. Select Settings menu and press OK key.
When OK key is pressed, submenus will appear as seen in the Fig. 3-11. Under
the Settings menu, the following submenus exist.
· Setup · Date/Time · System info · Password · Restart · Default Settings
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-11 Settings Menu
3.2.1.1 Setup Menu
The following submenus are available inside Setup menu:
28
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
· Network · Device · Energy · Digital input · Digital output · Communication ·
Alarm · Clear The user can scroll inside the menus by pressing up and down
keys. Press OK key in order to access contents of each submenus (the submenus
under the setup menu) . In order for the new settings to be accepted by KLEA
and stored in the memory, operator should navigate back (by pressing X key) to
Startup Screen from the tab at which change has been made. When the operator
returns to Startup page, “Settings changed. Save?” message will appear on the
screen. If OK is pressed, changes will be accepted and stored in permanent
memory. If X key is pressed, the changes will not be accepted by KLEA and will
not be stored in permanent memory.
When “Settings changed. Save?” message appears on KLEA screen; if OK is
pressed, setting changes will be accepted and stored in permanent memory. If X
key is pressed, the changes will not be accepted and will not be stored in
permanent memory.
Settings changed. Save?
X
OK
3.2.1.1.1 Network Menu
Fig. 3-12 KLEA Save Query
Electrical network related settings are accomplished in this menu.
Settings Measure Meters Alarms Analysis
Settings->Setup->Network
Setup
Network
CTR
10
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5.0 A
VTR Connection
1.0 3phase 4wire
Password
Digital input
Demand period 15
min
0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion
5 . 0 A Power unit
Kilo
Alarm
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-13 Network Menu
29
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.1.1 Current Transformer Ratio
In this submenu current transformer ratio is entered. Inside Network menu,
press up and down keys to select CTR. Press OK key and KLEA virtual keyboard
will appear on the screen. The current transformer ratio (CTR) can be adjusted
between 1 – 5000. (For Virtual Keyboard Refer to 3.1.4 E.g.)
Settings->Setup->Network
CTR VTR Connection Demand period Power unit
1 1.0
10
3phase 4w1ire 2
15 Kilo
56
90
34 7 m8in
.-
ok clr
Low limit 1
High limit 5000
Fig. 3-14 Setting Current Transformer Ratio
In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.
3.2.1.1.1.2 Voltage Transformer Ratio
In this submenu voltage transformer ratio is entered. Inside Network menu,
press up and down keys to select VTR. Press OK key and KLEA virtual keyboard
will appear on the screen. The voltage transformer ratio (VTR) can be adjusted
between 1 – 5000.
(For Virtual Keyboard Refer to 3.1.4 E.g.). If a decimal number is to be
entered as a VTR, with the help of Klea arrow keys point to the . box on the
Virtual Keyboard and press OK key.
In order for KLEA to perform accurate measurements, the voltage transformer ratio should be entered correctly.
Settings->Setup->Network
CTR VTR Connection Demand period Power unit
1
1.0
1.0
3phase 4w1ire 2
15 Kilo
56
90
34 7 m8in
.-
ok clr
Low limit 1.0
High limit 5000.0
Fig. 3-15 Setting Voltage Transformer Ratio
30
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.1.3 Connection
KLEA may perform measurements with three different connection types. · 3 phase
4 wire connection · 3 phase 3 wire connection · Aron connection Inside
Network menu, press up and down keys to select Connection. Press OK key and
the above connection types will appear on the screen. Select the connection
type and press OK to finish the setting.
Settings->Setup->Network
CTR VTR Connection Demand period Power unit
311p.00hase33Appr4ohhwnaaissreee
4wire 3wire
15
min
Kilo
3.2.1.1.1.4 Demand Period
Fig. 3-16 Connection
Inside Network menu, press up and down keys to select (highlight) Demand period’ menu item. When
Demand period’ is selected, press OK key and KLEA
virtual keyboard will appear on the screen. Demand period can be adjusted
between 1 – 60 minutes. (For Virtual Keyboard Refer to 3.1.4 E.g.)
Settings->Setup->Network
CTR VTR Connection Demand period Power unit
1 1.0
15
3phase 4w1ire 2
15 Kilo
56
90
34 7 m8in
.-
ok clr
Low limit 1
High limit 60
Fig. 3-17 Demand Period
31
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.1.5 Power Unit
KLEA displays total power or total energy values in two different units: ·
Mega · Kilo Inside Network menu, press up and down keys to select (highlight)
Power unit’ menu item. When
Power unit’ is selected, press OK key and the
aforementioned options will appear on the screen. Press up and down keys to
select the desired option and press OK key to complete the setting.
Settings->Setup->Network
CTR VTR Connection
311p.0haseMKi4elowgaire
Demand period 15
min
Power unit
Kilo
Fig. 3-18 Power Unit Setup
3.2.1.1.2 Device Menu
In this menu following settings can be accomplished.
· Language · Contrast · New Password · Display on · Display on Time
Settings Measure Meters Alarms Analysis
Settings->Setup->Device
Setup
Network
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
Password
Digital input
0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion
Alarm
V3 2 2 0 .C0lear V I3
Language
English
5.0 A
Contrast
Level 0
Pass. protection Off
5.0 A
New password Display on
1 Time dependent sec
Display on time 600
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-19 Device Menu
32
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.2.1 Language
Inside Device menu, press up and down keys to select (highlight) Language’ menu item. When
Language’ is selected, press OK key and the options in Figure
3-20 will appear on the screen. Press up and down keys to select the desired
option and press OK key to complete the setting.
Settings->Setup->Device
Language
Contrast Pass protection New password
Display on Display on time
E1OLenffvgelils0hTPEü~n°rgk°lçiseh Time dependent sec 600
3.2.1.1.2.2 Contrast
Fig. 3-20 Language Selection
Inside Device menu, press up and down keys to select (highlight) `Contrast’ menu item. Press OK key and contrast levels will appear on the screen as seen in Figure 3-21. Scroll inside contrast levels by pressing up and down keys; press OK key to select the desired option. Graphical LCD of KLEA darkens towards the Level 4; and lightens towards the Level -4.
Settings->Setup->Device
Language Contrast
EnglishLevel -4 Level 0Level -3
Pass protection Off Level -2
New password 1 Level -1
Display on
Time deLpeevenld0ent
Display on time 600 Level 1
min
Level 2
Level 3
Level 4
Fig. 3-21 Options for Contrast
33
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.2.3 Password Protection and New Password
KLEA has a password protection and default password protection is “Off”.
Default password is “1”. New password can be adjusted between 1 – 9999 ( For
Virtual Keyboard Refer to 3.1.4 E.g.).
Settings->Setup->Device
Language Contrast Pass. protection New password Display on Display on time
ELenvgelils0h1
Off
1234
1 Time depe5nde6nt 7 m8in
600
90 . –
ok clr
Low limit 1
High limit 9999
Fig. 3-22 Entering New Password
3.2.1.1.2.4 Display on Selection
· Continuous · Time dependent
If continuous is selected, the backlight of KLEA graphical LCD will be turned
on continuously. If `Time dependent’ option is selected, the backlight of the
graphical LCD remains open as long as “display on time”.
Settings->Setup->Device
Language Contrast
Pass. protection New password Display on Display on time
ELenvgelils0h600
Off
1234
1 Time
depe5nde6nt
7
m8in
600
90 . –
ok clr
Low limit 1
High limit 600
Fig. 3-23 Setting Display on Time
34
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.2.5 Display on Time
Displayon time can be adjusted between 10 600 second. (For Virtual Keyboard
Refer to 3.1.4 E.g.).
3.2.1.1.3 Energy Menu
Initial energy values for T1, T1_1, T1_2, T1_3 and T2 can be entered inside
this menu. Thus, Toperator can synchronize the official electric meter with
KLEA tariff meters. Operator can navigate inside Energy menu by pressing up
and down keys.
Settings->Setup->Energy
T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Imp. C. T2 kWh
8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh
Fig. 3-24 Energy Menu
3.2.1.1.3.1 T1_1 start time
Electric meters can have more than one tariff and also individual tariffs can
be sliced in time.
T1_1′ abbreviation refers to the first time slice of tariff 1 meter. T1_1 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate1” meter (the first time slice of T1 meter – T1_1) counts between T1_1 start time and T1_2 start time. E.g.: Assume that
T1_1 start time’ and `T1_2 start time’ are adjusted as 8 and 16
respectively. “T1 rate1 meter (T1_1)” counts starting from 08:00 and ceases at
16:00.
35
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Meters->Imp. active
T1
1000.0
T1 rate 1
1000.0
T1 rate 2 T1 rate 3
1000.0 1000.0
T2
1000.0
kWh kWh
kWh kWh kWh
Settings->Setup->Energy
T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2
8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
Fig. 3-25 T1_1 start time
hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh
NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active “,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)
3.2.1.1.3.2 T1_2 Start time
T1_2′ abbreviation refers to the second time slice of tariff 1 me er. T1_2 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate2” meter (the second time slice of T1 meter – T1_2) counts between T1_2 start time and T1_2 start time. E.g.: Assume that
T1_2 start
time’ and `T1_3 start time’ are adjusted as 16 and 0 respectively. “T1 rate 2
meter (T1_2)” counts starting from 16:00 and ceases at 00:00.
Meters->Imp. active
T1
1000.0
T1 rate 1
1000.0
T1 rate 2 T1 rate 3 T2
1000.0 1000.0 1000.0
kWh kWh
kWh kWh kWh
Settings->Setup->Energy
T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2 kWh
8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
Fig. 3-26 T1_2 StartTime
hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh
36
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active
“,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)
3.2.1.1.3.3 T1_3 StartTime
T1_3′ abbreviation refers to the third time slice of tariff 1 me er. T1_3 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate3” meter (the second time slice of T1 meter – T1_3) counts between T1_3 start time and T1_1 start time. E.g.: Assume that
T1_3 start
time’ and `T1_1 start time’ are adjusted as 0 and 8 respectively. “T1 rate 3
meter (T1_3)” counts starting from 16:00 and ceases at 00:00.
Meters->Imp. active
T1 T1 rate 1 T1 rate 2 T1 rate 3 T2
1000.0 1000.0 1000.0 1000.0 1000.0
kWh kWh kWh kWh kWh
Settings->Setup->Energy
T1_1 start time T1_2 start time
T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I.
T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2 kWh
8 16
0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
Fig. 3-27 T1_3 start time
hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh
NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active “,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)
If T1_1 and T1_2 have the same value, T1_1 and T1_3 counters count; If T1_1 and T1_3 have the same value T1_1 and T1_2 counters count; if T1_2 and T1_3 have the same value; T1_1 and T1_2 counters count, If T1_1, T1_2 and T1_3 have the same value, only T1_1 counter will count.
37
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.3.4 Start of day
Start of day can be adjusted between 0 – 23. (for Virtual Keyboard Refer to
3.1.4 E.g.).
3.2.1.1.3.5 Start of month
Start of month can be adjusted between 1 – 28. (for Virtual Keyboard Refer to
3.1.4 E.g.) The settings listed below (between 3.2.1.1.3.6 and 3.2.1.1.3.17 )
are used to synchronize the system electric meter and KLEA meter. Each of the
below items can be adjusted between 0.000 20000000000,0 (for Virtual Keyboard
Refer to 3.1.4 E.g.).
Klea meters calculate energy by multiplying with CTR and VTR values.User
should take this fact into account when entering the below intial energy
values.
3.2.1.1.3.6 T1 kWh
“Initial” value for meter of “Imp. Active =>T1” can be entered in this tab.
3.2.1.1.3.7 T1 kWh E
“Initial” value for meter of “Exp. Active=> T1” can be entered in this tab.
3.2.1.1.3.8 T1 kWh Imp. I.
“Initial” value for meter of “Reactive R1=>T1” can be entered in this tab.
3.2.1.1.3.9 T1 kWh Imp. C.
“Initial” value for meter of “Reactive R2=>T1” can be entered in this tab.
3.2.1.1.3.10 T1 kVArh Exp. I.
“Initial” value for meter of “Reactive R3=> T1” can be entered in this tab/
3.2.1.1.3.11 T1 kVArh Exp. C.
“Initial” value for meter of “Reactive R4=>T1” can be entered in this tab. 38
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.3.12 T2 kWh
“Initial” value for meter of ” Imp. Active=>T2″ can be entered in this tab.
3.2.1.1.3.13 T2 kWh E.
“Initial” value meter of ” Exp. active=>T2″ can be entered in this tab.
3.2.1.1.3.14 T2 kVArh Imp. I.
“Initial” value for meter of “Reactive R1=>T2” can be entered in this tab.
3.2.1.1.3.15 T2 kVArh Imp. C.
“Initial” value for meter of “Reactive R2=>T2” can be entered in this tab.
3.2.1.1.3.16 T2 kVArh Exp. I.
“Initial” value for meter of “Reactive R2=>T2” can be entered in this tab.
3.2.1.1.3.17 T2 kVArh Exp. C.
“Initial” value for meter of “Reactive R4=>T2” can be entered in this tab.
NOTE: “T1 rate1”, “T1 rate2” ve “T1 rate3” is made from “Settings => Setup =>
Energy” menu. These appointments should be made using Modebus communications
over the computer. Energy value that will be assigned, must be written to
corresponding modebus address. Related ModeBus addresses are given below. For
more information refer to “Table 4-4.
2032. modebus address:”Initial”energy value for meter of “Imp. active =>T1
rate1″can be entered. 2034. modebus address:”Initial”energy value for meter of
“Exp. active =>T1 rate1″can be entered.
2036.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR1=>T1rate1″canbeentered.
2038.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR2=>T1rate1″canbeentered.
2040.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR3=>T1rate1″canbeentered.
2042.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR4=>T1rate1″canbeentered. 2044. modebus address:”Initial”energy value
for meter of “Imp. active =>T1 rate2″can be entered. 2046. modebus
address:”Initial”energy value for meter of “Exp. active =>T1 rate2 can be
entered. 2048.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR1=>T1rate2″canbeentered.
2050.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR2=>T1rate2″canbeentered.
2052.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR3=>T1rate2″canbeentered.
39
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
2054.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR4=>T1rate2″canbeentered. 2056. modebus address:”Initial”energy value
for meter of “Imp. active =>T1 rate3″can be entered. 2058. modebus
address:”Initial”energy value for meter of “Exp. active =>T1 rate3 can be
entered. 2060.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR1=>T1rate3″canbeentered.
2062.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR2=>T1rate3″canbeentered.
2064.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR3=>T1rate3″canbeentered.
2066.modebusaddress:”Initial”energyvalueformeterof
“ReactiveR4=>T1rate3″canbeentered.
3.2.1.1.4 Digital Input Menu
Digital input menu consists of Input1 and Input2 menus. KLEA digital inputs
are used in order to activate Tariff 2 me er and/or to count a digital signal.
Settings Measure Meters Alarms Analysis
Setup
Network
Input1
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 Input2 . 0 A
Password
Digital input
0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion
5.0 A
Alarm
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-28 Digital Input Menu
Settings Measure Meters Alarms Analysis
Setup
Network
Input1
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 Input2
A
Input3
Password
Digital input Input4
0 . 0 5 . 0 RDVee2sfataurltt settings
DCiogmitamlVuonuitcIp2auttion
Input5 Input6
A
Alarm
Input7
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-29 Digital Input Menu (With IO option)
40
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.4.1 Input1 Menu
Input1 operates when DI1 and GND pins of KLEA are short circuited. Input1 menu has two settings:
· Mode · Delay
3.2.1.1.4.1.1 Mode
Mode options are as seen below (Fig. 3-30). Press up and down keys to scroll inside options. Press OK key to select the desired option.
Settings->Setup->Digital input->Input1
Mode Delay
Off 100
Off 2nd tariff
Counter
Fig. 3-30 Mode Selection
· Assume that for digital input 1, 2nd tariff’ is selected as the mode setting. Under this condition, when digital input 1 is short circuited (activated), tariff 1 meter will stop and tariff 2 me er will start to count. · Assume that for digital input 1,
Counter’ is selected as the mode setting.
Under this condition, each time DI1 and GND pins are short-circuited,
“Meters->Digital input-> Digital input1 counter” counts (Fig. 3-30).
Meters Alarms Analysis
Imp. active
0 . 0 EVx1p. active
Reactive R1
Reactive R2
0 . 0 RRVee2aaccttiivvee
R3 R4
Digital input
OVt3her
0.0
V I1 V I2 V I3
0.0 A
Meters->Digital input
Counter 1
0
Counter 2
0
0.0 A
0.0 A
1 23 V
I
1212
E
14:25
Fig. 3-31 Digital Input1 Counter
41
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.4.1.2 Delay
Digital input delay can be adjusted between 10 2000 milliseconds. In order for
2nd tariff’ or
Counter’ modes to be activated; DI1 and GND pins should be
short-circuited at least “delay” period of time. (for Virtual Keyboard Refer
to 3.1.4 E.g.).
Delay
100
msec
Fig. 3-32 Delay
E.g.:
Digital input : Input1
Mode
: Counter,
Delay
: 200 msec
When DI1 and GND pins are short-circuited for minimum 200 msec, `Input 1 Counter’ increments by 1.
E.g.:
Digital input : Input1
Mode
: Tariff
Delay
: 200 msec
In order for the Tariff 2 meter to be active, DI1 and GND pins should be short-circuited for minimum 200 msec. Tariff 2 me er will be active during the course of short circuit time.
DI1 and GND short circuit <200msec>
DI1 ve GND open circuit
DI1 and GND short circuit <100msec>
Time
tariff 1 counts
tariff 2 counts
Tariff 1 counts
Fig. 3-33 Tariff 1 or Tariff 2 ctivation
3.2.1.1.4.2 Input 2 Menu
Input 2 applications and settings are the same as Input1. Digital input2
operates with DI2 and GND pins.
42
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.4.3 Input 3 Menu (optional)
Input 3 is applicable to optional digital IO Klea models. Input 3 applications
and settings are the same as Input1. Digital input3 operates with DI3 and GND
pins.
3.2.1.1.4.4 Input 4 Menu (optional)
Input 4 is applicable to optional digital IO Klea models. Input 4 applications
and settings are the same as Input1. Digital input4 operates with DI4 and GND
pins.
3.2.1.1.4.5 Input 5 Menu (optional)
Input 5 is applicable to optional digital IO Klea models. Input 5 applications
and settings are the same as Input1. Digital input5 operates with DI5 and GND
pins.
3.2.1.1.4.6 Input 6 Menu (optional)
Input 6 is applicable to optional digital IO Klea models. Input 6 applications
and settings are the same as Input1. Digital input6 operates with DI6 and GND
pins.
3.2.1.1.4.7 Input 7 Menu (optional)
Input 7 is applicable to optional digital IO Klea models. Input 7 applications
and settings are the same as Input1. Digital input7 operates with DI7 and GND
pins.
3.2.1.1.5 Digital Output Menu
It comprises of Output1 and Output menus.
Settings Measure Meters Alarms Analysis
Setup
Network
Output1
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 Output2
A
Password
Digital input
0 . 0 RDVee2sfataurltt settings CDoigmitamlVuonuitcIp2auttion
5.0 A
Alarm
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-34 Digital Output Menu
43
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings Measure Meters Alarms Analysis
Setup
Network
Output11
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 Output2
A
Output3
Password
Digital input Output4
0 . 0 5 . 0 RDVee2sfataurltt settings
CDoigmitamlVuonuitcIp2auttion
Output5 Output6
A
Alarm
Output7
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-35 Digital Output Menu (optional digital I/O model
3.2.1.1.5.1 Output1 Menu
Output1 gives output from D01- and D01+ pins
Mode: Press up and down keys to navigate between digital outputs. Press OK on the desired output, and options seen in Fig. 3-36 will appear. Any of them can be assigned as output1 operating mode.
Mode setting has the following options.
· Off · T1 kWh · T1 kWh E. · T1 kVArh I. Ind. · T1 kVArh I. Cap. · T1 kVArh E. Ind. · T1 kVArh E. Cap. · T2 kWh · T2 kWh E. · T2 kVArh I. Ind. · T2 kVArh I. Cap. · T2 kVArh E. Ind. · T2 kVArh E. Cap. · Digital Input
44
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings->Setup->Digital output->Output1
Mode Energy Width Multiplier
1.000 100
Off
T1 kWh T1 kWh E.
1
T1 kVArh I. Ind.
T1 kVArh I. Cap.
T1 kVArh E. Ind.
T1 kVArh E. Cap.
T2 kWh
T2 kWh E.
T2 kVArh I. Ind.
T2 kVArh I. Cap.
T2 kVArh E. Ind.
Fig. 3-36 Output 1 Menu
Energy: When selected meter option(mode option) counts for the selected
“energy” value, Output1 generates a pulse (for Virtual Keyboard Refer to 3.1.4
E.g.).
Width: It can be adjusted between 50 2500 msec (for Virtual Keyboard Refer
to 3.1.4 E.g.).
Multiplier: Multiplier is of use only when “Output1->mode” is adjusted as
“Digital input”.
When”digital input1 counter” (Refer to Digital Input 3.2.3.2), reaches
the`multiplier’;”digital output1″ generates a pulse from DO1+ and DO1- pins.
It can be adjusted between 1 – 10000 (for Virtual Keyboard Refer to 3.1.4
E.g.).
Second example explains this implementation.
E.g.:
Assume the settings are as below,
Digital output : Output1
Mode
: T1 kWh
Energy
: 2
Width
: 100msec
Assume that, Tariff 1 import active previous value is 1.1kWh. When T1 kWh reaches to 3.1kWh, 5.1kWh, 7.1kWh etc. a pulse of 100msec will be generated at the outputs of DO1and DO1+.
E.g.:
Digital output : Output1
Mode
: Digital input
Energy
: When connection type is digital input, the Energy tab is not used.
Width
: 100msec
Multiplier :100
45
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Assume also that Digital input1 mode had been adjusted as”counter”. In this
case, when Counter1 reaches 100 or multiples of 100, a pulse of 100 msec will
be will be generated at the output pins DO1- and D01+. Assume that the digital
input 1 counter value was 35 before multiplier adjustment. Assume also that
operator adjusts `Multiplier’ as 100. Under these conditions, Output 1
generates a pulse when digital input 1 counter reaches the values 135, 235,
335, 435 and so on.
3.2.1.1.5.2 Output Menu
Output 2 applications and settings are the same as Output1. Output generates
pulse from DO2+ and DO2- pins.
3.2.1.1.5.3 Output3 Menu (optional)
Output 3 applications and settings are the same as Output1. Output3 generates
pulse from DO3+ and DO3- pins.
3.2.1.1.5.4 Output4 Menu (optional)
Output 4 applications and settings are the same as Output1. Output4 generates
pulse from DO4+ and DO4- pins.
3.2.1.1.5.5 Output5 Menu (optional)
Output 5 applications and settings are the same as Output1. Output5 generates
pulse from DO5+ and DO5- pins.
3.2.1.1.5.6 Output6 Menu (optional)
Output 6 applications and settings are the same as Output1. Output6 generates
pulse from DO6+ and DO6- pins.
3.2.1.1.5.7 Output7 Menu (optional)
Output 7 applications and settings are the same as Output1. Output7 generates
pulse from DO7+ and DO7- pins.
46
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.6 Analog Output Menu (Optional)
Settings Measure Meters Alarms Analysis
Setup
Network
Output11
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 Output2
A
Output3
Password
Digital input Output4
0 . 0 RDVee2sfataurltt settings DAnigaitlaolgVoouutIpt2puutt
5.0 A
Communication
2 2 0 . 0 V3
ACllaeramr V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-37 Analog Output Menu
KLEA has two different optional analog output models; 2 analog output and 4
analog output models.
Operator can adjust KLEA to give output from analog output channels for the
following parameters: voltage, current, active power, reactive power, apparent
power, frequency, phasephase voltages, neutral current, total current, total
active power, total reactive power and total apparent power pertaining to L1,
L2, L3 phases.
Analog output channels can be adjusted to generate signals as 0-5V, 0-10V,
-5-5V, -10- 10V, 0-20mA, 4-20mA. Analog output menu comprises of the following
submenus.
Output1 (available in 2 analog and 4 analog outputs models) Output (available
in 2 analog and 4 analog outputs models) Output3 (available only in 4 analog
outputs model) Output4 (available only in 4 analog outputs model)
3.2.1.1.6.1 Output1 Menu
Output1 menu comprises of the following submenus
· Input mode · Output conn. · Min. Value · Max. Value · Multiplier
47
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings->Setup->Analog output->Output1
Input mode Output conn. Min. value Max. value Multiplier
V1 (L-N) 0-5V 0.0 0.0 1
Fig. 3-38 Output1
3.2.1.1.6.1.1 Input mode
Analog output will generate a signal in accordance with the parameter selected
in Input mode tab. Analog output examples will clarify the application of
settings. Input mode options are as follows: V1(L-N) V2(L-N) V3(L-N) I1 I2 I3
P1 P2 P3 Q1 Q2 Q3 S1 S2 S3 F IN VLL12 VLL23 VLL31 I tot. P tot. Q tot. S tot.
48
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings->Setup->Analog output->Output1
Input mode Output conn. Min. value Max. value Multiplier
0V0.-105V(L-NVVV) 123
(L-N) (L-N) (L-N)
0.0 1
I1 I2
I3
P1
P2
P3
Q1
Q2
Q3
Fig. 3-39 Input mode
3.2.1.1.6.1.2 Output connection
Inside Output1 menu, press up and down keys to select (highlight) Output connection’ menu item. When
Output connection’ is selected, press OK key and
the options in Fig. 3-40 will appear on the screen. Press up and down keys to
select the desired option and press OK key to complete the setting.
Settings->Setup->Analog output->Output1
Input mode Output conn. Min. value Max. value Multiplier
V1 (L-N0)- 5V 0-5V -5 – 5V 0.0 0 – 10V 0.0 -10 – 10V 1 0 – 20mA
4 – 20mA
Fig. 3-40 Output connection
Assume that for analog output 1, output connection was selected as 0-5V (
Refer to Fig. 3.40). Then, operator should adjust the”analog output 1″dip
switch as seen in Fig. 3.41 (Vout1 -> ON ; Iout1 -> OFF). After the dip switch
adjustment, setting will be completed.
OFF ON
Fig. 3-41 Vout1 -> ON; Iout1 -> OFF
49
IOut4 VOut4 IOut3 VOut3 IOut2 VOut2 IOut1 VOut1
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Assume that for analog output 1, output connection was selected as 4-20 mA (refer to Fig. 3.40). Then, operator should adjust the “analog output 1” dip switch as seen in Fig. 3.42 (Vout1 -> OFF; Iout1 -> ON). After the dip switch adjustment, setting will be completed.
OFF ON
IOut4 VOut4 IOut3 VOut3 IOut2 VOut2 IOut1 VOut1
Fig. 3-42 Vout1 -> OFF; Iout1 -> ON
In order to obtain voltage output, Vout1 should be set to ON, and Iout1 should
be set to OFF. If both switches are ON or OFF at the same time, analog output
will not operate correctly. In order to obtain current output, Vout1 should be
set to OFF, and Iout1 should be set to ON. If both switches are ON or OFF at
the same time, analog output will not operate correctly.
If the setting of output connection and setting of the dip switch are
incompatible, related analog output will not operate correctly.
3.2.1.1.6.1.3 Min. value
The minimum value for the selected input mode. Refer to 3.2.1.1.6.1.5
Multiplier setting.
3.2.1.1.6.1.4 Max. value
The maximum value for the selected input mode Refer to 3.2.1.1.6.1.5
Multiplier setting.
If “Min. value” and “Max. value” are adjusted to be the same, then analog
output will not operate.
3.2.1.1.6.1.5 Multiplier
When `Multiplier’ is selected, press OK key and the options in Fig. 3-43 will
appear on the screen. Press up and down keys to select the desired option and
press OK key to complete the setting. Multiplier coefficie t options are as
follows: · 1 · Kilo (1000) · Mega (1000000)
50
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
For example, assume that 10000000W and 350000000W are required to be entered for min. and max. values. In this case, if operator selected Mega in multiplier tab, then it will be sufficie t to enter 10 and 350 for min. and max. values.
Settings->Setup->Analog output->Output1
Input mode Output conn. Min. value Max. value Multiplier
0V00..-1005V(L-N1KM) ieloga 1
Fig. 3-43 Multiplier
Klea can output 0 5V, -5 5V, 0 10V, -10 10V, 0 20mA and 0 20mA
range signals from AOX-GND pins. When the value of Input mode’ parameter falls below
Min. value’ with an amplitude less than 2.5%; or exceedsMax. value’ with an amplitude again less than 2.5%; output signal will linearly follow this change. For
Output conn.’ types whose low limit is zero, output
signal will not fall below zero; only high limit will change linearly up to
2.5% of its value. In summary, output signals from AOX-GND pins will operate
as follows:
0 5 V -5 5 V 0 10 V -10 10 V 0 20 mA 4 20 mA
0 5.125 V -5.125 5.125 V 0 10.25 V -10.25 10.25 V 0 20.5 mA 3.9 20.5 mA
(output signal low value will not fall below zero) (output signal low value will not fall below zero) (output signal low value will not fall below zero)
When the value of Input mode’ parameter falls below
Min. value’ with an
amplitude more than 2.5%; or exceeds`Max. value’with an amplitude again more
than 2.5%; output signal will change. In this case, output signals from AOX-
GND pins will operate as follows in order to indicate that there is a problem
in the electrical network:
for 0 5 V setting; AOX-GND signal amplitude will be for -5 5V setting;
AOX-GND signal amplitude will be for 0 10 V setting; AOX-GND signal
amplitude will be for -10 10 V setting; AOX-GND signal amplitude will be for
0 20 mA setting; AOX-GND signal amplitude will be for 4 20 mA setting;
AOX-GND signal amplitude will be
51
10 V 10 V 10.8 V 10.8 V 21.6 mA 21.6 mA
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
The amplitude of analog output signal on AO1-GND pins will be as calculated by the following formula.
AO1-GND
=[
AO1 con.highlimit-AO1 con.lowlimit (Max value-Min value) x Multip.
x (Meas. value-(Min
value x Multip.))]+
AO1 con. low
limit
E.g. 1 :
Assume that the following values have been assigned;
Input connection : V1(L-N) (phase-neutral voltage of phase 1)
Output connection : 0-5V
Min. value
: 100V
Max. value
: 200V
Multiplier
: 1
Then, when measure is KLEA V1(L-N)=120V, the result will be as follows,
AO1-GND
=[
5-0 100)x1
x
120-(100×1)
+ 0 = 1V)] olur ( 200- KLEA V1(L-N)=185V the result will be as follows,
AO1-GND
=[
5-0 100)x1
x
185-(100×1)
0
=
4.25V
olur.
(200-
E.g. 2 :
Assume that the following have been assigned;
Input connection : P tot.(total active power) Output connection: 4-20mA
Min. value
: 600W
Max. value
: 1000W
Multiplier
: 1
Then, when measure is KLEA P tot. = 732W, the result will be as follows,
AO1-GND
=[
20-4 (1000-600)
x]
x
(732-(600×1))]
4
=
5.28mA
When measure is KLEA V1(L-N)=992W, the result will be as follows,
AO1-GND =[ (22000–4100)x1x (992-(600×1)] + 4 = 19.68mA
E.g. 3 :
Assume that the following have been assigned;
Input connection : Q tot.(total reactive power) Output connection: -10 – 10V
Min. value
: 1400VAr
Max. value
: 1800VAr,
Multiplier
: kilo
52
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
When measure is KLEA S tot.=1485000VAr, the result will be as follows,
AO1-GND
=[
10-(-10) (1800-1400)x1000
x(1485000-(1400×1000)]
(-10)
=
-5.75V
When measure is KLEA V1(L-N)=1695000VA , the result will be as follows,
AO1-GND
=[
10-(-10) (1800-1400)x1000
x(1695000-(1400×1000)]
(-10)
=
4,75V
3.2.1.1.6.2 Output 2 Menu
Analog output 2 settings are the same as Output1. Analog output gives output
from AO2- GND pins.
3.2.1.1.6.3 Output 3 Menu
Analog output 3 settings are the same as Output1. Analog output gives output
from AO3- GND pins
3.2.1.1.6.4 Output 4 Menu
Output 4 Menu Settings ve kullanimi, Output 1 Menu ile aynidir. Analog Output
, AO4-GND üzerinden alinir.
3.2.1.1.7 Communication Menu
KLEA implements ModeBUS over serial line with RTU mode. In this menu, settings
related with Modebus RTU are accomplished.
Settings Measure Meters Alarms
Setup
Network
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
Password
Digital input
0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion
Alarm
V3 2 2 0 .C0lear V I3
Analysis
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
Fig. 3-44 Communication Menu
17:22
53
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.7.1 Baud Rate Menu
Inside Communication menu, press up and down keys to select (highlight) `Baud
rate’ menu item. Press OK key and baud rate options will appear on the screen
as seen in Figure 3-45. Scroll inside options by pressing up and down keys;
press OK key to select the desired value. Avaliable baud rates are: 2400,
4800, 9600, 19200, 38400, 57600 and 115200 bit/sec.
Settings->Setup->Communication
Baud rate Slave Id
38400 2400 4800 9600 19200 38400 57600 115200
3.2.1.1.7.2 Slave Id
Fig. 3-45 Setting Baud Rate
In this tab, operator can adjust the slave ID. (For Virtual Keyboard Refer to 3.1.4 E.g.)
Slave Id
1
Fig. 3-46 Slave Id
KLEA can operate in an RS-485 network having a maximum quantity of 247 units.
As a result, Slave Id’ can be adjusted between 1 and 247. 3.2.1.1.8 Alarm Menu Inside
Setup’ menu, when`Alarm’ is selected, press OK key and the options in
Figure 3-47 will appear on the screen. Press up and down keys to select the
desired option and press OK key to complete the setting.
Settings Measure Meters Alarms Analysis
Setup
Network
V(L-N)
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 V(L-L)
Current
A
Password
Digital input
P
0 . 0 5 . 0 RDVee2sfataurltt settings 220.0 5.0 V3
DCiogmitamlVuonuitcIp2auttion Alarm Clear
V I3
Q S CosØ PF IN F
A A
Harmonics V
Harmonics I
1 23 V
I
1 2 1 2 TEemp.
17:22
Fig. 3-47 Alarm Menu
54
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.8.1 V(L-N) Menu
Inside`Alarm’ menu, when V(L-N) is highlighted, press OK key and the following
page will appear on the screen.
Settings->Setup->Alarm->V(L-N)
Alarm relay
Off
Low limit
0.0
V
High limit
0.0
V
Delay
0
sec
Hysteresis
0.0
%
Fig. 3-48 V(L-N) Menu
Alarm relay :
This setting is merely used to energize or not to energize a relay, when an
alarm occurs. For alarm relay setting, following options are available:
Off : In case of V(L-N) alarm, none of the alarm relaysis energized Relay1 :
In case of V(L-N) alarm, relay 1 is energized Relay2 : In case of V(L-N)
alarm, relay 2 is energized
Press up and down keys to select the desired option and press OK key to
complete the setting.
Alarm relay
Off
Fig. 3-49 Alarm Relay Setup
In order to adjust Klea to issue V (L-N) alarms, operator should adjust low
limit and high limit values as described below. When V(L-N) of “any” of the
three phases exceeds “Low limit” or “High Limit”, Klea gives an alarm.
55
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Low Limit: Low limit value for the V(L-N) alarm. (For Virtual Keyboard Refer to 3.1.4 E.g.). In order to set an alarm for V(L-N), operator should enter a low limit value smaller than the high limit value. When low limit and high limit values are entered to be the same, V(L-N) alarm will be deactivated (no alarm will be set).
High Limit:
High limit value for the V(L-N) alarm. (For Virtual Keyboard Refer to 3.1.4
E.g.). ). In order to set an alarm for V(L-N), operator should enter a high
limit value larger than the low limit value. When low limit and high limit
values are entered to be the same, V(L-N) alarm will be deactivated (no alarm
will be set).
Delay:
When the related alarm parameter exceeds the “Low limit” or “High Limit”
value; before declaring an alarm, Klea waits for “delay time”. Similarly, when
the related alarm parameter enters into the limit values, Klea waits for
“delay time”, before cancelling the alarm. “Delay”
can be adjusted between 0 600 sec. (For Virtual Keyboard Refer to 3.1.4 E.g.).
Delay
0
sec
Fig. 3-50 Alarm Time Setting
Hysteresis: It is the tolerance entered as percentage for high and low limits
. Hysteresis can be adjusted between 0 20 (For Virtual Keyboard Refer to 3.1.4
E.g.). Examine following example and Fig. 3-52 )
Hysteresis
0.0
%
Fig. 3-51 Hysteresis Setting
E.g. For the following figure(`Delay’ is adjusted to be zero); At point A, alarm occurs At point B, alarm disappears At point C, alarm occurs At point D, alarm disappears
56
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Amplitude
High limit Hysteresis %
Hysteresis %
B
Low limit
A
C D Waveform
Fig. 3-52 Alarm Example
Time
3.2.1.1.8.2 V(L-L) Menu
Alarm for phase-to-phase voltages is adjusted in this submenu. V(L-L) settings are the same as V(L-N). Low and high limit values can be adjusted between 0 2600000).
3.2.1.1.8.3 Current Menu
Alarm for current is adjusted in this submenu. Current settings are the same as V(L-N). Low and high limit values can be adjusted between 0 30000).
3.2.1.1.8.4 P Menu
Alarm for active power is adjusted in this submenu. P settings are the same as V(L-N). Low and high limit values can be adjusted between: -100000000000 10000000000)
3.2.1.1.8.5 Q Menu
Alarm for reactive power is adjusted in this submenu. Q settings are the same as V(L-N). Low and high limit values can be adjusted between: -10000000000 10000000000).
3.2.1.1.8.6 S Menu
Alarm for apparent power is adjusted in this submenu. S settings are the same as V(L-N). Low and high limit values can be adjusted between: 0.0 10000000000).
3.2.1.1.8.7 CosØ Menu
Alarm for cosØ is adjusted in this submenu. cosØ settings are the same as
V(L-N). Low and high limit values can be adjusted between: 0 1).
57
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.1.1.8.8 PF Menu
Alarm for power factor is adjusted in this submenu. Power factor settings are
the same as V(L-N). Low and high limit values can be adjusted between: 0 1.
3.2.1.1.8.9 IN Menu
Alarm for neutral current is adjusted in this submenu. Neutral current
settings are the same as V(L-N). Low and high limit values can be adjusted
between: 0 90000
3.2.1.1.8.10 F Menu
Alarm for frequency is adjusted in this submenu. Frequency settings are the
same as V(L-N). Low and high limit values can be adjusted between: 35 70.
3.2.1.1.8.11 Temp. Menu
Alarm for temperature is adjusted in this submenu. Temperature settings are
the same as V(L-N). Low and high limit values can be adjusted between: -20 80.
When the low and high limit values are entered the same, KLEA will not issue an alarm.
Settings->Setup->Alarm->Current
Alarm relay
Relay1
Low limit
0.0
A
High limit
0.0
A
Delay
0.0
sec
Hysteresis
0.0
%
Fig. 3-53 Setting for No Alarm
When operator enters a low limit value larger than the high limit, “Invalid
limits. Please check.” message appears on the screen.
58
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings->Setup->Alarm->Current
Alarm relay
Relay1
Low limit
0.0
A
High limit
0.0
A
Delay
0.0
sec
Hysteresis
0.0
%
Invalid limits! Please check.
X
OK
Fig. 3-54 Invalid Limits message
3.2.1.1.8.12 Harmonics V Menu
Inside `Alarm’ menu, when Harmonics V is highlighted, press OK key and the
following page will appear on the screen.
Settings->Setup->Alarm->Harmonics V
Alarm relay
Off
THDV hi limit
0.0
%
V3 hi limit
0.0
%
V5 hi limit
0.0
%
V7 hi limit
0.0
%
V9 hi limit
0.0
%
V11 hi limit
0.0
%
V13 hi limit
0.0
%
V15 hi limit
0.0
%
V17 hi limit
0.0
%
V19 hi limit
0.0
%
V21 hi limit
0.0
%
Delay
60
sec
Fig. 3-55 Harmonics Menu
Alarm relay:
Refer to 3.2.1.1.8.1 V(L-N) – Menu – Alarm relay setting.
THDV High Limit:
High limit value for total harmonic distortion – voltage alarm (For Virtual
Keyboard Refer to 3.1.4 E.g.). In order to set an alarm for THDV, operator
should enter a high limit value larger than zero. When high limit is entered
as zero, THDV alarm will be deactivated (no alarm will be set). It can be
adjusted between 0 100.
59
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
THDV hi limit
0.0
%
Fig. 3-56 THDV High Limit Setting
V3 — V21 high limit:
“3.”,”5.”…”21.”harmonic distortion high limit values are entered. In order to
set an alarm for V3, V5 V21 operator should enter a high limit value larger
than zero. When high limit is entered as zero (0.0), V3, V5 V21 alarm(s)
will be deactivated (no alarm will be set). High limits can be adjusted
between . 0 100 For Virtual Keyboard Refer to 3.1.4 E.g.).
V3 hi limit
0.0
%
V21 hi limit
0.0
%
Delay:
Fig. 3-57 V3 – V21 Harmonic High Limit
See 3.2.1.1.8.1 V(L-N) Menu – Delay setting.
3.2.1.1.8.13 Harmonics I Menu
“Harmonics I” settings are the same as the “Harmonics V” alarm settings.
3.2.1.1.9 Clear Menu
In this tab, operator can clear demand values, energy (tariff meter) values
and DI (Digital Input) counters. “All” option clears all, namely, demand,
energy and DI counter values. When “Clear” is highlighted, press OK key and
the following page will appear on the screen.
Settings Measure Meters Alarms Analysis
Setup
Network
Energy
0 . 0 DVa1te / Time
System info
DeviceV I1 Energy
5 . 0 Demand
A
DI meters
Password
Digital input
All
0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion
5.0 A
Alarm
V3 2 2 0 .C0lear V I3
5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-58 Clear Menu
60
Are you sure?
X
OK
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Scroll inside options by pressing up and down keys; press OK key to clear the desired option. When OK key is pressed,”Are you sure?” message will appear on the screen. Press again OK key to clear the parameter; press X key to exit with no change in the selected parameter.
Assume that “Meters=> Imp. Active=> T1″ Import active power) submenu is as shown below.
Meters->Imp. active
T1 T1 rate 1 T1 rate 2 T1 rate 3 T2
267500.1 0.0 0.0 0.0 0.0
kWh kWh kWh kWh kWh
Fig. 3-59 Before Clear
When the clear process is completed, the submenu”Meters->T1->Imp. Active” will
be as shown in the Fig. 3-60.
Meters->Imp. active
T1
0.0
T1 rate 1
0.0
T1 rate 2
0.0
T1 rate 3
0.0
T2
0.0
kWh kWh kWh kWh kWh
Fig. 3-60 After Clear
After the clear process, for index parameters, a value different than zero may
be observed. This value, is the initial value entered by the operator.
61
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Assume that, initial value of “Setup->Energy->T1 kWh” was entered as 7500 kWh. In this case, after the clear process is completed, “Meters->Imp. active->T1 ” value will be 7500kWh. (Refer to Fig. 3.61).
Meters->Imp. active
T1 T1 rate 1 T1 rate 2 T1 rate 3 T2
7500. 0 0.0 0.0 0.0 0.0
kWh kWh kWh kWh kWh
Fig. 3-61 Initial Value, After Clear Process
3.2.1.2 Date / Time Menu
In the following menu Date / Time setting is made. (For date/time setting
Refer to 3.1.4 E.g.).
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
Settings->Date / Time
Time Date
17 : 22 : 17 07 January 2013
1 23 V
I
1212
E
17:22
Fig. 3-62 Date / Time Menu
3.2.1.3 System Info Menu
This menu is for information no setting is accomplished.
62
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
17:22
KLEMSAN
KLEA – Network Analyzer
Model
606130
Serial number
2555953
Language
English
Firmware version
1.00
PCB version
1.1.e0
Build date
29 October 2012
Temperature
26.5 °C
Battery voltage
3.30 V
Fig. 3-63 System Info
Temperature and battery voltage values can be reached via RS485.
3.2.1.4 Password Menu
If operator have not entered password; only Date/Time, System Info and
Password tabs are active inside settings menu. In order for the remaining tabs
to be activated, operator should login via `Password’ tab.
If the entered password is correct, “Login success” message appears on the
screen. Otherwise, “Password mismatch” message will be displayed on the
screen. (For Virtual Keyboard Refer to 3.1.4 E.g.).
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
Login required! X
1 23 V
I
1212
E
17:22
Fig. 3-64 Password
3.2.1.5 Restart Menu
Login success. Password mismatch.
OK
X
If OK key is pressed on the restart tab, “Are you sure?” message appears on the screen. Press again OK key to restart Klea.
63
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
17:22
Are you sure?
X
OK
3.2.1.6 Default Settings
Fig. 3-65 Restart
This menu is used to return to factory default settings. All settings except date and time return to the factory defaults. NOTE: Tariff meter indexes are not assumed to be a setting. As a result, index values will not be cleared via this menu.
Settings Measure Meters Alarms
Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings
V I1 V I2
Analysis
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
Default settings will be assigned. Are you sure?
X
OK
1 23 V
I
1212
E
17:22
Fig. 3-66 Default Settings Command
3.2.2 Measure Menu
The following submenus are included under the measure menu. Operator can
navigate inside measure menu by up and down keys. When the desired menu item
is highlighted, press OK key to select. Following menu items are available:
· Instantaneous · Demand · Phasor diagram · Signals · Harmonics
64
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Measure Meters Alarms Analysis
Instantaneous
0 . 0 DVe1mand
Phasor diagram
Signals
2 HVa2rmonics 2 0 . 0
V I1 V I2
5.0 A 5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
Fig. 3-67 Measure Menu
3.2.2.1 Instantaneous Menu
17:22
This menu includes instantaneous values. If OK is pressed on this tab, the following page appears on the screen. Operator can scroll inside Instantaneous values by pressing right and left keys.
Measure->Instantaneous->V L-N
V1 220.0
V
V2 220.0
V
V3 220.0
V
Vo 220.0
V
Powers V L-N V L-L
Fig. 3-68 Instantaneous Menu
· Line-to-neutral V (L-N) voltage for each phase and their average · Line-to-
line V(L-L) voltage for each phase and their average · Phase currents (I) and
their sum · Neutral current (IN) · CosØ for each phase and CosØ of system ·
Power factor (PF) for each phase and power factor (PF) of system · Active
power (P) for each phase and their sum · Reactive power (Q) for each phase and
their sum · Apparent power (S) for each phase and their sum · Frequency (F)
for each phase · THDV values for each phase and their sum · THDI values for
each phase and their sum · Total powers
65
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
If “3phase 3 wire” is selected as connection type, “VL-N” title in
instantaneous menu will be replaced with “V”.
In Measure-Instantaneous-P(active power) page; if active power value(of any
phase) is positive (a “+” sign after the number), that phase consumes power,
if active power value(of any phase) is negative (a “-” sign after the number),
that phase generates power. The above phenomenon also applies for total P
(active power) value.
When Klea is mounted on a panel which consumes power, the values in
MeasureInstantaneous-P page should be positive(+). When Klea is mounted on a
panel which generates power, the values in Measure-Instantaneous-P page should
be negative(-). Otherwise, K-L leads of the current should be cross connected.
Measure ->Instantaneous ->P
P1 1100.0
W +
P2 1100.0
W +
P3 1100.0
W +
Pt 3300.0
W +
PF
P
Q
Meters->Imp. active
T1 T1 rate 1 T1 rate 2 T1 rate 3 T2
267500.1 0.0 0.0 0.0 0.0
kWh kWh kWh kWh kWh
Fig. 3-69 Connecting the K-L ends of Current Correctly
3.2.2.2 Demand Menu
Duringdemandperiod, Klea, calculatesaveragesforcurrent, active, reactive
andapparent powers for three phases. Maximum of these averages are stored as
the demand value with a corresponding time stamp.
Measure Meters Alarms Analysis
Instantaneous
0 . 0 Demand
Phasor diagram Signals
2 Harmonics 2 0 . 0
V I1 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
Fig. 3-70 Demand Menu
17:22
66
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
E.g.: The following graph shows the averages of current signals that are
calculated/measured during the 15 minutes (demand period=15) and demand value.
Amplitude
Waveform
15 minutes
15 minutes
15 minutes
average value=3 amps average value=5 amps average value=4 amps
demand=3A
demand=5A
demand=5A
*demand period=15 minutes Fig. 3-71 Demand Example
Time (min)
3.2.2.2.1 Current Month Menu
This menu displays demand values of current, active, reactive and apparent
power of three phases and their totals for the current (present) month.
Measure Meters Alarms Analysis
Instantaneous Curr. month
0 . 0 Demand
Phasor diagram
1 2
mmoonnVtthhsaIag1goo
Signals
3 months ago
2 Harmonics 2 0 . 0 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
Measure Meters Alarms Analysis
Instantaneous Curr. month
0 . 0 Demand
Phasor diagram
1 2
mmoonnVtthhsaIag1goo
Signals
3 months ago
2 Harmonics 2 0 . 0 V I2
Current
0 . 0 Act. power
Rea. power
A
App. power
5.0 A
V3 2 2 0 . 0 V I3
5.0 A
1 23 V
I
1212
E
17:22
1 23 V
I
1212
E
17:22
Fig. 3-72 Current Month Menu
“Start of day” and “start of month” settings are adjusted in “Settings->Setup->Energy” menu. “Start of day” and “start of month” are important for “Curr. Month”, “1 month ago”, “2 months ago” and “3 months ago” submenus.
67
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
E.g.: Assume that start of day is “8”, and start of month is “26”; When time is 08.00 on 26th day of the month;
“Current month” values will be assigned as “1 month ago” values will be assigned as “2 months ago” values will be assigned as
“1 month ago” values, “2 months ago” values, “3 months ago” values.
And new values will be saved in “current month” menu.
Settings->Setup->Energy
T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E T1 kVARh Imp. I. T1 kVARh Imp. C. T1 kVARh Exp. I. T1 kVARh Exp. C. T2 kWh
8 16 0 8 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh
3.2.2.2.1.1 Current Menu
Fig. 3-73 Example of Current Month Menu
This menu shows demand values of currents of each phase and the demand value for the sum of phase currents. Date and time information for demand values can be seen on the screen.
E.g.:
Measure Meters Alarms Analysis
Instantaneous Curr. month
DVe1mand
1 monVth aIg1o
Phasor diagram 2 month ago
Signals
3 month ago
2 Harmonics 2 0 . 0 V I2
Current
0 . 0 Act. power
Rea. power
A
App. power
5.0 A
V3 2 2 0 . 0 V I3
5.0 A
Measure->Demand->Curr month ->Current
Phase1 Phase2 Phase3 Toplam
5.0
A
02:44:59 – 10/10/12
5.1
A
13:29:59 – 11/10/12
4.9
A
14:29:59 – 09/10/12
15.6
A
09:14:59 – 12/10/12
1 23 V
I
1212
E
17:22
Fig. 3-74 Current Menu
Assume that demand period is entered as 15 minutes. Also assume that the current (present) month’s`current demand’ and date are: Phase1 5.0 A 02:44:59 – 10/10/12.
68
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
This means: On October 10, 2012, demand value of phase1 current in the time interval 02:29:59 02:44:59, is 5.0 A.
In order for KLEA to keep demand values for “1 month ago”, “2 months ago” and “3 months ago”; demand period should be set as 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60 min (common divisors of 60). Otherwise, “1 month ago”, “2 months ago” and “3 months ago” demand values will not be stored.
E.g.:
When the system clock is 15:07:00, assume that demand period is adjusted as 15
minutes. Sequentially, demand periods will be as follows:
05:07:00 – 15:14:59 = The 1st demand period 15:14:59 – 15:29:59 = The 2nd
demand period 15:29:59 – 15:44:59 = The 3rd demand period 15:44:59 – 15:59:59
= The 4th demand period 15:59:59 – 16:14:59 = The 5th demand period
3.2.2.2.1.2 Active power Menu
The demand values for active power are as explained in the “Demand->Current
Month->Current” submenu.
3.2.2.2.1.3 Reactive power menu
The demand values on the reactive power are as explained in the
“Demand->Current Month->Current” submenu.
3.2.2.2.1.4 Apparent power menu
The demand values on the apparent power are as explained in the
“Demand->Current Month->Current” submenu.
3.2.2.2.2 1 month Ago Menu
The demand values on the 1 month ago menu are as explained in the
“Demand->Current Month” submenu.
69
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.2.2.3 2 Months Ago Menu
The demand values on the 2 months ago menu are as explained in the “Demand->Current Month” submenu.
3.2.2.2.4 3 Months Ago Menu
The demand values on the 3 months ago menu are as explained in the
“Demand>Current Month” submenu.
3.2.2.3 Phasor Diagram Menu
In phasor diagram menu page, at the right of the phasor diagram, following
information is listed: · phase voltages (V1, V2, V3) · phase currents (I1, I2,
I3) · V1-V2, V2-V3 and V3-V1 phase difference angles · V1-I1, V2-I2 and V3-I3
phase difference angles
Within the phasor diagram, currents are drawn with gray lines, and voltages
are drawn with black lines. Within the phasor diagram, same size circles have
been added to the ends of lines belonging to the same phase. Thus, it will be
easy to follow currents and voltages of a phase.
Measure Meters Alarms Analysis
Instantaneous
1 5 0 . 1 Demand
Phasor diagram Signals
1 HVa2rmonics 5 0 . 2
V I1 V I2
3.0 A 3.0 A
V3 1 5 0 . 0 V I3
3.0 A
1 23 V
I
1212
E
17:22
Measure->Phasor diagram
V1
150.1 V
V2
150.2 V
V3
150.0 V
I1
3.0
A
I2
3.0
A
I3
3.0
A
V1-V2 120.9
V2-V3 119.6
V3-V1 119.5
V1-I1 29.4
V2-I2 29.3
V3-I3 29.7
Fig. 3-75 Phasor Diagram Menu
3.2.2.4 Signals Menu
In this menu, current and voltage waveforms are shown. At the right hand side of the waveforms, following information is listed:
· Voltage and current values of phases · Instantaneous frequency value · Phase difference between current and voltage
Current signal is in gray, and voltage is in black color. Operator can scroll inside signals menu by pressing left and right keys.
70
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Measure Meters Alarms Analysis
Instantaneous
0 . 0 Demand
Phasor diagram Signals
1 Harmonics 5 0 . 0
V I1 V I2
3.0 A 3.0 A
Measure->Signals->V2-I2
V3 1 5 0 . 0 V I3
3.0 A
1 23 V
I
1212
E
17:22
V1-I1 V2-I2
V3-I3
150.0V 3.0A
50.0Hz 30.0°
Fig. 3-76 Signals Menu
3.2.2.5 Harmonics Menu
KLEA measures/calculates current and voltage harmonics up to 51st harmonic. Current and voltage harmonics can be monitored in table and in graph format.
Measure Meters Alarms Analysis
Instantaneous
0 . 0 Demand
Phasor diagram Signals
0 . 0 Harmonics
V I1 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
Fig. 3-77 Harmonics Menu
17:22
3.2.2.5.1 Table Menu
Current and voltage harmonics of each phase are displayed in a table format (Refer to Fig. 3-78). Operator can scroll inside table menu by pressing right and left keys. There are 6 table pages: V1, V2, V3, I1, I2, I3.
Measure->Harmonics->V1 %
1
2
3
4
5
1-5
99.01 0.00 1.02 0.00 0.05
6-10
0.00 2.10 0.00 3.30 0.00
11-15 5.70 0.00 0.75 0.00 0.00
16-20 0.00 0.00 0.00 0.00 0.00
21-25 0.00 0.00 0.00 0.00 0.00
26-30 0.00 0.00 0.00 0.00 0.00
31-35 0.00 0.00 0.00 0.00 0.00
36-40 0.00 0.00 0.00 0.00 0.00
41-45 0.00 0.00 0.00 0.00 0.00
46-50 0.00 0.00 0.00 0.00 0.00
I3 %
V1 % V2 %
Fig. 3-78 Harmonics in Table Format
71
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.2.5.2 Graph Menu
Current and voltage harmonics of each phase are displayed graphically (Refer
to Fig. 3-78). Operator can scroll inside graph menu by pressing right and
left keys. There are 6 graph pages: V1, V2, V3, I1, I2, I3.
Measure->Harmonics->V1 %
20 % 15 % 10 %
5 %
1
11
21
31
41
51
I3 %
V1 % V2 %
Fig. 3-79 Harmonics in Graphical Format
3.2.3 Meters Menu
In this menu, the energy values of Tariff 1 and Tariff 2 me ers are displayed:
· Imp. active · Exp. active · Reactive R1 · Reactive R2 · Reactive R3 ·
Reactive R4 · Digital input · Other
When an energy meter reaches the value “50000000.0 Mega”, it will start to
count from “0.0”.
3.2.3.1 Imp. Active Menu
Imp. active meter consist of ” T1″ , “T1 Rate1” , “T1 Rate2” , “T1 Rate3” and
“T2” energy values.
72
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Meters Alarms Analysis
Imp.active
0 . 0 Exp. active
Reactive R1
Reactive R2
0 . 0 Reactive R3
Reactive R4
Digital input
OVt3her
0.0
V I1 V I2 V I3
0.0 A 0.0 A 0.0 A
1 23 V
I
1212
E
Fig. 3-80 Imp. Active Menu
14:31
3.2.3.1.1 T1 Tab.
Import active energy values that belongs T1 are displayed as seen in the following figure:
Meters->Imp. active
T1 T1 rate1 T1 rate2 T1 rate3 T2
302500.0 99250.0 98350.0 104900.0 3506.0
kWh kWh kWh kWh kWh
3.2.3.1.2 T1 Rate1 Tab.
Fig. 3-81 Imp. Active Energy Page
T1 Rate1 meter that belongs to T1, counts between T1_1 start time and T1_2 start time. Refer to: 3.2.1.1.3.1 and 3.2.1.1.3.2 for “T1_1 start time” and “T1_2 start time”settings.
73
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Meters->Imp. active
T1 T1 rate1 T1 rate2 T1 rate3 T2
302500.0 99250.0 98350.0 104900.0 3506.0
kWh kWh kWh kWh kWh
Fig. 3-82 T1 rate1 import active energy
3.2.3.1.3 T1 Rate2 Tab.
T1 Rate2 meter that belongs to T1, counts between T1_2 start time and T1_3
start time. Refer to: 3.2.1.1.3.2 and 3.2.1.1.3.3 for “T1_2 start time” and
“T1_3 start time”settings.
Meters->Imp. active
T1 T1 rate1 T1 rate2 T1 rate3 T2
302500.0 99250.0 98350.0 104900.0 3506.0
kWh kWh kWh kWh kWh
Fig. 3-83 T1 rate2 import active energy
3.2.3.1.4 T1 Rate3 Tab.
T1 Rate3 meter that belongs to T1, counts between T1_3 start time and T1_1
start time. Refer to: 3.2.1.1.3.3 and 3.2.1.1.3.1 for “T1_3 start time” and
“T1_1 start time”settings.
74
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Meters->Imp. active
T1 T1 rate1 T1 rate2 T1 rate3 T2
302500.0 99250.0 98350.0 104900.0 3506.0
kWh kWh kWh kWh kWh
3.2.3.1.5 T2 Tab.
Fig. 3-84 T1 rate3 import active energy
Import active energy values that belongs T2 are displayed as seen in the following figure:
Meters->Imp. active
T1 T1 rate1 T1 rate2 T1 rate3 T2
302500.0 99250.0 98350.0 104900.0 3506.0
kWh kWh kWh kWh kWh
Fig. 3-85 Tariff 2 impo t active energy
While Tariff 2 me er is active; Tariff 1, T1 rate1, T1 rate2, T1 rate3 meters
are not active. (mutually exclusive). In order for Tariff 2 o be active; 1-)
“T2” mode should be selected in “digital input1” and/or “digital input2” menu,
2-) DI and GND pins of the selected input should be short-circuited. (Refer
to3.2.1.1.4 Digital input) If `Tariff 2 mode is “NOT” SELECTED in the digital
input menu, even though the related digital input pins are short-circuited,
Tariff 2 will not be a tive – Tariff meter continues to operate.
75
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.3.2 Digital Input Menu
In this menu, counters belonging to digital inputs are displayed. Refer to 3.2.1.1.4 Digital input to adjust a digital input as a counter.
When DI1 and GND pins are short-circuited for at least delay ( (Refer to 3.2.1.1.4.1.2 Delay) time, “digital input1 counter” value increments by “1”.
When DI2 and GND pins are short-circuited for at least delay (Refer to 3.2.1.1.4.1.2 Delay) time, “digital input2 counter” value increments by “1”.
Meters->Digital input
Counter 1
4
Counter 2
2
Counter 3
0
Counter 4
0
Counter 5
0
Counter 6
0
Counter 7
0
Fig. 3-86 Digital Input Menu(Dijital IO opsiyonlu model)
KLEA base model has2; optional digital IO model has 7 counters.
3.2.3.3 Others Menu
In this menu, consist of on hour counter, run hour counter and power
interruption counter. Only run hour counter can be deleted by users.
3.2.4 Alarms Menu
In this menu, alarms can be monitored. Alarms menu consists of Phase1′,
Phase2′, Phase3′ and
Other’ submenus.
In Klea ModeBUS table, 50 alarm statuses can be saved (Refer to Table 4.3). If
the number of alarm statuses exceeds 50; 51st alarm is overwritten on the
first alarm. An alarm status consists of the below information:
76
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Alarm Time Stamp:
Alarm time, 32 bit integer
Alarm Definition:
Alarm flag bit numbe . Refer to the example below
Alarm State:
Alarm ON or alarm OFF state. Alarm ON and alarm OFF conditions are both
considered as records. As a result, both conditions are saved in ModeBUS table
as different alarm statuses. 1 -> Alarm ON 0 -> Alarm OFF
Alarm Value:
Value of the related alarm parameter
E.g.: Assume that, 100 VAC is assigned as low limit for V(L-N) (for phase1,
phase2 and phase3 V L-N voltages) and again assume that phase3 voltage falls
below 100VAC in the system. In such a case,
Alarm Definition; is the bitwise index number inside the alarm flags (4.5.1.1
Alarm flags variable. That is, for the above situation, “alarm definition
value” will be 3. Shortly, alarm definition value can be used as an index in
alarm flag variable to reach the explanation for that alarm. Besides, this
way, operator will have the opportunity to match the alarm with the alarm fla
.
77
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Alarms Analysis
Phase 1
Phase 2 Phase 3
0.0
Other
V2 220.0
V I1 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
Fig. 3-87 Alarms Menu
17:22
3.2.4.1 Phase1 Menu
In Phase1 menu, phase1 alarm statuses are displayed. “Normal” No alarm “Alarm”
Alarm
Alarms->Phase1
V
I P Q S CosØ PF V harmonics THDV I harmonics THDI F
Alarm
Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal
Fig. 3-88 Phase1 Menu
In Phase1 menu, following alarm statuses are monitored. · V (phase-neutral
voltage) · I (current) · P (active power) · Q (reactive power) · S (apparent
power) · cos Ø · PF (power factor) · V harmonics (any of 3., 5., – 21.
harmonic alarm statuses ORed) · THDV (total harmonic distortion in voltage) ·
I harmonics (any of 3., 5., – 21. harmonic alarm statuses ORed) · THDI (total
harmonic distortion in current)
78
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.4.2 Phase2 Menu
“Phase2” menu consists of the same items as “Phase1” menu. Please refer to
3.2.4.1 Phase1 menu for details.
3.2.4.3 Phase3 Menu
“Phase3” menu consists of the same items as “Phase1” menu. Please refer to
3.2.4.1 Phase1 menu for details.
3.2.4.4 Other Menu
In “Other” menu, explanations are the same as in Phase1 menu.
Alarms->Other
VLL12 VLL23 VLL31 IN Temperature Battary
Normal
Normal Normal Alarm Normal Normal
Fig. 3-89 Other Menu
In “Other” menu, following alarm statuses are monitored: · VLL12
(phase1-phase2 voltage) · VLL23 (phase2-phase3 voltage) · VLL31 (phase3-phase1
voltage) · IN (neutral current) · Temperature · Battery When the battery
voltage falls below 1.9 V value, Klea issues Battery alarm. When Klea issues
battery alarm, contact your local authorized dealer (or the nearest authorized
dealer).
3.2.5 Analysis Menu
It consists of submenus shown in Fig. 3-90. Analysis menu parameters can also
be reached from ModeBUS (Refer to 4.5.3 Archive Records).
79
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
Analysis
Minimum
2 2 0 . 0 MV1aximum
Average
V I1
V2 2 2 0 . 0 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
Fig. 3-90 Analysis Menu
17:22
Analysis menu parameters are not stored in permanent memory. As a result, all of analysis menu parameters will be cleared when Klea is turned-off.
3.2.5.1 Minimum Menu
It consists of hourly, daily and monthly submenus.
Analysis
Minimum
Hourly
2 2 0 . 0 MV1aximum
Average
Daily V I1 Monthly
V2 2 2 0 . 0 V I2
V3 2 2 0 . 0 V I3
5.0 A 5.0 A 5.0 A
1 23 V
I
1212
E
17:22
Fig. 3-91 Minimum Menu
3.2.5.1.1 Hourly Menu
This menu displays the minimum”instantaneous” values measured/calculated from
the beginning of current hour up to present time.
Analysis
Minimum
Hourly
2 2 0 . 0 MV1aximum
Average
Daily V I1 Monthly
V2 2 2 0 . 0 V I2
V3 2 2 0 . 0 V I3
Phase1
5 . 0 Phase2
A
Phase3
Other
5.0 A
5.0 A
1 23 V
I
1212
E
Fig. 3-92 Hourly Menu
80
17:22
4 Quadrant
Energy Analyzer
SECTION 3 MENUS
3.2.5.1.1.1 Phase1 Menu
Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S),
cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.2 Phase2 Menu
Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S),
cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.3 Phase3 Menu
Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S),
cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.4 Other
VLL12(phase1-phase2 voltage), VLL23(phase2- phase3 voltage),
VLL31(phase3phase1 voltage).
3.2.5.1.2 Daily Menu
This menu displays the minimum instantaneous values measured/calculated from
start of day (Refer to 3.2.1.1.3.4) up to present time. Its submenus are the
same as “Hourly menu”.
3.2.5.1.3 Monthly Menu
This menu displays the minimum instantaneous values measured/calculated from
start of month (Refer to 3.2.1.1.3.5) and start of day Refer to 3.2.1.1.3.4),
up to present time. Its submenus are the same as “Hourly menu”.
3.2.5.2 Maximum Menu
Submenus and explanations of”Maximum”menu are the same as”Minimum”menu. The
values measured in the “Maximum” menu are also “instantaneous” maximum values.
3.2.5.3 Average Menu
Submenus and explanations of “Maximum” menu are the same as “Minimum” menu. In
“Average” menu, hourly, daily and monthly average values are displayed.
81
4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
82
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
BÖLÜM 4 MODBUS PROTOCOL
4.1 RS485 Wiring Diagram
RS485 WIRING DIAGRAM
120
120
Terminating resistor
Any device
Terminating resistor
Fig. 4-1 RS485 Wiring Diagram
4.2 Computer Connection
KLEA can communicate with PCs via USB-RS85 or RS232-RS485 converters.
PC
USB-RS485 or RS232-RS485
converter
Fig. 4-2 Connection of KLEA to a PC
4.3 Message Format and Data Types of ModeBUS-RTU Protocol
KLEA implements modebus RTU protocol. Modebus RTU message format is as follows
Tablo 4-1 Message Format
Start 3.5 byte
Address 1 byte
Function 1 byte
Data 0-252 byte
CRC 2 byte
End 3.5 byte
83
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
There should be a time gap, which is at least 3.5 characters wide, between RTU messages.
For instance, when client device requests any information, server device should reply after at least a 3.5 character wide time gap. Following the response of the server, client device should wait 3.5 characters long period, before requesting information again.
Data types used in KLEA are as follows
Tablo 4-2 int (32 bit) data type
b31 (Bit 31) MSB (Most Significant Bit)
———————————————————————-
b0 (Bit 0) LSB (Least Significant Bit)
int: float:
32-bit integer value. Byte order starts from the lowest byte address as b0,
b1, b2 and so on.
It is a 32-bit flo ting-point number in IEEE 754 standard.
string:
Character array in ASCII standard. It is only used for Klea device name and
Klea configuration name variables.
4.4 Implemented functions for ModeBUS-RTU Protocol
Tablo 4-3 Implemented functions for ModeBUS RTU Protocol
Function Name Read Holding Registers Write Single Register Write Multiple Registers Read file record
Function Code 03H (decimal value 3) 06H (decimal value 6) 10H (decimal value 16) 14H (decimal value 20)
4.5 Data and Setting Parameters for KLEA 4.5.1 Measured and Calculated Data
Calculated and measured data are “read-only” values.
84
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
Operator/programmer can reach all measured and calculated data via ModeBUS RTU protocol. Starting address for measured and calculated data is 0.
E.g.:
Three phase average voltage is read via the 0th and 1th registers (16 bits + 16 bits = 32 bit).
PC (or PLC) Request
Slave ID
01h
Function code
03h
Register address high
00h
Register address low
00h
Number of registers high 00h
Number of registers low 02h
CRC high
C4h
CRC low
0Bh
KLEA Response
Slave ID
01h
Function code
03h
Byte counts
04h
Register value – high (0) 43h
Register value – low (0) 5Dh
Register value – high (1) 36h
Register value – low (1) E0h
CRC high
68h
CRC low
4Dh
The”Byte counts” information of KLEA response is two times”Number of registers” value of “PC
request” (1 register = 2 bytes).
Register value high(0) and low(0) together with register value high(1) and low(1) constitute a
32-bit value. This value should be converted (typecasted) to a flo t value. The flo t value of the
mentioned 32-bit variable is 221.2143555
Address 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Parameter V avg. I tot. P tot. Q tot. S tot. CosØ avg. PF avg. VLL1 VLL2 VLL3 VLL avg. I nötr THDV tot. THDI tot.
Tablo 4-4 Read-only Data
Description Average voltage of three phases Total current of three phases
Total active power of three phases Total reactive power of three phases Total
apparent power of three phases Average CosØ of three phases Average PF of
three phases Voltage V1-2 Voltage V2-3 Voltage V3-1 Average of line to line
voltage of three phases Neutral current Total har. distortion of voltage for
three Total har. distortion of voltage for three
R/W Unit RO V RO A RO V RO VAr RO VA RO RO RO V RO V RO V RO V RO A RO % RO %
Data Type 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t
85
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
Address Parameter
28 L1 V 30 L1 I 32 L1 P 34 L1 Q 36 L1 S 38 L1 CosØ 40 L1 PF 42 L1 F 44 L1 THDV
46 L1 THDI 48 L1 V Harmonics1 50 L1 V Harmonics3 52 L1 V Harmonics5 54 L1 V
Harmonics7 56 L1 V Harmonics9 58 L1 V Harmonics11 60 L1 V Harmonics13 62 L1 V
Harmonics15 64 L1 V Harmonics17 66 L1 V Harmonics19 68 L1 V Harmonics21 70 L1
V Harmonics23 72 L1 V Harmonics25 74 L1 V Harmonics27 76 L1 V Harmonics29 78
L1 V Harmonics31 80 L1 V Harmonics33 82 L1 V Harmonics35 84 L1 V Harmonics37
86 L1 V Harmonics39 88 L1 V Harmonics41 90 L1 V Harmonics43 92 L1 V
Harmonics45 94 L1 V Harmonics47 96 L1 V Harmonics49 98 L1 V Harmonics51 100 L1
I Harmonics1 102 L1 I Harmonics3 104 L1 I Harmonics5 106 L1 I Harmonics7 108
L1 I Harmonics9 110 L1 I Harmonics11 112 L1 I Harmonics13 114 L1 I Harmonics15
Description Phase 1
Phase1 voltage Phase1 current Phase1 active power Phase1 reactive power Phase1
apparent power Phase1 CosØ Phase1 power factor Phase1 frequency Phase1 total
har. distortion of voltage Phase1 total har. distortion of current Phase1
voltage first harmonic Phase1 voltage third harmonic Phase1 voltage 5th
harmonic Phase1 voltage 7th harmonic Phase1 voltage 9th harmonic Phase1
voltage 11th harmonic Phase1 voltage 13th harmonic Phase1 voltage 15th
harmonic Phase1 voltage 17th harmonic Phase1 voltage 19th harmonic Phase1
voltage 21th harmonic Phase1 voltage 23th harmonic Phase1 voltage 25th
harmonic Phase1 voltage 27th harmonic Phase1 voltage 29th harmonic Phase1
voltage 31th harmonic Phase1 voltage 33th harmonic Phase1 voltage 35th
harmonic Phase1 voltage 37th harmonic Phase1 voltage 39th harmonic Phase1
voltage 41th harmonic Phase1 voltage 43th harmonic Phase1 voltage 45th
harmonic Phase1 voltage 47th harmonic Phase1 voltage 49th harmonic Phase1
voltage 51th harmonic Phase1 current first harmonic Phase1 current third
harmonic Phase1 current 5th harmonic Phase1 current 7th harmonic Phase1
current 9th harmonic Phase1 current 11th harmonic Phase1 current 13th harmonic
Phase1 current 15th harmonic
86
R/W Unit Data Type
RO V RO A RO W RO VAr RO VA RO RO RO Hz RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO %
32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t
4 Quadrant
Energy Analyzer
SECTION 4 MODBUS PROTOCOL
Address 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150
Parameter L1 I Harmonics17 L1 I Harmonics19 L1 I Harmonics21 L1 I Harmonics23 L1 I Harmonics25 L1 I Harmonics27 L1 I Harmonics29 L1 I Harmonics31 L1 I Harmonics33 L1 I Harmonics35 L1 I Harmonics37 L1 I Harmonics39 L1 I Harmonics41 L1 I Harmonics43 L1 I Harmonics45 L1 I Harmonics47 L1 I Harmonics49 L1 I Harmonics51
152 L2 V 154 L2 I 156 L2 P 158 L2 Q 160 L2 S 162 L2 CosØ 164 L2 PF 166 L2 F 168 L2 THDV 170 L2 THDI 172 L2 V Harmonics1 174 L2 V Harmonics3 176 L2 V Harmonics5 178 L2 V Harmonics7 180 L2 V Harmonics9 182 L2 V Harmonics11 184 L2 V Harmonics13 186 L2 V Harmonics15 188 L2 V Harmonics17 190 L2 V Harmonics19 192 L2 V Harmonics21 194 L2 V Harmonics23 196 L2 V Harmonics25 198 L2 V Harmonics27 200 L2 V Harmonics29 202 L2 V Harmonics31
Description Phase1 current 17th harmonic Phase1 current 19th harmonic Phase1
current 21th harmonic Phase1 current 23th harmonic Phase1 current 25th
harmonic Phase1 current 27th harmonic Phase1 current 29th harmonic Phase1
current 31th harmonic Phase1 current 33th harmonic Phase1 current 35th
harmonic Phase1 current 37th harmonic Phase1 current 39th harmonic Phase1
current 41th harmonic Phase1 current 43th harmonic Phase1 current 45th
harmonic Phase1 current 47th harmonic Phase1 current 49th harmonic Phase1
current 51th harmonic
Phase 2 Phase2 voltage Phase2 current Phase2 active power Phase2 reactive
power Phase2 apparent power Phase2 CosØ Phase2 power factor Phase2 frequency
Phase2 total har. distortion of voltage Phase2 total har. distortion of
current Phase2 voltage first harmonic Phase2 voltage third harmonic Phase2
voltage 5th harmonic Phase2 voltage 7th harmonic Phase2 voltage 9th harmonic
Phase2 voltage 11th harmonic Phase2 voltage 13th harmonic Phase2 voltage 15th
harmonic Phase2 voltage 17th harmonic Phase2 voltage 19th harmonic Phase2
voltage 21th harmonic Phase2 voltage 23th harmonic Phase2 voltage 25th
harmonic Phase2 voltage 27th harmonic Phase2 voltage 29th harmonic Phase2
voltage 31th harmonic
87
R/W Unit RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO %
Data Type 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 b
References
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>