KLEA 4 Quadrant Energy Analyzer User Manual

June 16, 2024
KLEA

4 Quadrant Energy Analyzer

4 Quadrant Energy Analyzer

Specifications

  • KLEA Order Number: 606130, 606131, 606132, 606133
  • Description:
    • Klea 320P-D base model
    • Klea 320P-D optional digital IO model
    • Klea 320P-D optional 2 analog outputs model
    • Klea 320P-D optional 4 analog outputs model

Product Usage Instructions

Section 1: General Information

1.1 Symbols

Caution: Wherever used, this symbol indicates that there is
important information that must be taken into consideration.

Danger of Electric Shock: This symbol indicates that there is
dangerous voltage or current.

1.2 General Warnings

Please read and follow all warnings and precautions mentioned in
the user manual before using the product.

1.3 Receipt Control and Contents of Delivery

When you receive the package, please ensure the following:

  • Check if the KLEA Order Number matches the one you
    ordered.

  • Verify the contents of the delivery, which should include the
    base model or any optional models you selected.

Section 2: Installation

This section provides instructions on how to install the 4
Quadrant Energy Analyzer. Please refer to the user manual for
detailed installation steps.

Section 3: Menus

This section explains the various menus available on the Energy
Analyzer. Please refer to the user manual for detailed information
about each menu and its functions.

Section 4: Modbus Protocol

This section provides information about the Modbus protocol used
by the Energy Analyzer. Please refer to the user manual for
specific details.

Section 5: Factory Default Settings

This section outlines the factory default settings of the Energy
Analyzer. Please refer to the user manual for more information.

Section 6: Technical Specifications

This section provides the technical specifications of the Energy
Analyzer. Please refer to the user manual for detailed
specifications.

FAQ

Q: What should I do if I see the “Caution” symbol on the Energy

Analyzer?

A: If you see the “Caution” symbol, it means there is important
information that you should take into consideration. Please refer
to the user manual for more details on the specific cautionary
message.

Q: How can I verify the contents of the delivery?

A: When you receive the package, check if the KLEA Order Number
matches your order, and ensure that you have received the base
model or any optional models you selected.

4 Quadrant
Energy Analyzer
4 Quadrant
Energy Analyzer
Net woKr kLEAAn alyze r
User Manual
1

4 Quadrant
Energy Analyzer

TABLE OF CONTENTS

SECTION 1
1.1 1.2 1.3 1.4 1.5 1.6 1.7

GENERAL INFORMATION……………………………………………….8
Symbols…………………………………………………………………………………………………….. 9 General Warnings …………………………………………………………………………………… 9 Receipt Control and Contents of Delivery ………………………………………….. 9 KLEA Energy Analyzer ……………………………………………………………………………10 KleaCom Software………………………………………………………………………………….11 KLEA Front Panel…………………………………………………………………………………….12 Four-Quadrant Represantation …………………………………………………………… 13

SECTION 2
2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4

INSTALLATION ……………………………………………………………..14
Preparing for Installation ………………………………………………………………………15 MOUNTING ……………………………………………………………………………………………..15 Wiring Diagrams …………………………………………………………………………………….18 Three Phase Connection With Neutral (3P4W) ………………………………….18 Three Phase Connection No Neutral (3P3W) ……………………………………19 Three Phase No Neutral Aron Connection …………………………………………19 Digital Output Connection Diagram …………………………………………………..20 Dimensions …………………………………………………………………………………………….. 20

SECTION 3
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.2.1 3.2.1.1 3.2.1.1.1 3.2.1.1.1.1 3.2.1.1.1.2 3.2.1.1.1.3 3.2.1.1.1.4 3.2.1.1.1.5 3.2.1.1.2 3.2.1.1.2.1 3.2.1.1.2.2 3.2.1.1.2.3 3.2.1.1.2.4 3.2.1.1.2.5 3.2.1.1.3 3.2.1.1.3.1 3.2.1.1.3.2 3.2.1.1.3.3 3.2.1.1.3.4

MENUS …………………………………………………………………………21
“First Power-on” Settings………………………………………………………………………22 Dil / Language ………………………………………………………………………………………..22 Date …………………………………………………………………………………………………………23 Time …………………………………………………………………………………………………………. 24 Current Transformer Ratio (CTR) ………………………………………………………….24 Voltage Transformer Ratio (VTR)………………………………………………………….25 Connection …………………………………………………………………………………………….. 26 Start ………………………………………………………………………………………………………….27 Startup Screen ………………………………………………………………………………………..27 Settings …………………………………………………………………………………………………..28 Setup Menu …………………………………………………………………………………………….28 Network Menu………………………………………………………………………………………..29 Current Transformer Ratio…………………………………………………………………….30 Voltage Transformer Ratio…………………………………………………………………….30 Connection …………………………………………………………………………………………….. 31 Demand Period ………………………………………………………………………………………31 Power Unit ……………………………………………………………………………………………..32 Device Menu …………………………………………………………………………………………..32 Language………………………………………………………………………………………………… 33 Contrast…………………………………………………………………………………………………… 33 Password Protection and New Password……………………………………………34 Display on Selection………………………………………………………………………………34 Display on Time ……………………………………………………………………………………..35 Energy Menu…………………………………………………………………………………………..35 T1_1 start time………………………………………………………………………………………..35 T1_2 start time………………………………………………………………………………………..36 T1_3 start time………………………………………………………………………………………..37 Start of day………………………………………………………………………………………………38
2

4 Quadrant
Energy Analyzer

3.2.1.1.3.5 3.2.1.1.3.6 3.2.1.1.3.7 3.2.1.1.3.8 3.2.1.1.3.9 3.2.1.1.3.10 3.2.1.1.3.11 3.2.1.1.3.12 3.2.1.1.3.13 3.2.1.1.3.14 3.2.1.1.3.15 3.2.1.1.3.16 3.2.1.1.3.17 3.2.1.1.4 3.2.1.1.4.1 3.2.1.1.4.1.1 3.2.1.1.4.1.2 3.2.1.1.4.2 3.2.1.1.4.3 3.2.1.1.4.4 3.2.1.1.4.5 3.2.1.1.4.6 3.2.1.1.4.7 3.2.1.1.5 3.2.1.1.5.1 3.2.1.1.5.2 3.2.1.1.5.3 3.2.1.1.5.4 3.2.1.1.5.5 3.2.1.1.5.6 3.2.1.1.5.7 3.2.1.1.6 3.2.1.1.6.1 3.2.1.1.6.1.1 3.2.1.1.6.1.2 3.2.1.1.6.1.3 3.2.1.1.6.1.4 3.2.1.1.6.1.5 3.2.1.1.6.2 3.2.1.1.6.3 3.2.1.1.6.4 3.2.1.1.7 3.2.1.1.7.1 3.2.1.1.7.2 3.2.1.1.8 3.2.1.1.8.1 3.2.1.1.8.2 3.2.1.1.8.3 3.2.1.1.8.4

Start of month ……………………………………………………………………………………….38 T1 kWh……………………………………………………………………………………………………..38 T1 kWh E. …………………………………………………………………………………………………38 T1 kWh Imp. I. …………………………………………………………………………………………38 T1 kWh Imp. C. ……………………………………………………………………………………….38 T1 kVArh Exp. I. ………………………………………………………………………………………38 T1 kVArh Exp. C……………………………………………………………………………………….38 T2 kWh …………………………………………………………………………………………………….39 T2 kWh E. ………………………………………………………………………………………………..39 T2 kVArh Imp. I. ………………………………………………………………………………………39 T2 kVArh Imp. C.. …………………………………………………………………………………….39 T2 kVArh Exp. I. ………………………………………………………………………………………39 T2 kVArh Exp. C. ……………………………………………………………………………………..39 Digital Input Menu…………………………………………………………………………………40 Input1 Menu……………………………………………………………………………………………41 Mode ……………………………………………………………………………………………………….41 Delay ………………………………………………………………………………………………………..42 Input 2 Menu…………………………………………………………………………………………..42 Input 3 Menu (optional)………………………………………………………………………..43 Input 4 Menu (optional)………………………………………………………………………..43 Input 5 Menu (optional)………………………………………………………………………..43 Input 6 Menu (optional)………………………………………………………………………..43 Input 7 Menu (optional)………………………………………………………………………..43 Digital Output Menu ……………………………………………………………………………..43 Output1 Menu………………………………………………………………………………………..44 Output2 Menu………………………………………………………………………………………..46 Output3 Menu (optional) ……………………………………………………………………..46 Output4 Menu (optional) ……………………………………………………………………..46 Output5 Menu (optional) ……………………………………………………………………..46 Output6 Menu (optional) ……………………………………………………………………..46 Output7 Menu (optional) ……………………………………………………………………..46 Analog Output Menu (Optional)………………………………………………………….47 Output1 Menu ………………………………………………………………………………………47 Input mode ……………………………………………………………………………………………48 Output connection ……………………………………………………………………………….49 Min. value ………………………………………………………………………………………………50 Max. value ……………………………………………………………………………………………..50 Multiplier ……………………………………………………………………………………………….50 Output2 Menu………………………………………………………………………………………..53 Output3 Menu………………………………………………………………………………………..53 Output4 Menu………………………………………………………………………………………..53 Communication Menu…………………………………………………………………………..53 Baud Rate Menu……………………………………………………………………………………..54 Slave Id ……………………………………………………………………………………………………54 Alarm Menu…………………………………………………………………………………………….54 V(L-N) Menu…………………………………………………………………………………………….55 V(L-L) Menu……………………………………………………………………………………………..57 Current Menu………………………………………………………………………………………….57 P Menu …………………………………………………………………………………………………….57
3

4 Quadrant
Energy Analyzer

3.2.1.1.8.5 3.2.1.1.8.6 3.2.1.1.8.7 3.2.1.1.8.8 3.2.1.1.8.9 3.2.1.1.8.10 3.2.1.1.8.11 3.2.1.1.8.12 3.2.1.1.8.13 3.2.1.1.9 3.2.1.2 3.2.1.3 3.2.1.4 3.2.1.5 3.2.1.6 3.2.2 3.2.2.1 3.2.2.2 3.2.2.2.1 3.2.2.2.1.1 3.2.2.2.1.2 3.2.2.2.1.3 3.2.2.2.1.4 3.2.2.2.2 3.2.2.2.3 3.2.2.2.4 3.2.2.3 3.2.2.4 3.2.2.5 3.2.2.5.1 3.2.2.5.2 3.2.3 3.2.3.1 3.2.3.1.1 3.2.3.1.2 3.2.3.1.3 3.2.3.1.4 3.2.3.1.5 3.2.3.2 3.2.3.3 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.5 3.2.5.1.1 3.2.5.1.1.1 3.2.5.1.1.2

Q Menu…………………………………………………………………………………………………….57 S Menu……………………………………………………………………………………………………..57 CosØ Menu ……………………………………………………………………………………………..57 PF Menu …………………………………………………………………………………………………..58 IN Menu……………………………………………………………………………………………………58 F Menu……………………………………………………………………………………………………..58 Temp. Menu…………………………………………………………………………………………….58 Harmonics V Menu…………………………………………………………………………………59 Harmonics I Menu ………………………………………………………………………………….60 Clear Menu………………………………………………………………………………………………60 Date / Time Menu …………………………………………………………………………………..62 System Info Menu…………………………………………………………………………………..62 Password Menu………………………………………………………………………………………63 Restart Menu…………………………………………………………………………………………..63 Default Settings ……………………………………………………………………………………..64 Measure Menu………………………………………………………………………………………..64 Instantaneous Menu ……………………………………………………………………………..65 Demand Menu ………………………………………………………………………………………66 Current Month Menu …………………………………………………………………………….67 Current Menu………………………………………………………………………………………….68 Active power menu ……………………………………………………………………………….69 Reactive power menu……………………………………………………………………………69 Apparent power menu………………………………………………………………………….69 1 month Ago Menu……………………………………………………………………………….69 2 Months Ago Menu………………………………………………………………………………70 3 Months Ago Menu………………………………………………………………………………70 Phasor Diagram Menu………………………………………………………………………….70 Signals Menu…………………………………………………………………………………………..70 Harmonics Menu ……………………………………………………………………………………71 Table Menu ……………………………………………………………………………………………..71 Graph Menu…………………………………………………………………………………………….72 Meters Menu …………………………………………………………………………………………..72 Imp. Active Menu……………………………………………………………………………………72 T1 Tab……………………………………………………………………………………………………….73 T1 Rate1 Tab. …………………………………………………………………………………………..73 T1 Rate2 Tab. …………………………………………………………………………………………..74 T1 Rate3 Tab. …………………………………………………………………………………………..74 T2 Tab……………………………………………………………………………………………………….75 Digital Input Menu…………………………………………………………………………………76 Others Menu …………………………………………………………………………………………..76 Alarms Menu …………………………………………………………………………………………..76 Phase1 Menu…………………………………………………………………………………………..78 Phase2 Menu…………………………………………………………………………………………..79 Phase3 Menu…………………………………………………………………………………………..79 Other Menu …………………………………………………………………………………………….79 Analysis Menu…………………………………………………………………………………………79 Hourly Menu……………………………………………………………………………………………80 Phase1 Menu…………………………………………………………………………………………..81 Phase2 Menu…………………………………………………………………………………………..81
4

4 Quadrant
Energy Analyzer

3.2.5.1.1.3 3.2.5.1.1.4 3.2.5.1.2 3.2.5.1.3 3.2.5.2 3.2.5.3
SECTION 4
4.1 4.2 4.3 4.4 4.5 4.5.1 4.5.1.1 4.5.1.2 4.5.2 4.5.3 4.5.3.1 4.5.3.2 4.5.3.3 4.5.4
SECTION 5 SECTION 6
FIGURES
Figure 1-1 Figure 1-2 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 2-7 Figure 2-8 Figure 2-9 Figure 2-10 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-9 Figure 3-10

Phase3 Menu…………………………………………………………………………………………..81 Other ……………………………………………………………………………………………………….. 81 Daily Menu………………………………………………………………………………………………81 Monthly Menu ………………………………………………………………………………………..81 Maximum Menu……………………………………………………………………………………..81 Average Menu ………………………………………………………………………………………..81
MODBUS PROTOCOL……………………………………………………82
RS485 Wiring Diagram ………………………………………………………………………….83 Computer Connection …………………………………………………………………………83 Message Format and Data Types of MODBUS-RTU Protocol ………….83 Implemented functions for MODBUS-RTU Protocol…………………………84 Data and Setting Parameters for KLEA ……………………………………………84 Measured and Calculated Data ……………………………………………………………84 Alarm Flags ………………………………………………………………………………………….. 102 Digital Input Flags ………………………………………………………………………………. 103 KLEA Setting Parameters …………………………………………………………………… 105 ARCHIVE (HISTORY) RECORDS ………………………………………………………….. 112 Hourly archive data ……………………………………………………………………………. 114 Daily archive data ……………………………………………………………………………… 116 Monthly archive data ……………………………………………………………………….. 117 Clear ……………………………………………………………………………………………………… 117
FACTORY DEFAULT SETTINGS…………………………………… 119 TECHNICAL SPECIFICATIONS……………………………………. 123
KLEA Display……………………………………………………………………………………………12 Four-Quadrant Representation ……………………………………………………………13 Mounting KLEA into the Panel …………………………………………………………….16 Fixing KLEA to the panel ……………………………………………………………………….16 Loosening of Terminal Block Screws……………………………………………………16 Inserting Cable into the Terminal Block …………………………………………….17 Fixing the Cable to the Terminal Block ……………………………………………….17 KLEA Star (WYE) Connection Diagram………………………………………………..18 KLEA 3 Phase Delta Connection Diagram…………………………………………..19 KLEA Aron Connection Diagram………………………………………………………….19 Digital Output Connection Diagram …………………………………………………..20 Dimensions …………………………………………………………………………………………….. 20 First Power-on Settings …………………………………………………………………………22 Dil / Language ………………………………………………………………………………………..22 Date ………………………………………………………………………………………………………….23 Example for Setting the Date……………………………………………………………….23 Current Transformer Ratio…………………………………………………………………….24 Entering Values to the Virtual Keyboard …………………………………………….25 Voltage Transformer Ratio…………………………………………………………………….26 Connection Types…………………………………………………………………………………..26 Start ………………………………………………………………………………………………………….27 Startup Screen ………………………………………………………………………………………..27
5

4 Quadrant
Energy Analyzer

Figure 3-11 Figure 3-12 Figure 3-13 Figure 3-14 Figure 3-15 Figure 3-16 Figure 3-17 Figure 3-18 Figure 3-19 Figure 3-20 Figure 3-21 Figure 3-22 Figure 3-23 Figure 3-24 Figure 3-25 Figure 3-26 Figure 3-27 Figure 3-28 Figure 3-29 Figure 3-30 Figure 3-31 Figure 3-32 Figure 3-33 Figure 3-34 Figure 3-35 Figure 3-36 Figure 3-37 Figure 3-38 Figure 3-39 Figure 3-40 Figure 3-41 Figure 3-42 Figure 3-43 Figure 3-44 Figure 3-45 Figure 3-46 Figure 3-47 Figure 3-48 Figure 3-49 Figure 3-50 Figure 3-51 Figure 3-52 Figure 3-53 Figure 3-54 Figure 3-55 Figure 3-56 Figure 3-57 Figure 3-58 Figure 3-59

Settings Menu…………………………………………………………………………………………28 KLEA Save Query…………………………………………………………………………………….29 Network Menu………………………………………………………………………………………..29 Setting Current Transformer Ratio ……………………………………………………..30 Setting Voltage Transformer Ratio ………………………………………………………30 Connection …………………………………………………………………………………………….. 31 Demand Period ………………………………………………………………………………………31 Power Unit Setup……………………………………………………………………………………32 Device Menu …………………………………………………………………………………………..32 Language Selection……………………………………………………………………………….33 Options for Contrast ……………………………………………………………………………..33 Entering New Password ………………………………………………………………………..34 Setting Display on Time ………………………………………………………………………..34 Energy Menu…………………………………………………………………………………………..35 T1_1 start time………………………………………………………………………………………..36 T1_2 start time………………………………………………………………………………………..36 T1_3 start time ……………………………………………………………………………………….37 Digital Input Menu…………………………………………………………………………………40 Digital Input Menu (With IO option) …………………………………………………..40 Mode Selection ………………………………………………………………………………………41 Digital Input1 Counter…………………………………………………………………………..41 Delay ………………………………………………………………………………………………………..42 Tariff 1 or Tariff 2 ctivation ………………………………………………………………….42 Digital Output Menu …………………………………………………………………………….43 Digital Output Menu (optional digital I/O model)…………………………….44 Output1 Menu………………………………………………………………………………………..45 Analog Output Menu…………………………………………………………………………….47 Output1…………………………………………………………………………………………………… 48 Input mode……………………………………………………………………………………………..49 Output connection ………………………………………………………………………………..49 Vout1 -> ON ; Iout1 -> OFF……………………………………………………………………49 Vout1 -> OFF; Iout1 -> ON…………………………………………………………………….50 Multiplier …………………………………………………………………………………………………51 Communication Menu…………………………………………………………………………..53 Setting Baud Rate ………………………………………………………………………………….54 Slave Id …………………………………………………………………………………………………….54 Alarm Menu…………………………………………………………………………………………….54 V(L-N) Menu…………………………………………………………………………………………….55 Alarm Relay Setup ………………………………………………………………………………….55 Alarm Time Setting ………………………………………………………………………………..56 Hysteresis Setting…………………………………………………………………………………..56 Alarm Example ……………………………………………………………………………………….57 Setting for No Alarm………………………………………………………………………………58 Invalid Limits message ………………………………………………………………………….59 Harmonics Menu ……………………………………………………………………………………59 THDV High Limit Setting……………………………………………………………………….60 V3 – V21 Harmonic High Limit ……………………………………………………………..60 Clear Menu………………………………………………………………………………………………60 Before Clear …………………………………………………………………………………………….61
6

4 Quadrant
Energy Analyzer

Figure 3-60 Figure 3-61 Figure 3-62 Figure 3-63 Figure 3-64 Figure 3-65 Figure 3-66 Figure 3-67 Figure 3-68 Figure 3-69 Figure 3-70 Figure 3-71 Figure 3-72 Figure 3-73 Figure 3-74 Figure 3-75 Figure 3-76 Figure 3-77 Figure 3-78 Figure 3-79 Figure 3-80 Figure 3-81 Figure 3-82 Figure 3-83 Figure 3-84 Figure 3-85 Figure 3-86 Figure 3-87 Figure 3-88 Figure 3-89 Figure 3-90 Figure 3-91 Figure 3-92
Figure 4-1 Figure 4-2
TABLES
Table 4-1 Table 4-2 Table 4-3 Table 4-4 Table 4-5 Table 4-6 Table 4-7 Table 4-8

After Clear ……………………………………………………………………………………………….61 Initial Value, After Clear Process …………………………………………………………..62 Date / Time Menu …………………………………………………………………………………..62 System Info ……………………………………………………………………………………………..63 Password…………………………………………………………………………………………………. 63 Restart……………………………………………………………………………………………………… 64 Default Settings Command ………………………………………………………………….64 Measure Menu………………………………………………………………………………………..65 Instantaneous Menu ……………………………………………………………………………..65 Connecting the K-L ends of Current Correctly…………………………………..66 Demand Menu………………………………………………………………………………………..66 Demand Example…………………………………………………………………………………..67 Current Month Menu …………………………………………………………………………….67 Example of Current Month Menu………………………………………………………..68 Current Menu………………………………………………………………………………………….68 Phasor Diagram Menu…………………………………………………………………………..70 Signals Menu…………………………………………………………………………………………..71 Harmonics Menu ……………………………………………………………………………………71 Harmonics in Table Format …………………………………………………………………..71 Harmonics in Graphical Format……………………………………………………………72 Imp. Active Menu……………………………………………………………………………………73 Imp. Active Energy Page ……………………………………………………………………….73 T1 rate1 import active energy …………………………………………………………….74 T1 rate2 import active energy …………………………………………………………….74 T1 rate3 import active energy………………………………………………………………75 Tariff 2 impo t active energy ………………………………………………………………..75 Digital Input Menu(Dijital IO opsiyonlu model) ………………………………..76 Alarms Menu …………………………………………………………………………………………..78 Phase1 Menu…………………………………………………………………………………………..78 Other Menu …………………………………………………………………………………………….79 Analysis Menu…………………………………………………………………………………………80 Minimum Menu …………………………………………………………………………………….80 Hourly Menu……………………………………………………………………………………………80 RS485 Wiring Diagram…………………………………………………………………………..83 Connection of KLEA to a PC………………………………………………………………….83
Message Format……………………………………………………………………………………..83 int (32 bit) data type………………………………………………………………………………84 Implemented functions for MODBUS RTU Protocol …………………………84 Read-only Data……………………………………………………………………………………….85 Setting Parameters……………………………………………………………………………… 105 Description List …………………………………………………………………………………… 111 Archive (History) Record Table………………………………………………………….. 113 Clear Address Table…………………………………………………………………………….. 118

7

4 Quadrant
Energy Analyzer

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

8

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

BÖLÜM 1 GENERAL INFORMATION
1.1 Symbols
Caution: Wherever used, this symbol indicates that there is important information that must be taken into consideration.
Danger of Electric Shock: This symbol indicates that there is dangerous voltage or current.
1.2 General Warnings
· Do not work under live supply conditions. Before installation, turn off the power of the panel or any other related equipment.
· Installation, operation and commissioning (putting into service) of KLEA must be performed by qualified personnel.
· The device must be put into service only after all connections are made. · KLEA is connected to current transformer(s). Before disconnecting current transformer
leads, be sure that they are short circuited elsewhere or connected to a parallel load which has sufficie tly low impedance. Otherwise dangerously high voltages will be induced at the current transformer leads. Same phenomena also apply for putting into service. · Keep and store away from moisture, dust, vibration and wet environment. · For cleaning, remove the dust with a dry cloth. Do not use abrasives, solvents or alcohol. · There are no user serviceable parts inside. Maintenance and calibration can only be carried out at manufacturer’s end. · It is recommend to connect circuit breakers or automatic fuses between voltage inputs of Klea and the network.
1.3 Receipt Control and Contents of Delivery
When you receive the package, please be sure that,
· packing is in good condition, · product has not been damaged during transportation, · product name and reference (order) number conforms to your order.

9

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

KLEA Order Number: 606130 606131 606132 606133

Description: Klea 320P-D base model Klea 320P-D optional digital IO model Klea 320P-D optional 2 analog outputs model Klea 320P-D optional 4 analog outputs model

Please also check the contents of delivery as listed below:

· 1 pc. KLEA · 1 pc., CD-ROM (User manuel and KleaCom software) · 2 pcs., fixing brackets and screws · 1 pc., 4-pin female terminal block for alarm outputs (NO, C/out2, C/out1, NO) · 1 pc., 6-pin female terminal block for current inputs (I1 , k1 , I2 , k2 , I3 , k3) · 1 pc., 3-pin female terminal block for supply input (Un) · 1 pc., 3-pin terminal block for digital inputs (DI1, GND, DI2) · 1 pc., 4-pin female terminal block for voltage inputs (L1 , L2 , L3 , N) · 1 pc., 7-pin female terminal block for digital output and RS485 (B, GND1, A, DO1+,
DO1-, DO2+, DO2-) · 2 pcs., 10-pin female terminal block for digital IO optional (KLEA – 606101) product
(DO3+, DO3- …), (DI3, GND3… ) · 1 pc., 4-pin female terminal block for two analog output optional (KLEA – 606102)
product (AO1-GND, AO2-GND) · 1 pc., 8-pin female terminal block for four analog output optional (KLEA – 606103)
product (AO1-GND, …, AO4-GND)

1.4 KLEA Energy Analyzer
KLEA is a multi functional energy analyzer. KLEA, Measures/calculates:
· Current, voltage and frequency · Active, reactive and apparent power · Current and voltage harmonics up to 51. harmonic · THDV, THDI · Power factor, cosØ for each phase. KLEA has ” Import Active” , ” Export Active” , “Reactive R1” , “Reactive R2” , “Reactive R3” , “Reactive R4” meters. These meters record “1st tariff “, “T1_1” , “T1_2” and “T1_3” energy values. · There is an isolated RS485 port in KLEA. · KLEA’s energy/meter values can be assigned to digital outputs. · It has 2 pieces of relay outputs.

10

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

Besides, KLEA has numerous features such as;
· Setting alarms for various measurement parameters, · Monitoring official ene gy meters by means of assigning initial values for Klea tariff
meters, · Compatibility for 3 phase/3 wire, 3 phase/4wire or aron connected systems, · Avoiding unauthorized control by a 4-digit password.
KLEA Energy Analyzer has,
· 2 programmable alarm relay outputs, 2 digital outputs (totally 7 pieces in optional digital IO model), 2 digital input (totally 7 pieces in optional digital IO model), 1 piece of RS-485 communication port, 2/4 analog outputs (optional), battery supported realtime clock and memory.
· There are 6 keys and 160×240 graphical LCD on the front panel. By means of them, device settings and monitoring of measurement values can eaClear y be accomplished.
1.5 KleaCom Software
Operator can remowirey reach a Klea device via KleaCom software. KleaCom software can communicate with only one Klea at the same time; operator can reach other Klea devices on the same network by changing the slave ID. All measured/calculated parameters can be monitored with KleaCom. All settings of Klea can be changed/read via KleaCom software. History (archive) data of Klea can be downloaded using KleaCom and this data can be listed in an MS Excel or WordPad file (selectable). KleaCom software is included in the CD-ROM received with Klea package. Latest version of KleaCom software can be downloaded from www.klemsan.com.tr.

11

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

1.6 KLEA Front Panel

Settings Measure Meters Alarms Analysis

Fig. 1-1 KLEA Display
1 Menus 2 L-N voltages belonging to three phases 3 Currents of three phases 4 Presence/Absence of currents-voltages belonging to three phases, and phase sequence 5 Selected connection type 6 Alarm state symbol (for any alarm) 7 Temperature alarm state symbol (displayed only with a temperature alarm) 8 Alarm relay symbol (If 1st and/or 2nd alarm relay is assigned to any alarm and also
if there is an alarm in the system at the same time, this symbol shall appear on the screen. “1” stands for 1st Alarm Relay and “2” stands for 2nd Alarm Relay) 9 KLEA digital output symbol ( “1” indicates, digital output 1; and “2” indicates digital output 2. This symbol shall be displayed as long as width of the output pulse.) 10 KLEA digital output symbol (if there is an output from optional output3, output4, output5, output6 and output7, this symbol shall be displayed.) 11 RS485 communication symbol 12 Klea system time 13 X Key (in order to cancel any change or to return to the upper menu) 14 Left key 15 Up key 16 Down key 17 Right key 18 OK key (pressed in order to save any change or to access submenus)
12

4 Quadrant
Energy Analyzer

SECTION 1 GENERAL INFORMATION

1.7 Four-Quadrant Represantation
The angle(Ø) between voltage and current provides us information about the direction of energy fl w. A positive sign for active/reactive power indicates that active/reactive power is consumed. And also a negative sign for active/reactive power indicates that active/ reactive power is generated.

QUADRANT -2

P

=> negative

Q => positive & capacitive

CosØ => capacitive

PF => negative

Meters Exp. Active & Ind. Reactive

Reactive Power

QUADRANT -1

P

=> positive

Q => positive & inductive

CosØ => inductive

PF => positive

Meters Imp. Active & Ind. Reactive

S Q
P

Active Power

QUADRANT -3

P

=> negative

Q => negative & inductive

CosØ => inductive

PF => negative

Meters Exp. Active & Cap. Reactive

QUADRANT -4

P

=> positive

Q => negative & capacitive

CosØ => capacitive

PF => positive

Meters Imp. Active & Cap. Reactive

Fig. 1-2 Four-Quadrant Representation

NOTE: If the signs of active and reactive power are examined, it can be defined the quadrant that Klea measures.

E.g.;

P= +10kWh,Q= +5kVAr => P= -10kWh, Q= +5kVAr => P= -10kWh, Q= -5kVAr => P= +10kWh,Q= -5kVAr =>

Quadrant-1 Quadrant-2 Quadrant-3 Quadrant-4

13

4 Quadrant
Energy Analyzer

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

14

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

BÖLÜM 2 INSTALLATION
This section provides the information about installation, mounting, cable routing and connections of Klea.
2.1 Preparing for Installation
The purchased KLEA may not include all hardware options referred in this document. This situation does not constitute an impediment to the electrical installation.
Assembly and related connections of KLEA, must be implemented by authorized persons in accordance with the instructions of user manual. The device must not be put into service if the operator is not sure that all connections are correctly accomplished.
2.2 Mounting
KLEA is placed vertically into the gap located in the panel.

Fig. 2-1 Mounting KLEA into the Panel
After the KLEA is placed into the panel, fixing brackets should be installed on Klea and Klea should be fixed to the panel wall with the screws.
15

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

NetwoKrkLEAAnalyzer
Fig. 2-2 Fixing KLEA to the panel
There are 2.5mm2 and 1.5mm2 screwed female terminal blocks connected to fixed male terminal blocks on KLEA. Remove female terminal blocks and loosen their screws.

Fig. 2-3 Loosening of Terminal Block Screws
Before wiring up voltage and current ends to KLEA, you must be sure that the power is cut.
16

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

KLEA is connected to current transformer(s). Before disconnecting current transformer leads, be sure that they are short circuited elsewhere or connected to a parallel load which has sufficie tly low impedance. Otherwise dangerously high voltages will be induced at the current transformer leads. Same phenomena also apply for putting into service. The cable is placed into the related opening.

Fig. 2-4 Inserting Cable into the Terminal Block
After the cable is placed, the screws are tightened and the cable is fixed.

Fig. 2-5 Fixing the Cable to the Terminal Block
The Terminal Block is inserted into its seat located on KLEA.
17

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

If KLEA is used together with current transformers, please pay attention to the following warning. Threshold values for proper operation of current transformers differ according to the type and size of the transformers being used. Before applying the points mentioned in the following warning, please check that the measured current value is larger than the current threshold value of the current transformer (Refer to manual or datasheet of the current transformer).
For both of the warnings below, there must be a current in the system which is higher than the threshold value of the current transformer (if any).
If KLEA is placed in a panel which consumes power; The signs on Measure/Instantaneous/Active Power screen, should be positive, as the phases consume power. If there is a negative sign, turn off the device, cut off the panel power and then cross connect K and L ends of the current inputs belonging to the related phase(s). After that, check that all values are positive on Measure => Instantaneous => Active Power screen. If KLEA is placed in a panel which generates power; The signs on Measure/Instantaneous/Active Power screen, should be negative, as the phases generate power. If there is a positive sign, turn off the device, cut off the panel power and then cross connect K and L ends of the current inputs belonging to the related phase(s). After that, check that all values are negative on Measure => Instantaneous => Active Power screen.
2.3 Wiring Diagrams 2.3.1 Three Phase Connection With Neutral (3P4W)
L1 L2 L3 N

out1 out2
2A 2A 2A 2A

A. Out1 GND A. Out2 GND A. Out3 GND A. Out4 GND B GND1 A DI2 GND DI1 DI3 GND DI7 GND
DO1DO1+ DO2DO2+ DO3DO3+ DO7DO7+

C

C

NO

NO

Alarm Relay Outputs

N L3 L2 L1
K1 11 K2 12 K3 13
N L

Power Supply Current Measurement Voltage Measurement

Inputs

Inputs

Analog Outputs (Optional)

RS485

Digital Inputs (Optional) …

Digital Outputs (Optional)

Fig. 2-6 KLEA Star (WYE) Connection Diagram
18

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

2.3.2 Three Phase Connection No Neutral (3P3W)
L1 L2 L3

2A

2A

2A

L1

L2

L3

k1 l1 k2
l2 k3 l3

Current Measurement Voltage Measurement

Inputs

Inputs

Fig. 2-7 KLEA 3 Phase Delta Connection Diagram
2.3.3 Three Phase No Neutral Aron Connection
L1 L2 L3

2A

2A

2A

L1

L2

L3

k1 l1 k2
l2 k3 l3

Current Measurement Inputs

Voltage Measurement Inputs

Fig. 2-8 KLEA Aron Connection Diagram
19

4 Quadrant
Energy Analyzer

SECTION 2 INSTALLATION

NOTE: Any two-phase current can be connected to the current measuring inputs. L1 and L3 are used in the figure above.
2.3.4 Digital Output Connection Diagram

DO (+)

DO (-)

External DC Power Supply must be connected. (5-30VDC)

load

Fig. 2-9 Digital Output Connection Diagram
2.4 Dimensions
Dimensions are in millimeters.

Fig. 2-10 Dimensions
20

4 Quadrant
Energy Analyzer

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

21

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

BÖLÜM 3 MENUS
3.1 “First Power-on” Settings
After its receipt, when KLEA is switched on”for the first time”, the following page appears.

Startup Settings
Language Date Time CTR VTR Connection Start

English 07 January 2013 17:45:28 1 1.0 3phase 4wire

Fig. 3-1 First Power-on Settings
3.1.1 Dil / Language
When OK key is pressed on this tab,”Türkçe”,”English”and”P”options appear on the screen as seen below. Operator can scroll inside the options by pressing up and down keys and then should press “OK” to select the desired option. If language is selected as English, other tabs within this page will also be in English.

Startup Settings
Language Date Time CTR VTR Connection Start

E10177n:g4Jla5isn:hTPE2u8ü~na°rgrk°ylçis2eh013 1.0 3phase 4wire

Startup Settings
Language Date Time CTR VTR Connection Start

English 07 January 2013 17:45:28 1 1.0 3phase 4wire

Fig. 3-2 Dil / Language

22

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.1.2 Date
In order to change the date, operator should press OK key, when”Date”tab is highlighted. Press right and left to move between day, month and year entries. Press up and down keys to change the values. Press OK key to complete date setting.

Startup Settings
Language Date Time CTR VTR Connection Start

English 07 January 2013 17:45:28 1 1.0 3phase 4wire

Example:

Fig. 3-3 Date

In order to enter “7 January 2013”:

1
Date

06 December 2012

2
Date

07 December 2012

3
Date

07 December 2012

4
Date

07 January 2012

5
Date

07 January 2012

6
Date

07 January 2013

7
Date

07 January 2013

Fig. 3-4 Example for Setting the Date
23

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.1.3 Time
Time setting for KLEA is accomplished as explained in 3.1.2 Date menu.
3.1.4 Current Transformer Ratio (CTR)
In this tab, current transformer ratio is entered. The current transformer ratio can be adjusted between 1-5000. When this tab is highlighted; if the operator presses OK key, KLEA Virtual Keyboard will appear on the screen.

Startup Settings
Language Date Time CTR VTR Connection Start

E07ngJlaisnhu1ary 2013

17:45:28 1 2 3 4

1 1.0

5678

3phase 4w9ire 0 . –

ok clr

Low limit 1
High limit 5000

Fig. 3-5 Current Transformer Ratio
Use arrow keys (left, right, up and down) of Klea to navigate inside the virtual keyboard. In order to enter any number in the virtual keyboard as a value, when that number is highlighted, press OK key of Klea. When ok’ box of virtual keyboard is highlighted, pressOK’ key of Klea to complete current transformer setting.
In case an incorrect digit is entered, scroll inside the virtual keyboard to select clr box. Then pres `OK’ key of Klea to erase erroneous entered digit(s).

Caution: In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.

24

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

E.g.:

1
1
1234
5678
90 . –
ok clr Low limit 1 High limit 5000

2
1
1234
5678
90 . –
ok clr Low limit 1 High limit 5000

3
2
1234
5678
90 . –
ok clr Low limit 1 High limit 5000

4
2
1234
5678
90 . –
ok clr Low limit 1 High limit 5000

5
20
1234
5678
90 . –
ok clr
Low limit 1 High limit 5000

6
20
1234
5678
90 . –
ok clr
Low limit 1 High limit 5000

1

2

Startup Settings
Language Date Time CTR VTR Connection Start

English 07 January 2013 17:45:28 20 1.0 3phase 4wire

Fig. 3-6 Entering Values to the Virtual Keyboard
To enter a decimal value, enter the integer part of the decimal number first. Then scroll inside virtual keyboard till . box is highlighted. Press OK key of Klea to insert the decimal point. Following the point, enter the decimal part of the desired value. To enter a negative value, enter the number, move inside the virtual keyboard point to the negative sign – box and press OK.
3.1.5 Voltage Transformer Ratio (VTR)
In this tab voltage transformer ratio is entered. (For Virtual Keyboard Refer to 3.1.4 E.g.). The voltage transformer ratio can be adjusted between 1 – 5000. To enter a decimal value, enter the integer part of the decimal number first. Then scroll inside virtual keyboard till . box is highlighted. Press OK key of Klea to insert the decimal point. Following the point, enter the decimal part of the desired value.
25

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Startup Settings
Language Date Time CTR VTR Connection Start

English1 07 January 2013

17:45:28 1 2 3 4

1 1.0

5678

3phase 4w9ire 0 . –

ok clr

Low limit 1.0
High limit 5000.0

Fig. 3-7 Voltage Transformer Ratio

In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.

3.1.6 Connection
This menu contains information about how to connect KLEA to the panel/electrical network. There are 3 connection types: · 3 phase ­ 4 wire connection · 3 phase ­ 3 wire connection · Aron connection

Startup Settings
Language Date Time CTR VTR Connection Start

E1077n:g4Jla5isn:h33A2upp8raohhrnaayss2ee0431ww3 iirree 1 1.0 3phase 4wire

Initializing ……………………..
Fig. 3-8 Connection Types

26

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.1.7 Start
When Start tab is selected, press OK key to initialize Klea.

Startup Settings
Language Date Time CTR VTR Connection Start

English 07 January 2013 17:45:28 1 1.0 3phase 4wire

Initializing ……………………..
Fig. 3-9 Start
KLEA “first power-on” settings page only appears when KLEA is powered up for the first time after factory production. Following this first initialization, all the required settings (including “first power-on” page settings) can be accomplished via Settings menu of KLEA.

3.2 Startup Screen
After KLEA is turned on, following page appears.

Settings Measure Meters Alarms Analysis

V1 2 2 0 . 0 V I1

5.0 A

V2 2 2 0 . 0 V I2

5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-10 Startup Screen

27

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

At the top of the screen, there are multiple selection menus. In the middle, instantaneous voltage and current values pertaining to each phase are shown. At the bottom left of the screen, current and voltage values of the three phases and connection type are shown. At the bottom right corner, system clock (KLEA time) is shown. Operator can navigate between the multiple selection menus by pressing right and left arrow keys. Press OK key to enter into any multiple selection menu.
When 3phase-4wire or ARON connection is selected, VL-N voltages are shown in startup screen. When 3phase-3wire connection is selected, VL-L voltages are shown in startup screen
3.2.1 Settings
KLEA settings are made in this menu. Select Settings menu and press OK key. When OK key is pressed, submenus will appear as seen in the Fig. 3-11. Under the Settings menu, the following submenus exist.
· Setup · Date/Time · System info · Password · Restart · Default Settings

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-11 Settings Menu
3.2.1.1 Setup Menu
The following submenus are available inside Setup menu:

28

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

· Network · Device · Energy · Digital input · Digital output · Communication · Alarm · Clear The user can scroll inside the menus by pressing up and down keys. Press OK key in order to access contents of each submenus (the submenus under the setup menu) . In order for the new settings to be accepted by KLEA and stored in the memory, operator should navigate back (by pressing X key) to Startup Screen from the tab at which change has been made. When the operator returns to Startup page, “Settings changed. Save?” message will appear on the screen. If OK is pressed, changes will be accepted and stored in permanent memory. If X key is pressed, the changes will not be accepted by KLEA and will not be stored in permanent memory.
When “Settings changed. Save?” message appears on KLEA screen; if OK is pressed, setting changes will be accepted and stored in permanent memory. If X key is pressed, the changes will not be accepted and will not be stored in permanent memory.

Settings changed. Save?

X

OK

3.2.1.1.1 Network Menu

Fig. 3-12 KLEA Save Query

Electrical network related settings are accomplished in this menu.

Settings Measure Meters Alarms Analysis

Settings->Setup->Network

Setup

Network

CTR

10

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5.0 A

VTR Connection

1.0 3phase 4wire

Password

Digital input

Demand period 15

min

0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion

5 . 0 A Power unit

Kilo

Alarm

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-13 Network Menu

29

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.1.1 Current Transformer Ratio
In this submenu current transformer ratio is entered. Inside Network menu, press up and down keys to select CTR. Press OK key and KLEA virtual keyboard will appear on the screen. The current transformer ratio (CTR) can be adjusted between 1 – 5000. (For Virtual Keyboard Refer to 3.1.4 E.g.)

Settings->Setup->Network

CTR VTR Connection Demand period Power unit

1 1.0

10

3phase 4w1ire 2

15 Kilo

56

90

34 7 m8in
.-

ok clr

Low limit 1
High limit 5000

Fig. 3-14 Setting Current Transformer Ratio

In order for KLEA to perform accurate measurements, current transformer ratio should be entered correctly.

3.2.1.1.1.2 Voltage Transformer Ratio
In this submenu voltage transformer ratio is entered. Inside Network menu, press up and down keys to select VTR. Press OK key and KLEA virtual keyboard will appear on the screen. The voltage transformer ratio (VTR) can be adjusted between 1 – 5000.
(For Virtual Keyboard Refer to 3.1.4 E.g.). If a decimal number is to be entered as a VTR, with the help of Klea arrow keys point to the . box on the Virtual Keyboard and press OK key.

In order for KLEA to perform accurate measurements, the voltage transformer ratio should be entered correctly.

Settings->Setup->Network

CTR VTR Connection Demand period Power unit

1

1.0

1.0

3phase 4w1ire 2

15 Kilo

56

90

34 7 m8in
.-

ok clr

Low limit 1.0
High limit 5000.0

Fig. 3-15 Setting Voltage Transformer Ratio
30

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.1.3 Connection
KLEA may perform measurements with three different connection types. · 3 phase ­ 4 wire connection · 3 phase ­ 3 wire connection · Aron connection Inside Network menu, press up and down keys to select Connection. Press OK key and the above connection types will appear on the screen. Select the connection type and press OK to finish the setting.

Settings->Setup->Network

CTR VTR Connection Demand period Power unit

311p.00hase33Appr4ohhwnaaissreee

4wire 3wire

15

min

Kilo

3.2.1.1.1.4 Demand Period

Fig. 3-16 Connection

Inside Network menu, press up and down keys to select (highlight) Demand period’ menu item. WhenDemand period’ is selected, press OK key and KLEA virtual keyboard will appear on the screen. Demand period can be adjusted between 1 – 60 minutes. (For Virtual Keyboard Refer to 3.1.4 E.g.)

Settings->Setup->Network

CTR VTR Connection Demand period Power unit

1 1.0

15

3phase 4w1ire 2

15 Kilo

56

90

34 7 m8in
.-

ok clr

Low limit 1
High limit 60

Fig. 3-17 Demand Period
31

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.1.5 Power Unit
KLEA displays total power or total energy values in two different units: · Mega · Kilo Inside Network menu, press up and down keys to select (highlight) Power unit’ menu item. WhenPower unit’ is selected, press OK key and the aforementioned options will appear on the screen. Press up and down keys to select the desired option and press OK key to complete the setting.

Settings->Setup->Network

CTR VTR Connection

311p.0haseMKi4elowgaire

Demand period 15

min

Power unit

Kilo

Fig. 3-18 Power Unit Setup

3.2.1.1.2 Device Menu

In this menu following settings can be accomplished.

· Language · Contrast · New Password · Display on · Display on Time

Settings Measure Meters Alarms Analysis

Settings->Setup->Device

Setup

Network

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

Password

Digital input

0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion

Alarm

V3 2 2 0 .C0lear V I3

Language

English

5.0 A

Contrast

Level 0

Pass. protection Off

5.0 A

New password Display on

1 Time dependent sec

Display on time 600
5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-19 Device Menu

32

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.2.1 Language
Inside Device menu, press up and down keys to select (highlight) Language’ menu item. WhenLanguage’ is selected, press OK key and the options in Figure 3-20 will appear on the screen. Press up and down keys to select the desired option and press OK key to complete the setting.

Settings->Setup->Device

Language
Contrast Pass protection New password
Display on Display on time

E1OLenffvgelils0hTPEü~n°rgk°lçiseh Time dependent sec 600

3.2.1.1.2.2 Contrast

Fig. 3-20 Language Selection

Inside Device menu, press up and down keys to select (highlight) `Contrast’ menu item. Press OK key and contrast levels will appear on the screen as seen in Figure 3-21. Scroll inside contrast levels by pressing up and down keys; press OK key to select the desired option. Graphical LCD of KLEA darkens towards the Level 4; and lightens towards the Level -4.

Settings->Setup->Device

Language Contrast

EnglishLevel -4 Level 0Level -3

Pass protection Off Level -2

New password 1 Level -1

Display on

Time deLpeevenld0ent

Display on time 600 Level 1

min

Level 2

Level 3

Level 4

Fig. 3-21 Options for Contrast
33

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.2.3 Password Protection and New Password
KLEA has a password protection and default password protection is “Off”. Default password is “1”. New password can be adjusted between 1 – 9999 ( For Virtual Keyboard Refer to 3.1.4 E.g.).

Settings->Setup->Device

Language Contrast Pass. protection New password Display on Display on time

ELenvgelils0h1

Off

1234

1 Time depe5nde6nt 7 m8in

600

90 . –

ok clr

Low limit 1
High limit 9999

Fig. 3-22 Entering New Password

3.2.1.1.2.4 Display on Selection
· Continuous · Time dependent
If continuous is selected, the backlight of KLEA graphical LCD will be turned on continuously. If `Time dependent’ option is selected, the backlight of the graphical LCD remains open as long as “display on time”.

Settings->Setup->Device

Language Contrast
Pass. protection New password Display on Display on time

ELenvgelils0h600

Off

1234

1 Time

depe5nde6nt

7

m8in

600

90 . –

ok clr

Low limit 1
High limit 600

Fig. 3-23 Setting Display on Time

34

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.2.5 Display on Time
Displayon time can be adjusted between 10 600 second. (For Virtual Keyboard Refer to 3.1.4 E.g.).
3.2.1.1.3 Energy Menu
Initial energy values for T1, T1_1, T1_2, T1_3 and T2 can be entered inside this menu. Thus, Toperator can synchronize the official electric meter with KLEA tariff meters. Operator can navigate inside Energy menu by pressing up and down keys.

Settings->Setup->Energy

T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Imp. C. T2 kWh

8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh

Fig. 3-24 Energy Menu
3.2.1.1.3.1 T1_1 start time
Electric meters can have more than one tariff and also individual tariffs can be sliced in time.
T1_1′ abbreviation refers to the first time slice of tariff 1 meter. T1_1 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate1” meter (the first time slice of T1 meter – T1_1) counts between T1_1 start time and T1_2 start time. E.g.: Assume thatT1_1 start time’ and `T1_2 start time’ are adjusted as 8 and 16 respectively. “T1 rate1 meter (T1_1)” counts starting from 08:00 and ceases at 16:00.

35

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Meters->Imp. active

T1

1000.0

T1 rate 1

1000.0

T1 rate 2 T1 rate 3

1000.0 1000.0

T2

1000.0

kWh kWh
kWh kWh kWh

Settings->Setup->Energy

T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2

8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

Fig. 3-25 T1_1 start time

hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh

NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active “,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)

3.2.1.1.3.2 T1_2 Start time
T1_2′ abbreviation refers to the second time slice of tariff 1 me er. T1_2 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate2” meter (the second time slice of T1 meter – T1_2) counts between T1_2 start time and T1_2 start time. E.g.: Assume thatT1_2 start time’ and `T1_3 start time’ are adjusted as 16 and 0 respectively. “T1 rate 2 meter (T1_2)” counts starting from 16:00 and ceases at 00:00.

Meters->Imp. active

T1

1000.0

T1 rate 1

1000.0

T1 rate 2 T1 rate 3 T2

1000.0 1000.0 1000.0

kWh kWh
kWh kWh kWh

Settings->Setup->Energy

T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2 kWh

8 16 0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

Fig. 3-26 T1_2 StartTime

hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh

36

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active “,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)
3.2.1.1.3.3 T1_3 StartTime
T1_3′ abbreviation refers to the third time slice of tariff 1 me er. T1_3 start time can be adjusted between 0-23 (for Virtual Keyboard Refer to 3.1.4 E.g.). “T1 rate3” meter (the second time slice of T1 meter – T1_3) counts between T1_3 start time and T1_1 start time. E.g.: Assume thatT1_3 start time’ and `T1_1 start time’ are adjusted as 0 and 8 respectively. “T1 rate 3 meter (T1_3)” counts starting from 16:00 and ceases at 00:00.

Meters->Imp. active

T1 T1 rate 1 T1 rate 2 T1 rate 3 T2

1000.0 1000.0 1000.0 1000.0 1000.0

kWh kWh kWh kWh kWh

Settings->Setup->Energy

T1_1 start time T1_2 start time
T1_3 start time Start of day Start of month T1 kWh T1 kWh E. T1 kVArh Imp. I. T1 kVArh Imp. C. T1 kVArh Exp. I. T1 kVArh Exp. C. T2 kWh

8 16
0 0 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

Fig. 3-27 T1_3 start time

hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh

NOTE: Assigned values also applies to the 4 quadrant counters. (“Exp. active “,” Reactive R1 “,” Reactive R2, ” , ” Reactive R3″,” Reactive R4 “)

If T1_1 and T1_2 have the same value, T1_1 and T1_3 counters count; If T1_1 and T1_3 have the same value T1_1 and T1_2 counters count; if T1_2 and T1_3 have the same value; T1_1 and T1_2 counters count, If T1_1, T1_2 and T1_3 have the same value, only T1_1 counter will count.

37

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.3.4 Start of day
Start of day can be adjusted between 0 – 23. (for Virtual Keyboard Refer to 3.1.4 E.g.).
3.2.1.1.3.5 Start of month
Start of month can be adjusted between 1 – 28. (for Virtual Keyboard Refer to 3.1.4 E.g.) The settings listed below (between 3.2.1.1.3.6 and 3.2.1.1.3.17 ) are used to synchronize the system electric meter and KLEA meter. Each of the below items can be adjusted between 0.000 20000000000,0 (for Virtual Keyboard Refer to 3.1.4 E.g.).
Klea meters calculate energy by multiplying with CTR and VTR values.User should take this fact into account when entering the below intial energy values.
3.2.1.1.3.6 T1 kWh
“Initial” value for meter of “Imp. Active =>T1” can be entered in this tab.
3.2.1.1.3.7 T1 kWh E
“Initial” value for meter of “Exp. Active=> T1” can be entered in this tab.
3.2.1.1.3.8 T1 kWh Imp. I.
“Initial” value for meter of “Reactive R1=>T1” can be entered in this tab.
3.2.1.1.3.9 T1 kWh Imp. C.
“Initial” value for meter of “Reactive R2=>T1” can be entered in this tab.
3.2.1.1.3.10 T1 kVArh Exp. I.
“Initial” value for meter of “Reactive R3=> T1” can be entered in this tab/
3.2.1.1.3.11 T1 kVArh Exp. C.
“Initial” value for meter of “Reactive R4=>T1” can be entered in this tab. 38

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.3.12 T2 kWh
“Initial” value for meter of ” Imp. Active=>T2″ can be entered in this tab.
3.2.1.1.3.13 T2 kWh E.
“Initial” value meter of ” Exp. active=>T2″ can be entered in this tab.
3.2.1.1.3.14 T2 kVArh Imp. I.
“Initial” value for meter of “Reactive R1=>T2” can be entered in this tab.
3.2.1.1.3.15 T2 kVArh Imp. C.
“Initial” value for meter of “Reactive R2=>T2” can be entered in this tab.
3.2.1.1.3.16 T2 kVArh Exp. I.
“Initial” value for meter of “Reactive R2=>T2” can be entered in this tab.
3.2.1.1.3.17 T2 kVArh Exp. C.
“Initial” value for meter of “Reactive R4=>T2” can be entered in this tab.
NOTE: “T1 rate1”, “T1 rate2” ve “T1 rate3” is made from “Settings => Setup => Energy” menu. These appointments should be made using Modebus communications over the computer. Energy value that will be assigned, must be written to corresponding modebus address. Related ModeBus addresses are given below. For more information refer to “Table 4-4.
2032. modebus address:”Initial”energy value for meter of “Imp. active =>T1 rate1″can be entered. 2034. modebus address:”Initial”energy value for meter of “Exp. active =>T1 rate1″can be entered. 2036.modebusaddress:”Initial”energyvalueformeterof “ReactiveR1=>T1rate1″canbeentered. 2038.modebusaddress:”Initial”energyvalueformeterof “ReactiveR2=>T1rate1″canbeentered. 2040.modebusaddress:”Initial”energyvalueformeterof “ReactiveR3=>T1rate1″canbeentered. 2042.modebusaddress:”Initial”energyvalueformeterof “ReactiveR4=>T1rate1″canbeentered. 2044. modebus address:”Initial”energy value for meter of “Imp. active =>T1 rate2″can be entered. 2046. modebus address:”Initial”energy value for meter of “Exp. active =>T1 rate2 can be entered. 2048.modebusaddress:”Initial”energyvalueformeterof “ReactiveR1=>T1rate2″canbeentered. 2050.modebusaddress:”Initial”energyvalueformeterof “ReactiveR2=>T1rate2″canbeentered. 2052.modebusaddress:”Initial”energyvalueformeterof “ReactiveR3=>T1rate2″canbeentered.
39

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

2054.modebusaddress:”Initial”energyvalueformeterof “ReactiveR4=>T1rate2″canbeentered. 2056. modebus address:”Initial”energy value for meter of “Imp. active =>T1 rate3″can be entered. 2058. modebus address:”Initial”energy value for meter of “Exp. active =>T1 rate3 can be entered. 2060.modebusaddress:”Initial”energyvalueformeterof “ReactiveR1=>T1rate3″canbeentered. 2062.modebusaddress:”Initial”energyvalueformeterof “ReactiveR2=>T1rate3″canbeentered. 2064.modebusaddress:”Initial”energyvalueformeterof “ReactiveR3=>T1rate3″canbeentered. 2066.modebusaddress:”Initial”energyvalueformeterof “ReactiveR4=>T1rate3″canbeentered.
3.2.1.1.4 Digital Input Menu
Digital input menu consists of Input1 and Input2 menus. KLEA digital inputs are used in order to activate Tariff 2 me er and/or to count a digital signal.

Settings Measure Meters Alarms Analysis

Setup

Network

Input1

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 Input2 . 0 A

Password

Digital input

0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion

5.0 A

Alarm

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-28 Digital Input Menu

Settings Measure Meters Alarms Analysis

Setup

Network

Input1

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 Input2

A

Input3

Password

Digital input Input4

0 . 0 5 . 0 RDVee2sfataurltt settings

DCiogmitamlVuonuitcIp2auttion

Input5 Input6

A

Alarm

Input7

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-29 Digital Input Menu (With IO option)

40

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.4.1 Input1 Menu

Input1 operates when DI1 and GND pins of KLEA are short circuited. Input1 menu has two settings:

· Mode · Delay

3.2.1.1.4.1.1 Mode

Mode options are as seen below (Fig. 3-30). Press up and down keys to scroll inside options. Press OK key to select the desired option.

Settings->Setup->Digital input->Input1

Mode Delay

Off 100

Off 2nd tariff

Counter

Fig. 3-30 Mode Selection
· Assume that for digital input 1, 2nd tariff’ is selected as the mode setting. Under this condition, when digital input 1 is short circuited (activated), tariff 1 meter will stop and tariff 2 me er will start to count. · Assume that for digital input 1,Counter’ is selected as the mode setting. Under this condition, each time DI1 and GND pins are short-circuited, “Meters->Digital input-> Digital input1 counter” counts (Fig. 3-30).

Meters Alarms Analysis

Imp. active

0 . 0 EVx1p. active
Reactive R1

Reactive R2

0 . 0 RRVee2aaccttiivvee

R3 R4

Digital input

OVt3her

0.0

V I1 V I2 V I3

0.0 A

Meters->Digital input

Counter 1

0

Counter 2

0

0.0 A

0.0 A

1 23 V
I

1212

E

14:25

Fig. 3-31 Digital Input1 Counter

41

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.4.1.2 Delay
Digital input delay can be adjusted between 10 2000 milliseconds. In order for 2nd tariff’ orCounter’ modes to be activated; DI1 and GND pins should be short-circuited at least “delay” period of time. (for Virtual Keyboard Refer to 3.1.4 E.g.).

Delay

100

msec

Fig. 3-32 Delay

E.g.:

Digital input : Input1

Mode

: Counter,

Delay

: 200 msec

When DI1 and GND pins are short-circuited for minimum 200 msec, `Input 1 Counter’ increments by 1.

E.g.:

Digital input : Input1

Mode

: Tariff

Delay

: 200 msec

In order for the Tariff 2 meter to be active, DI1 and GND pins should be short-circuited for minimum 200 msec. Tariff 2 me er will be active during the course of short circuit time.

DI1 and GND short circuit <200msec>

DI1 ve GND open circuit

DI1 and GND short circuit <100msec>

Time

tariff 1 counts

tariff 2 counts

Tariff 1 counts

Fig. 3-33 Tariff 1 or Tariff 2 ctivation
3.2.1.1.4.2 Input 2 Menu
Input 2 applications and settings are the same as Input1. Digital input2 operates with DI2 and GND pins.

42

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.4.3 Input 3 Menu (optional)
Input 3 is applicable to optional digital IO Klea models. Input 3 applications and settings are the same as Input1. Digital input3 operates with DI3 and GND pins.
3.2.1.1.4.4 Input 4 Menu (optional)
Input 4 is applicable to optional digital IO Klea models. Input 4 applications and settings are the same as Input1. Digital input4 operates with DI4 and GND pins.
3.2.1.1.4.5 Input 5 Menu (optional)
Input 5 is applicable to optional digital IO Klea models. Input 5 applications and settings are the same as Input1. Digital input5 operates with DI5 and GND pins.
3.2.1.1.4.6 Input 6 Menu (optional)
Input 6 is applicable to optional digital IO Klea models. Input 6 applications and settings are the same as Input1. Digital input6 operates with DI6 and GND pins.
3.2.1.1.4.7 Input 7 Menu (optional)
Input 7 is applicable to optional digital IO Klea models. Input 7 applications and settings are the same as Input1. Digital input7 operates with DI7 and GND pins.
3.2.1.1.5 Digital Output Menu
It comprises of Output1 and Output menus.

Settings Measure Meters Alarms Analysis

Setup

Network

Output1

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 Output2

A

Password

Digital input

0 . 0 RDVee2sfataurltt settings CDoigmitamlVuonuitcIp2auttion

5.0 A

Alarm

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-34 Digital Output Menu

43

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings Measure Meters Alarms Analysis

Setup

Network

Output11

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 Output2

A

Output3

Password

Digital input Output4

0 . 0 5 . 0 RDVee2sfataurltt settings

CDoigmitamlVuonuitcIp2auttion

Output5 Output6

A

Alarm

Output7

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-35 Digital Output Menu (optional digital I/O model
3.2.1.1.5.1 Output1 Menu
Output1 gives output from D01- and D01+ pins

Mode: Press up and down keys to navigate between digital outputs. Press OK on the desired output, and options seen in Fig. 3-36 will appear. Any of them can be assigned as output1 operating mode.

Mode setting has the following options.

· Off · T1 kWh · T1 kWh E. · T1 kVArh I. Ind. · T1 kVArh I. Cap. · T1 kVArh E. Ind. · T1 kVArh E. Cap. · T2 kWh · T2 kWh E. · T2 kVArh I. Ind. · T2 kVArh I. Cap. · T2 kVArh E. Ind. · T2 kVArh E. Cap. · Digital Input

44

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings->Setup->Digital output->Output1

Mode Energy Width Multiplier

1.000 100

Off
T1 kWh T1 kWh E.

1

T1 kVArh I. Ind.

T1 kVArh I. Cap.

T1 kVArh E. Ind.

T1 kVArh E. Cap.

T2 kWh

T2 kWh E.

T2 kVArh I. Ind.

T2 kVArh I. Cap.

T2 kVArh E. Ind.

Fig. 3-36 Output 1 Menu
Energy: When selected meter option(mode option) counts for the selected “energy” value, Output1 generates a pulse (for Virtual Keyboard Refer to 3.1.4 E.g.).
Width: It can be adjusted between 50 ­ 2500 msec (for Virtual Keyboard Refer to 3.1.4 E.g.).
Multiplier: Multiplier is of use only when “Output1->mode” is adjusted as “Digital input”.
When”digital input1 counter” (Refer to Digital Input 3.2.3.2), reaches the`multiplier’;”digital output1″ generates a pulse from DO1+ and DO1- pins.
It can be adjusted between 1 – 10000 (for Virtual Keyboard Refer to 3.1.4 E.g.).
Second example explains this implementation.

E.g.:

Assume the settings are as below,

Digital output : Output1

Mode

: T1 kWh

Energy

: 2

Width

: 100msec

Assume that, Tariff 1 import active previous value is 1.1kWh. When T1 kWh reaches to 3.1kWh, 5.1kWh, 7.1kWh etc. a pulse of 100msec will be generated at the outputs of DO1and DO1+.

E.g.:

Digital output : Output1

Mode

: Digital input

Energy

: When connection type is digital input, the Energy tab is not used.

Width

: 100msec

Multiplier :100

45

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Assume also that Digital input1 mode had been adjusted as”counter”. In this case, when Counter1 reaches 100 or multiples of 100, a pulse of 100 msec will be will be generated at the output pins DO1- and D01+. Assume that the digital input 1 counter value was 35 before multiplier adjustment. Assume also that operator adjusts `Multiplier’ as 100. Under these conditions, Output 1 generates a pulse when digital input 1 counter reaches the values 135, 235, 335, 435 and so on.
3.2.1.1.5.2 Output Menu
Output 2 applications and settings are the same as Output1. Output generates pulse from DO2+ and DO2- pins.
3.2.1.1.5.3 Output3 Menu (optional)
Output 3 applications and settings are the same as Output1. Output3 generates pulse from DO3+ and DO3- pins.
3.2.1.1.5.4 Output4 Menu (optional)
Output 4 applications and settings are the same as Output1. Output4 generates pulse from DO4+ and DO4- pins.
3.2.1.1.5.5 Output5 Menu (optional)
Output 5 applications and settings are the same as Output1. Output5 generates pulse from DO5+ and DO5- pins.
3.2.1.1.5.6 Output6 Menu (optional)
Output 6 applications and settings are the same as Output1. Output6 generates pulse from DO6+ and DO6- pins.
3.2.1.1.5.7 Output7 Menu (optional)
Output 7 applications and settings are the same as Output1. Output7 generates pulse from DO7+ and DO7- pins.

46

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.6 Analog Output Menu (Optional)

Settings Measure Meters Alarms Analysis

Setup

Network

Output11

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 Output2

A

Output3

Password

Digital input Output4

0 . 0 RDVee2sfataurltt settings DAnigaitlaolgVoouutIpt2puutt

5.0 A

Communication

2 2 0 . 0 V3

ACllaeramr V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-37 Analog Output Menu

KLEA has two different optional analog output models; 2 analog output and 4 analog output models.
Operator can adjust KLEA to give output from analog output channels for the following parameters: voltage, current, active power, reactive power, apparent power, frequency, phasephase voltages, neutral current, total current, total active power, total reactive power and total apparent power pertaining to L1, L2, L3 phases.
Analog output channels can be adjusted to generate signals as 0-5V, 0-10V, -5-5V, -10- 10V, 0-20mA, 4-20mA. Analog output menu comprises of the following submenus.
Output1 (available in 2 analog and 4 analog outputs models) Output (available in 2 analog and 4 analog outputs models) Output3 (available only in 4 analog outputs model) Output4 (available only in 4 analog outputs model)
3.2.1.1.6.1 Output1 Menu
Output1 menu comprises of the following submenus
· Input mode · Output conn. · Min. Value · Max. Value · Multiplier

47

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings->Setup->Analog output->Output1

Input mode Output conn. Min. value Max. value Multiplier

V1 (L-N) 0-5V 0.0 0.0 1

Fig. 3-38 Output1
3.2.1.1.6.1.1 Input mode
Analog output will generate a signal in accordance with the parameter selected in Input mode tab. Analog output examples will clarify the application of settings. Input mode options are as follows: V1(L-N) V2(L-N) V3(L-N) I1 I2 I3 P1 P2 P3 Q1 Q2 Q3 S1 S2 S3 F IN VLL12 VLL23 VLL31 I tot. P tot. Q tot. S tot.
48

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings->Setup->Analog output->Output1

Input mode Output conn. Min. value Max. value Multiplier

0V0.-105V(L-NVVV) 123

(L-N) (L-N) (L-N)

0.0 1

I1 I2

I3

P1

P2

P3

Q1

Q2

Q3

Fig. 3-39 Input mode

3.2.1.1.6.1.2 Output connection

Inside Output1 menu, press up and down keys to select (highlight) Output connection’ menu item. WhenOutput connection’ is selected, press OK key and the options in Fig. 3-40 will appear on the screen. Press up and down keys to select the desired option and press OK key to complete the setting.

Settings->Setup->Analog output->Output1

Input mode Output conn. Min. value Max. value Multiplier

V1 (L-N0)- 5V 0-5V -5 – 5V 0.0 0 – 10V 0.0 -10 – 10V 1 0 – 20mA
4 – 20mA

Fig. 3-40 Output connection
Assume that for analog output 1, output connection was selected as 0-5V ( Refer to Fig. 3.40). Then, operator should adjust the”analog output 1″dip switch as seen in Fig. 3.41 (Vout1 -> ON ; Iout1 -> OFF). After the dip switch adjustment, setting will be completed.
OFF ON
Fig. 3-41 Vout1 -> ON; Iout1 -> OFF
49

IOut4 VOut4 IOut3 VOut3 IOut2 VOut2 IOut1 VOut1

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Assume that for analog output 1, output connection was selected as 4-20 mA (refer to Fig. 3.40). Then, operator should adjust the “analog output 1” dip switch as seen in Fig. 3.42 (Vout1 -> OFF; Iout1 -> ON). After the dip switch adjustment, setting will be completed.

OFF ON

IOut4 VOut4 IOut3 VOut3 IOut2 VOut2 IOut1 VOut1

Fig. 3-42 Vout1 -> OFF; Iout1 -> ON
In order to obtain voltage output, Vout1 should be set to ON, and Iout1 should be set to OFF. If both switches are ON or OFF at the same time, analog output will not operate correctly. In order to obtain current output, Vout1 should be set to OFF, and Iout1 should be set to ON. If both switches are ON or OFF at the same time, analog output will not operate correctly.
If the setting of output connection and setting of the dip switch are incompatible, related analog output will not operate correctly.
3.2.1.1.6.1.3 Min. value
The minimum value for the selected input mode. Refer to 3.2.1.1.6.1.5 Multiplier setting.
3.2.1.1.6.1.4 Max. value
The maximum value for the selected input mode Refer to 3.2.1.1.6.1.5 Multiplier setting.
If “Min. value” and “Max. value” are adjusted to be the same, then analog output will not operate.
3.2.1.1.6.1.5 Multiplier
When `Multiplier’ is selected, press OK key and the options in Fig. 3-43 will appear on the screen. Press up and down keys to select the desired option and press OK key to complete the setting. Multiplier coefficie t options are as follows: · 1 · Kilo (1000) · Mega (1000000)
50

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

For example, assume that 10000000W and 350000000W are required to be entered for min. and max. values. In this case, if operator selected Mega in multiplier tab, then it will be sufficie t to enter 10 and 350 for min. and max. values.

Settings->Setup->Analog output->Output1

Input mode Output conn. Min. value Max. value Multiplier

0V00..-1005V(L-N1KM) ieloga 1

Fig. 3-43 Multiplier
Klea can output 0 ­ 5V, -5 ­ 5V, 0 ­ 10V, -10 ­ 10V, 0 ­ 20mA and 0 ­ 20mA range signals from AOX-GND pins. When the value of Input mode’ parameter falls belowMin. value’ with an amplitude less than 2.5%; or exceedsMax. value’ with an amplitude again less than 2.5%; output signal will linearly follow this change. ForOutput conn.’ types whose low limit is zero, output signal will not fall below zero; only high limit will change linearly up to 2.5% of its value. In summary, output signals from AOX-GND pins will operate as follows:

0 ­ 5 V -5 ­ 5 V 0 ­ 10 V -10 ­ 10 V 0 ­ 20 mA 4 ­ 20 mA

0 ­ 5.125 V -5.125 ­ 5.125 V 0 ­ 10.25 V -10.25 ­ 10.25 V 0 ­ 20.5 mA 3.9 ­ 20.5 mA

(output signal low value will not fall below zero) (output signal low value will not fall below zero) (output signal low value will not fall below zero)

When the value of Input mode’ parameter falls belowMin. value’ with an amplitude more than 2.5%; or exceeds`Max. value’with an amplitude again more than 2.5%; output signal will change. In this case, output signals from AOX- GND pins will operate as follows in order to indicate that there is a problem in the electrical network:

for 0 ­ 5 V setting; AOX-GND signal amplitude will be for -5 ­ 5V setting; AOX-GND signal amplitude will be for 0 ­ 10 V setting; AOX-GND signal amplitude will be for -10 ­ 10 V setting; AOX-GND signal amplitude will be for 0 ­ 20 mA setting; AOX-GND signal amplitude will be for 4 ­ 20 mA setting; AOX-GND signal amplitude will be
51

10 V 10 V 10.8 V 10.8 V 21.6 mA 21.6 mA

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

The amplitude of analog output signal on AO1-GND pins will be as calculated by the following formula.

AO1-GND

=[

AO1 con.highlimit-AO1 con.lowlimit (Max value-Min value) x Multip.

x (Meas. value-(Min

value x Multip.))]+

AO1 con. low

limit

E.g. 1 :

Assume that the following values have been assigned;

Input connection : V1(L-N) (phase-neutral voltage of phase 1)

Output connection : 0-5V

Min. value

: 100V

Max. value

: 200V

Multiplier

: 1

Then, when measure is KLEA V1(L-N)=120V, the result will be as follows,

AO1-GND

=[

5-0 100)x1

x

120-(100×1)

+ 0 = 1V)] olur ( 200- KLEA V1(L-N)=185V the result will be as follows,

AO1-GND

=[

5-0 100)x1

x

185-(100×1)

0

=

4.25V

olur.

(200-

E.g. 2 :

Assume that the following have been assigned;

Input connection : P tot.(total active power) Output connection: 4-20mA

Min. value

: 600W

Max. value

: 1000W

Multiplier

: 1

Then, when measure is KLEA P tot. = 732W, the result will be as follows,

AO1-GND

=[

20-4 (1000-600)

x]

x

(732-(600×1))]

4

=

5.28mA

When measure is KLEA V1(L-N)=992W, the result will be as follows,

AO1-GND =[ (22000–4100)x1x (992-(600×1)] + 4 = 19.68mA

E.g. 3 :

Assume that the following have been assigned;

Input connection : Q tot.(total reactive power) Output connection: -10 – 10V

Min. value

: 1400VAr

Max. value

: 1800VAr,

Multiplier

: kilo

52

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

When measure is KLEA S tot.=1485000VAr, the result will be as follows,

AO1-GND

=[

10-(-10) (1800-1400)x1000

x(1485000-(1400×1000)]

(-10)

=

-5.75V

When measure is KLEA V1(L-N)=1695000VA , the result will be as follows,

AO1-GND

=[

10-(-10) (1800-1400)x1000

x(1695000-(1400×1000)]

(-10)

=

4,75V

3.2.1.1.6.2 Output 2 Menu
Analog output 2 settings are the same as Output1. Analog output gives output from AO2- GND pins.
3.2.1.1.6.3 Output 3 Menu
Analog output 3 settings are the same as Output1. Analog output gives output from AO3- GND pins
3.2.1.1.6.4 Output 4 Menu
Output 4 Menu Settings ve kullanimi, Output 1 Menu ile aynidir. Analog Output , AO4-GND üzerinden alinir.

3.2.1.1.7 Communication Menu
KLEA implements ModeBUS over serial line with RTU mode. In this menu, settings related with Modebus RTU are accomplished.

Settings Measure Meters Alarms

Setup

Network

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

Password

Digital input

0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion

Alarm

V3 2 2 0 .C0lear V I3

Analysis
5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

Fig. 3-44 Communication Menu

17:22

53

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.7.1 Baud Rate Menu
Inside Communication menu, press up and down keys to select (highlight) `Baud rate’ menu item. Press OK key and baud rate options will appear on the screen as seen in Figure 3-45. Scroll inside options by pressing up and down keys; press OK key to select the desired value. Avaliable baud rates are: 2400, 4800, 9600, 19200, 38400, 57600 and 115200 bit/sec.

Settings->Setup->Communication

Baud rate Slave Id

38400 2400 4800 9600 19200 38400 57600 115200

3.2.1.1.7.2 Slave Id

Fig. 3-45 Setting Baud Rate

In this tab, operator can adjust the slave ID. (For Virtual Keyboard Refer to 3.1.4 E.g.)

Slave Id

1

Fig. 3-46 Slave Id
KLEA can operate in an RS-485 network having a maximum quantity of 247 units. As a result, Slave Id’ can be adjusted between 1 and 247. 3.2.1.1.8 Alarm Menu InsideSetup’ menu, when`Alarm’ is selected, press OK key and the options in Figure 3-47 will appear on the screen. Press up and down keys to select the desired option and press OK key to complete the setting.

Settings Measure Meters Alarms Analysis

Setup

Network

V(L-N)

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 V(L-L)
Current

A

Password

Digital input

P

0 . 0 5 . 0 RDVee2sfataurltt settings 220.0 5.0 V3

DCiogmitamlVuonuitcIp2auttion Alarm Clear
V I3

Q S CosØ PF IN F

A A

Harmonics V

Harmonics I

1 23 V
I

1 2 1 2 TEemp.

17:22

Fig. 3-47 Alarm Menu
54

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.8.1 V(L-N) Menu
Inside`Alarm’ menu, when V(L-N) is highlighted, press OK key and the following page will appear on the screen.

Settings->Setup->Alarm->V(L-N)

Alarm relay

Off

Low limit

0.0

V

High limit

0.0

V

Delay

0

sec

Hysteresis

0.0

%

Fig. 3-48 V(L-N) Menu
Alarm relay :
This setting is merely used to energize or not to energize a relay, when an alarm occurs. For alarm relay setting, following options are available:
Off : In case of V(L-N) alarm, none of the alarm relaysis energized Relay1 : In case of V(L-N) alarm, relay 1 is energized Relay2 : In case of V(L-N) alarm, relay 2 is energized
Press up and down keys to select the desired option and press OK key to complete the setting.

Alarm relay

Off

Fig. 3-49 Alarm Relay Setup
In order to adjust Klea to issue V (L-N) alarms, operator should adjust low limit and high limit values as described below. When V(L-N) of “any” of the three phases exceeds “Low limit” or “High Limit”, Klea gives an alarm.

55

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Low Limit: Low limit value for the V(L-N) alarm. (For Virtual Keyboard Refer to 3.1.4 E.g.). In order to set an alarm for V(L-N), operator should enter a low limit value smaller than the high limit value. When low limit and high limit values are entered to be the same, V(L-N) alarm will be deactivated (no alarm will be set).

High Limit:
High limit value for the V(L-N) alarm. (For Virtual Keyboard Refer to 3.1.4 E.g.). ). In order to set an alarm for V(L-N), operator should enter a high limit value larger than the low limit value. When low limit and high limit values are entered to be the same, V(L-N) alarm will be deactivated (no alarm will be set).

Delay:

When the related alarm parameter exceeds the “Low limit” or “High Limit” value; before declaring an alarm, Klea waits for “delay time”. Similarly, when the related alarm parameter enters into the limit values, Klea waits for “delay time”, before cancelling the alarm. “Delay”
can be adjusted between 0 600 sec. (For Virtual Keyboard Refer to 3.1.4 E.g.).

Delay

0

sec

Fig. 3-50 Alarm Time Setting
Hysteresis: It is the tolerance entered as percentage for high and low limits . Hysteresis can be adjusted between 0 20 (For Virtual Keyboard Refer to 3.1.4 E.g.). Examine following example and Fig. 3-52 )

Hysteresis

0.0

%

Fig. 3-51 Hysteresis Setting

E.g. For the following figure(`Delay’ is adjusted to be zero); At point A, alarm occurs At point B, alarm disappears At point C, alarm occurs At point D, alarm disappears

56

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Amplitude
High limit Hysteresis %

Hysteresis %

B

Low limit

A

C D Waveform

Fig. 3-52 Alarm Example

Time

3.2.1.1.8.2 V(L-L) Menu

Alarm for phase-to-phase voltages is adjusted in this submenu. V(L-L) settings are the same as V(L-N). Low and high limit values can be adjusted between 0 2600000).

3.2.1.1.8.3 Current Menu

Alarm for current is adjusted in this submenu. Current settings are the same as V(L-N). Low and high limit values can be adjusted between 0 30000).

3.2.1.1.8.4 P Menu

Alarm for active power is adjusted in this submenu. P settings are the same as V(L-N). Low and high limit values can be adjusted between: -100000000000 10000000000)

3.2.1.1.8.5 Q Menu

Alarm for reactive power is adjusted in this submenu. Q settings are the same as V(L-N). Low and high limit values can be adjusted between: -10000000000 10000000000).

3.2.1.1.8.6 S Menu

Alarm for apparent power is adjusted in this submenu. S settings are the same as V(L-N). Low and high limit values can be adjusted between: 0.0 10000000000).

3.2.1.1.8.7 CosØ Menu
Alarm for cosØ is adjusted in this submenu. cosØ settings are the same as V(L-N). Low and high limit values can be adjusted between: 0 1).

57

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.1.1.8.8 PF Menu
Alarm for power factor is adjusted in this submenu. Power factor settings are the same as V(L-N). Low and high limit values can be adjusted between: 0 1.

3.2.1.1.8.9 IN Menu
Alarm for neutral current is adjusted in this submenu. Neutral current settings are the same as V(L-N). Low and high limit values can be adjusted between: 0 90000

3.2.1.1.8.10 F Menu
Alarm for frequency is adjusted in this submenu. Frequency settings are the same as V(L-N). Low and high limit values can be adjusted between: 35 70.

3.2.1.1.8.11 Temp. Menu
Alarm for temperature is adjusted in this submenu. Temperature settings are the same as V(L-N). Low and high limit values can be adjusted between: -20 80.

When the low and high limit values are entered the same, KLEA will not issue an alarm.

Settings->Setup->Alarm->Current

Alarm relay

Relay1

Low limit

0.0

A

High limit

0.0

A

Delay

0.0

sec

Hysteresis

0.0

%

Fig. 3-53 Setting for No Alarm
When operator enters a low limit value larger than the high limit, “Invalid limits. Please check.” message appears on the screen.

58

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings->Setup->Alarm->Current

Alarm relay

Relay1

Low limit

0.0

A

High limit

0.0

A

Delay

0.0

sec

Hysteresis

0.0

%

Invalid limits! Please check.

X

OK

Fig. 3-54 Invalid Limits message
3.2.1.1.8.12 Harmonics V Menu
Inside `Alarm’ menu, when Harmonics V is highlighted, press OK key and the following page will appear on the screen.

Settings->Setup->Alarm->Harmonics V

Alarm relay

Off

THDV hi limit

0.0

%

V3 hi limit

0.0

%

V5 hi limit

0.0

%

V7 hi limit

0.0

%

V9 hi limit

0.0

%

V11 hi limit

0.0

%

V13 hi limit

0.0

%

V15 hi limit

0.0

%

V17 hi limit

0.0

%

V19 hi limit

0.0

%

V21 hi limit

0.0

%

Delay

60

sec

Fig. 3-55 Harmonics Menu

Alarm relay:

Refer to 3.2.1.1.8.1 V(L-N) – Menu – Alarm relay setting.

THDV High Limit:
High limit value for total harmonic distortion – voltage alarm (For Virtual Keyboard Refer to 3.1.4 E.g.). In order to set an alarm for THDV, operator should enter a high limit value larger than zero. When high limit is entered as zero, THDV alarm will be deactivated (no alarm will be set). It can be adjusted between 0 100.

59

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

THDV hi limit

0.0

%

Fig. 3-56 THDV High Limit Setting
V3 — V21 high limit:
“3.”,”5.”…”21.”harmonic distortion high limit values are entered. In order to set an alarm for V3, V5 ­ V21 operator should enter a high limit value larger than zero. When high limit is entered as zero (0.0), V3, V5 ­ V21 alarm(s) will be deactivated (no alarm will be set). High limits can be adjusted between . 0 100 For Virtual Keyboard Refer to 3.1.4 E.g.).

V3 hi limit

0.0

%

V21 hi limit

0.0

%

Delay:

Fig. 3-57 V3 – V21 Harmonic High Limit

See 3.2.1.1.8.1 V(L-N) Menu – Delay setting.
3.2.1.1.8.13 Harmonics I Menu
“Harmonics I” settings are the same as the “Harmonics V” alarm settings.
3.2.1.1.9 Clear Menu
In this tab, operator can clear demand values, energy (tariff meter) values and DI (Digital Input) counters. “All” option clears all, namely, demand, energy and DI counter values. When “Clear” is highlighted, press OK key and the following page will appear on the screen.

Settings Measure Meters Alarms Analysis

Setup

Network

Energy

0 . 0 DVa1te / Time
System info

DeviceV I1 Energy

5 . 0 Demand

A

DI meters

Password

Digital input

All

0 . 0 RDVee2sfataurltt settings DCiogmitamlVuonuitcIp2auttion

5.0 A

Alarm

V3 2 2 0 .C0lear V I3

5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-58 Clear Menu
60

Are you sure?

X

OK

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Scroll inside options by pressing up and down keys; press OK key to clear the desired option. When OK key is pressed,”Are you sure?” message will appear on the screen. Press again OK key to clear the parameter; press X key to exit with no change in the selected parameter.

Assume that “Meters=> Imp. Active=> T1″ Import active power) submenu is as shown below.

Meters->Imp. active

T1 T1 rate 1 T1 rate 2 T1 rate 3 T2

267500.1 0.0 0.0 0.0 0.0

kWh kWh kWh kWh kWh

Fig. 3-59 Before Clear
When the clear process is completed, the submenu”Meters->T1->Imp. Active” will be as shown in the Fig. 3-60.

Meters->Imp. active

T1

0.0

T1 rate 1

0.0

T1 rate 2

0.0

T1 rate 3

0.0

T2

0.0

kWh kWh kWh kWh kWh

Fig. 3-60 After Clear
After the clear process, for index parameters, a value different than zero may be observed. This value, is the initial value entered by the operator.
61

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Assume that, initial value of “Setup->Energy->T1 kWh” was entered as 7500 kWh. In this case, after the clear process is completed, “Meters->Imp. active->T1 ” value will be 7500kWh. (Refer to Fig. 3.61).

Meters->Imp. active

T1 T1 rate 1 T1 rate 2 T1 rate 3 T2

7500. 0 0.0 0.0 0.0 0.0

kWh kWh kWh kWh kWh

Fig. 3-61 Initial Value, After Clear Process
3.2.1.2 Date / Time Menu
In the following menu Date / Time setting is made. (For date/time setting Refer to 3.1.4 E.g.).

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

Settings->Date / Time

Time Date

17 : 22 : 17 07 January 2013

1 23 V
I

1212

E

17:22

Fig. 3-62 Date / Time Menu

3.2.1.3 System Info Menu
This menu is for information ­ no setting is accomplished.

62

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

17:22

KLEMSAN

KLEA – Network Analyzer

Model

606130

Serial number

2555953

Language

English

Firmware version

1.00

PCB version

1.1.e0

Build date

29 October 2012

Temperature

26.5 °C

Battery voltage

3.30 V

Fig. 3-63 System Info

Temperature and battery voltage values can be reached via RS485.

3.2.1.4 Password Menu
If operator have not entered password; only Date/Time, System Info and Password tabs are active inside settings menu. In order for the remaining tabs to be activated, operator should login via `Password’ tab.
If the entered password is correct, “Login success” message appears on the screen. Otherwise, “Password mismatch” message will be displayed on the screen. (For Virtual Keyboard Refer to 3.1.4 E.g.).

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

Login required! X

1 23 V
I

1212

E

17:22

Fig. 3-64 Password

3.2.1.5 Restart Menu

Login success. Password mismatch.

OK

X

If OK key is pressed on the restart tab, “Are you sure?” message appears on the screen. Press again OK key to restart Klea.

63

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

17:22

Are you sure?

X

OK

3.2.1.6 Default Settings

Fig. 3-65 Restart

This menu is used to return to factory default settings. All settings except date and time return to the factory defaults. NOTE: Tariff meter indexes are not assumed to be a setting. As a result, index values will not be cleared via this menu.

Settings Measure Meters Alarms

Setup
0 . 0 DVa1te / Time
System info
Password
0 . 0 RDVee2sfataurltt settings

V I1 V I2

Analysis
5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

Default settings will be assigned. Are you sure?

X

OK

1 23 V
I

1212

E

17:22

Fig. 3-66 Default Settings Command

3.2.2 Measure Menu

The following submenus are included under the measure menu. Operator can navigate inside measure menu by up and down keys. When the desired menu item is highlighted, press OK key to select. Following menu items are available:
· Instantaneous · Demand · Phasor diagram · Signals · Harmonics

64

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Measure Meters Alarms Analysis

Instantaneous
0 . 0 DVe1mand
Phasor diagram
Signals
2 HVa2rmonics 2 0 . 0

V I1 V I2

5.0 A 5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

Fig. 3-67 Measure Menu

3.2.2.1 Instantaneous Menu

17:22

This menu includes instantaneous values. If OK is pressed on this tab, the following page appears on the screen. Operator can scroll inside Instantaneous values by pressing right and left keys.

Measure->Instantaneous->V L-N

V1 220.0

V

V2 220.0

V

V3 220.0

V

Vo 220.0

V

Powers V L-N V L-L

Fig. 3-68 Instantaneous Menu
· Line-to-neutral V (L-N) voltage for each phase and their average · Line-to- line V(L-L) voltage for each phase and their average · Phase currents (I) and their sum · Neutral current (IN) · CosØ for each phase and CosØ of system · Power factor (PF) for each phase and power factor (PF) of system · Active power (P) for each phase and their sum · Reactive power (Q) for each phase and their sum · Apparent power (S) for each phase and their sum · Frequency (F) for each phase · THDV values for each phase and their sum · THDI values for each phase and their sum · Total powers
65

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

If “3phase 3 wire” is selected as connection type, “VL-N” title in instantaneous menu will be replaced with “V”.
In Measure-Instantaneous-P(active power) page; if active power value(of any phase) is positive (a “+” sign after the number), that phase consumes power, if active power value(of any phase) is negative (a “-” sign after the number), that phase generates power. The above phenomenon also applies for total P (active power) value.
When Klea is mounted on a panel which consumes power, the values in MeasureInstantaneous-P page should be positive(+). When Klea is mounted on a panel which generates power, the values in Measure-Instantaneous-P page should be negative(-). Otherwise, K-L leads of the current should be cross connected.

Measure ->Instantaneous ->P

P1 1100.0

W +

P2 1100.0

W +

P3 1100.0

W +

Pt 3300.0

W +

PF

P

Q

Meters->Imp. active

T1 T1 rate 1 T1 rate 2 T1 rate 3 T2

267500.1 0.0 0.0 0.0 0.0

kWh kWh kWh kWh kWh

Fig. 3-69 Connecting the K-L ends of Current Correctly
3.2.2.2 Demand Menu
Duringdemandperiod, Klea, calculatesaveragesforcurrent, active, reactive andapparent powers for three phases. Maximum of these averages are stored as the demand value with a corresponding time stamp.

Measure Meters Alarms Analysis

Instantaneous
0 . 0 Demand
Phasor diagram Signals
2 Harmonics 2 0 . 0

V I1 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

Fig. 3-70 Demand Menu

17:22

66

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

E.g.: The following graph shows the averages of current signals that are calculated/measured during the 15 minutes (demand period=15) and demand value.
Amplitude

Waveform

15 minutes

15 minutes

15 minutes

average value=3 amps average value=5 amps average value=4 amps

demand=3A

demand=5A

demand=5A

*demand period=15 minutes Fig. 3-71 Demand Example

Time (min)

3.2.2.2.1 Current Month Menu
This menu displays demand values of current, active, reactive and apparent power of three phases and their totals for the current (present) month.

Measure Meters Alarms Analysis

Instantaneous Curr. month

0 . 0 Demand
Phasor diagram

1 2

mmoonnVtthhsaIag1goo

Signals

3 months ago

2 Harmonics 2 0 . 0 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

Measure Meters Alarms Analysis

Instantaneous Curr. month

0 . 0 Demand
Phasor diagram

1 2

mmoonnVtthhsaIag1goo

Signals

3 months ago

2 Harmonics 2 0 . 0 V I2

Current

0 . 0 Act. power
Rea. power

A

App. power

5.0 A

V3 2 2 0 . 0 V I3

5.0 A

1 23 V
I

1212

E

17:22

1 23 V
I

1212

E

17:22

Fig. 3-72 Current Month Menu

“Start of day” and “start of month” settings are adjusted in “Settings->Setup->Energy” menu. “Start of day” and “start of month” are important for “Curr. Month”, “1 month ago”, “2 months ago” and “3 months ago” submenus.

67

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

E.g.: Assume that start of day is “8”, and start of month is “26”; When time is 08.00 on 26th day of the month;

“Current month” values will be assigned as “1 month ago” values will be assigned as “2 months ago” values will be assigned as

“1 month ago” values, “2 months ago” values, “3 months ago” values.

And new values will be saved in “current month” menu.

Settings->Setup->Energy

T1_1 start time T1_2 start time T1_3 start time Start of day Start of month T1 kWh T1 kWh E T1 kVARh Imp. I. T1 kVARh Imp. C. T1 kVARh Exp. I. T1 kVARh Exp. C. T2 kWh

8 16 0 8 1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

hr hr hr hr
kWh kWh kVArh kVArh kVArh kVArh kWh

3.2.2.2.1.1 Current Menu

Fig. 3-73 Example of Current Month Menu

This menu shows demand values of currents of each phase and the demand value for the sum of phase currents. Date and time information for demand values can be seen on the screen.

E.g.:

Measure Meters Alarms Analysis

Instantaneous Curr. month

DVe1mand

1 monVth aIg1o

Phasor diagram 2 month ago

Signals

3 month ago

2 Harmonics 2 0 . 0 V I2

Current

0 . 0 Act. power
Rea. power

A

App. power

5.0 A

V3 2 2 0 . 0 V I3

5.0 A

Measure->Demand->Curr month ->Current

Phase1 Phase2 Phase3 Toplam

5.0

A

02:44:59 – 10/10/12

5.1

A

13:29:59 – 11/10/12

4.9

A

14:29:59 – 09/10/12

15.6

A

09:14:59 – 12/10/12

1 23 V
I

1212

E

17:22

Fig. 3-74 Current Menu

Assume that demand period is entered as 15 minutes. Also assume that the current (present) month’s`current demand’ and date are: Phase1 5.0 A 02:44:59 – 10/10/12.

68

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

This means: On October 10, 2012, demand value of phase1 current in the time interval 02:29:59 ­ 02:44:59, is 5.0 A.

In order for KLEA to keep demand values for “1 month ago”, “2 months ago” and “3 months ago”; demand period should be set as 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60 min (common divisors of 60). Otherwise, “1 month ago”, “2 months ago” and “3 months ago” demand values will not be stored.

E.g.:

When the system clock is 15:07:00, assume that demand period is adjusted as 15 minutes. Sequentially, demand periods will be as follows:
05:07:00 – 15:14:59 = The 1st demand period 15:14:59 – 15:29:59 = The 2nd demand period 15:29:59 – 15:44:59 = The 3rd demand period 15:44:59 – 15:59:59 = The 4th demand period 15:59:59 – 16:14:59 = The 5th demand period

3.2.2.2.1.2 Active power Menu
The demand values for active power are as explained in the “Demand->Current Month->Current” submenu.
3.2.2.2.1.3 Reactive power menu
The demand values on the reactive power are as explained in the “Demand->Current Month->Current” submenu.
3.2.2.2.1.4 Apparent power menu
The demand values on the apparent power are as explained in the “Demand->Current Month->Current” submenu.
3.2.2.2.2 1 month Ago Menu
The demand values on the 1 month ago menu are as explained in the “Demand->Current Month” submenu.

69

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.2.2.3 2 Months Ago Menu

The demand values on the 2 months ago menu are as explained in the “Demand->Current Month” submenu.

3.2.2.2.4 3 Months Ago Menu
The demand values on the 3 months ago menu are as explained in the “Demand>Current Month” submenu.

3.2.2.3 Phasor Diagram Menu
In phasor diagram menu page, at the right of the phasor diagram, following information is listed: · phase voltages (V1, V2, V3) · phase currents (I1, I2, I3) · V1-V2, V2-V3 and V3-V1 phase difference angles · V1-I1, V2-I2 and V3-I3 phase difference angles
Within the phasor diagram, currents are drawn with gray lines, and voltages are drawn with black lines. Within the phasor diagram, same size circles have been added to the ends of lines belonging to the same phase. Thus, it will be easy to follow currents and voltages of a phase.

Measure Meters Alarms Analysis

Instantaneous
1 5 0 . 1 Demand
Phasor diagram Signals
1 HVa2rmonics 5 0 . 2

V I1 V I2

3.0 A 3.0 A

V3 1 5 0 . 0 V I3

3.0 A

1 23 V
I

1212

E

17:22

Measure->Phasor diagram

V1

150.1 V

V2

150.2 V

V3

150.0 V

I1

3.0

A

I2

3.0

A

I3

3.0

A

V1-V2 120.9

V2-V3 119.6

V3-V1 119.5

V1-I1 29.4

V2-I2 29.3

V3-I3 29.7

Fig. 3-75 Phasor Diagram Menu

3.2.2.4 Signals Menu

In this menu, current and voltage waveforms are shown. At the right hand side of the waveforms, following information is listed:

· Voltage and current values of phases · Instantaneous frequency value · Phase difference between current and voltage

Current signal is in gray, and voltage is in black color. Operator can scroll inside signals menu by pressing left and right keys.

70

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Measure Meters Alarms Analysis

Instantaneous
0 . 0 Demand
Phasor diagram Signals
1 Harmonics 5 0 . 0

V I1 V I2

3.0 A 3.0 A

Measure->Signals->V2-I2

V3 1 5 0 . 0 V I3

3.0 A

1 23 V
I

1212

E

17:22

V1-I1 V2-I2

V3-I3

150.0V 3.0A
50.0Hz 30.0°

Fig. 3-76 Signals Menu

3.2.2.5 Harmonics Menu

KLEA measures/calculates current and voltage harmonics up to 51st harmonic. Current and voltage harmonics can be monitored in table and in graph format.

Measure Meters Alarms Analysis

Instantaneous
0 . 0 Demand
Phasor diagram Signals
0 . 0 Harmonics

V I1 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

Fig. 3-77 Harmonics Menu

17:22

3.2.2.5.1 Table Menu

Current and voltage harmonics of each phase are displayed in a table format (Refer to Fig. 3-78). Operator can scroll inside table menu by pressing right and left keys. There are 6 table pages: V1, V2, V3, I1, I2, I3.

Measure->Harmonics->V1 %

1

2

3

4

5

1-5

99.01 0.00 1.02 0.00 0.05

6-10

0.00 2.10 0.00 3.30 0.00

11-15 5.70 0.00 0.75 0.00 0.00

16-20 0.00 0.00 0.00 0.00 0.00

21-25 0.00 0.00 0.00 0.00 0.00

26-30 0.00 0.00 0.00 0.00 0.00

31-35 0.00 0.00 0.00 0.00 0.00

36-40 0.00 0.00 0.00 0.00 0.00

41-45 0.00 0.00 0.00 0.00 0.00

46-50 0.00 0.00 0.00 0.00 0.00

I3 %

V1 % V2 %

Fig. 3-78 Harmonics in Table Format
71

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.2.5.2 Graph Menu
Current and voltage harmonics of each phase are displayed graphically (Refer to Fig. 3-78). Operator can scroll inside graph menu by pressing right and left keys. There are 6 graph pages: V1, V2, V3, I1, I2, I3.

Measure->Harmonics->V1 %
20 % 15 % 10 %
5 %

1

11

21

31

41

51

I3 %

V1 % V2 %

Fig. 3-79 Harmonics in Graphical Format
3.2.3 Meters Menu
In this menu, the energy values of Tariff 1 and Tariff 2 me ers are displayed:
· Imp. active · Exp. active · Reactive R1 · Reactive R2 · Reactive R3 · Reactive R4 · Digital input · Other
When an energy meter reaches the value “50000000.0 Mega”, it will start to count from “0.0”.

3.2.3.1 Imp. Active Menu
Imp. active meter consist of ” T1″ , “T1 Rate1” , “T1 Rate2” , “T1 Rate3” and “T2” energy values.

72

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Meters Alarms Analysis

Imp.active

0 . 0 Exp. active
Reactive R1

Reactive R2

0 . 0 Reactive R3
Reactive R4

Digital input

OVt3her

0.0

V I1 V I2 V I3

0.0 A 0.0 A 0.0 A

1 23 V
I

1212

E

Fig. 3-80 Imp. Active Menu

14:31

3.2.3.1.1 T1 Tab.

Import active energy values that belongs T1 are displayed as seen in the following figure:

Meters->Imp. active

T1 T1 rate1 T1 rate2 T1 rate3 T2

302500.0 99250.0 98350.0 104900.0 3506.0

kWh kWh kWh kWh kWh

3.2.3.1.2 T1 Rate1 Tab.

Fig. 3-81 Imp. Active Energy Page

T1 Rate1 meter that belongs to T1, counts between T1_1 start time and T1_2 start time. Refer to: 3.2.1.1.3.1 and 3.2.1.1.3.2 for “T1_1 start time” and “T1_2 start time”settings.

73

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Meters->Imp. active

T1 T1 rate1 T1 rate2 T1 rate3 T2

302500.0 99250.0 98350.0 104900.0 3506.0

kWh kWh kWh kWh kWh

Fig. 3-82 T1 rate1 import active energy
3.2.3.1.3 T1 Rate2 Tab.
T1 Rate2 meter that belongs to T1, counts between T1_2 start time and T1_3 start time. Refer to: 3.2.1.1.3.2 and 3.2.1.1.3.3 for “T1_2 start time” and “T1_3 start time”settings.

Meters->Imp. active

T1 T1 rate1 T1 rate2 T1 rate3 T2

302500.0 99250.0 98350.0 104900.0 3506.0

kWh kWh kWh kWh kWh

Fig. 3-83 T1 rate2 import active energy
3.2.3.1.4 T1 Rate3 Tab.
T1 Rate3 meter that belongs to T1, counts between T1_3 start time and T1_1 start time. Refer to: 3.2.1.1.3.3 and 3.2.1.1.3.1 for “T1_3 start time” and “T1_1 start time”settings.

74

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Meters->Imp. active

T1 T1 rate1 T1 rate2 T1 rate3 T2

302500.0 99250.0 98350.0 104900.0 3506.0

kWh kWh kWh kWh kWh

3.2.3.1.5 T2 Tab.

Fig. 3-84 T1 rate3 import active energy

Import active energy values that belongs T2 are displayed as seen in the following figure:

Meters->Imp. active

T1 T1 rate1 T1 rate2 T1 rate3 T2

302500.0 99250.0 98350.0 104900.0 3506.0

kWh kWh kWh kWh kWh

Fig. 3-85 Tariff 2 impo t active energy
While Tariff 2 me er is active; Tariff 1, T1 rate1, T1 rate2, T1 rate3 meters are not active. (mutually exclusive). In order for Tariff 2 o be active; 1-) “T2” mode should be selected in “digital input1” and/or “digital input2” menu, 2-) DI and GND pins of the selected input should be short-circuited. (Refer to3.2.1.1.4 Digital input) If `Tariff 2 mode is “NOT” SELECTED in the digital input menu, even though the related digital input pins are short-circuited, Tariff 2 will not be a tive – Tariff meter continues to operate.
75

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.3.2 Digital Input Menu

In this menu, counters belonging to digital inputs are displayed. Refer to 3.2.1.1.4 Digital input to adjust a digital input as a counter.

When DI1 and GND pins are short-circuited for at least delay ( (Refer to 3.2.1.1.4.1.2 Delay) time, “digital input1 counter” value increments by “1”.

When DI2 and GND pins are short-circuited for at least delay (Refer to 3.2.1.1.4.1.2 Delay) time, “digital input2 counter” value increments by “1”.

Meters->Digital input

Counter 1

4

Counter 2

2

Counter 3

0

Counter 4

0

Counter 5

0

Counter 6

0

Counter 7

0

Fig. 3-86 Digital Input Menu(Dijital IO opsiyonlu model)
KLEA base model has2; optional digital IO model has 7 counters.
3.2.3.3 Others Menu
In this menu, consist of on hour counter, run hour counter and power interruption counter. Only run hour counter can be deleted by users.
3.2.4 Alarms Menu
In this menu, alarms can be monitored. Alarms menu consists of Phase1′, Phase2′, Phase3′ andOther’ submenus.
In Klea ModeBUS table, 50 alarm statuses can be saved (Refer to Table 4.3). If the number of alarm statuses exceeds 50; 51st alarm is overwritten on the first alarm. An alarm status consists of the below information:
76

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Alarm Time Stamp:
Alarm time, 32 bit integer
Alarm Definition:
Alarm flag bit numbe . Refer to the example below
Alarm State:
Alarm ON or alarm OFF state. Alarm ON and alarm OFF conditions are both considered as records. As a result, both conditions are saved in ModeBUS table as different alarm statuses. 1 -> Alarm ON 0 -> Alarm OFF
Alarm Value:
Value of the related alarm parameter
E.g.: Assume that, 100 VAC is assigned as low limit for V(L-N) (for phase1, phase2 and phase3 V L-N voltages) and again assume that phase3 voltage falls below 100VAC in the system. In such a case,
Alarm Definition; is the bitwise index number inside the alarm flags (4.5.1.1 Alarm flags variable. That is, for the above situation, “alarm definition value” will be 3. Shortly, alarm definition value can be used as an index in alarm flag variable to reach the explanation for that alarm. Besides, this way, operator will have the opportunity to match the alarm with the alarm fla .

77

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Alarms Analysis

Phase 1

Phase 2 Phase 3

0.0

Other

V2 220.0

V I1 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

Fig. 3-87 Alarms Menu

17:22

3.2.4.1 Phase1 Menu
In Phase1 menu, phase1 alarm statuses are displayed. “Normal” No alarm “Alarm” Alarm

Alarms->Phase1
V
I P Q S CosØ PF V harmonics THDV I harmonics THDI F

Alarm
Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal

Fig. 3-88 Phase1 Menu
In Phase1 menu, following alarm statuses are monitored. · V (phase-neutral voltage) · I (current) · P (active power) · Q (reactive power) · S (apparent power) · cos Ø · PF (power factor) · V harmonics (any of 3., 5., – 21. harmonic alarm statuses ORed) · THDV (total harmonic distortion in voltage) · I harmonics (any of 3., 5., – 21. harmonic alarm statuses ORed) · THDI (total harmonic distortion in current)

78

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.4.2 Phase2 Menu
“Phase2” menu consists of the same items as “Phase1” menu. Please refer to 3.2.4.1 Phase1 menu for details.
3.2.4.3 Phase3 Menu
“Phase3” menu consists of the same items as “Phase1” menu. Please refer to 3.2.4.1 Phase1 menu for details.
3.2.4.4 Other Menu
In “Other” menu, explanations are the same as in Phase1 menu.

Alarms->Other
VLL12 VLL23 VLL31 IN Temperature Battary

Normal
Normal Normal Alarm Normal Normal

Fig. 3-89 Other Menu
In “Other” menu, following alarm statuses are monitored: · VLL12 (phase1-phase2 voltage) · VLL23 (phase2-phase3 voltage) · VLL31 (phase3-phase1 voltage) · IN (neutral current) · Temperature · Battery When the battery voltage falls below 1.9 V value, Klea issues Battery alarm. When Klea issues battery alarm, contact your local authorized dealer (or the nearest authorized dealer).
3.2.5 Analysis Menu
It consists of submenus shown in Fig. 3-90. Analysis menu parameters can also be reached from ModeBUS (Refer to 4.5.3 Archive Records).
79

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

Analysis

Minimum

2 2 0 . 0 MV1aximum
Average

V I1

V2 2 2 0 . 0 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

Fig. 3-90 Analysis Menu

17:22

Analysis menu parameters are not stored in permanent memory. As a result, all of analysis menu parameters will be cleared when Klea is turned-off.

3.2.5.1 Minimum Menu
It consists of hourly, daily and monthly submenus.

Analysis

Minimum

Hourly

2 2 0 . 0 MV1aximum
Average

Daily V I1 Monthly

V2 2 2 0 . 0 V I2

V3 2 2 0 . 0 V I3

5.0 A 5.0 A 5.0 A

1 23 V
I

1212

E

17:22

Fig. 3-91 Minimum Menu

3.2.5.1.1 Hourly Menu
This menu displays the minimum”instantaneous” values measured/calculated from the beginning of current hour up to present time.

Analysis

Minimum

Hourly

2 2 0 . 0 MV1aximum
Average

Daily V I1 Monthly

V2 2 2 0 . 0 V I2

V3 2 2 0 . 0 V I3

Phase1

5 . 0 Phase2

A

Phase3

Other

5.0 A

5.0 A

1 23 V
I

1212

E

Fig. 3-92 Hourly Menu
80

17:22

4 Quadrant
Energy Analyzer

SECTION 3 MENUS

3.2.5.1.1.1 Phase1 Menu
Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S), cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.2 Phase2 Menu

Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S), cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.3 Phase3 Menu
Voltage(V), current(I), active power(P), reactive power(Q), apparent power(S), cos Ø, power factor(PF), and frequency(F) values are displayed.
3.2.5.1.1.4 Other
VLL12(phase1-phase2 voltage), VLL23(phase2- phase3 voltage), VLL31(phase3phase1 voltage).

3.2.5.1.2 Daily Menu
This menu displays the minimum instantaneous values measured/calculated from start of day (Refer to 3.2.1.1.3.4) up to present time. Its submenus are the same as “Hourly menu”.

3.2.5.1.3 Monthly Menu
This menu displays the minimum instantaneous values measured/calculated from start of month (Refer to 3.2.1.1.3.5) and start of day Refer to 3.2.1.1.3.4), up to present time. Its submenus are the same as “Hourly menu”.
3.2.5.2 Maximum Menu

Submenus and explanations of”Maximum”menu are the same as”Minimum”menu. The values measured in the “Maximum” menu are also “instantaneous” maximum values.
3.2.5.3 Average Menu
Submenus and explanations of “Maximum” menu are the same as “Minimum” menu. In “Average” menu, hourly, daily and monthly average values are displayed.

81

4 Quadrant
Energy Analyzer

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

82

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

BÖLÜM 4 MODBUS PROTOCOL
4.1 RS485 Wiring Diagram
RS485 WIRING DIAGRAM

120

120

Terminating resistor

Any device

Terminating resistor

Fig. 4-1 RS485 Wiring Diagram
4.2 Computer Connection
KLEA can communicate with PCs via USB-RS85 or RS232-RS485 converters.

PC

USB-RS485 or RS232-RS485

converter

Fig. 4-2 Connection of KLEA to a PC
4.3 Message Format and Data Types of ModeBUS-RTU Protocol

KLEA implements modebus RTU protocol. Modebus RTU message format is as follows

Tablo 4-1 Message Format

Start 3.5 byte

Address 1 byte

Function 1 byte

Data 0-252 byte

CRC 2 byte

End 3.5 byte

83

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

There should be a time gap, which is at least 3.5 characters wide, between RTU messages.

For instance, when client device requests any information, server device should reply after at least a 3.5 character wide time gap. Following the response of the server, client device should wait 3.5 characters long period, before requesting information again.

Data types used in KLEA are as follows

Tablo 4-2 int (32 bit) data type

b31 (Bit 31) MSB (Most Significant Bit)

———————————————————————-

b0 (Bit 0) LSB (Least Significant Bit)

int: float:

32-bit integer value. Byte order starts from the lowest byte address as b0, b1, b2 and so on.
It is a 32-bit flo ting-point number in IEEE 754 standard.

string:
Character array in ASCII standard. It is only used for Klea device name and Klea configuration name variables.

4.4 Implemented functions for ModeBUS-RTU Protocol
Tablo 4-3 Implemented functions for ModeBUS RTU Protocol

Function Name Read Holding Registers Write Single Register Write Multiple Registers Read file record

Function Code 03H (decimal value 3) 06H (decimal value 6) 10H (decimal value 16) 14H (decimal value 20)

4.5 Data and Setting Parameters for KLEA 4.5.1 Measured and Calculated Data

Calculated and measured data are “read-only” values.

84

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

Operator/programmer can reach all measured and calculated data via ModeBUS RTU protocol. Starting address for measured and calculated data is 0.

E.g.:

Three phase average voltage is read via the 0th and 1th registers (16 bits + 16 bits = 32 bit).

PC (or PLC) Request

Slave ID

01h

Function code

03h

Register address ­ high

00h

Register address ­ low

00h

Number of registers­ high 00h

Number of registers ­ low 02h

CRC high

C4h

CRC low

0Bh

KLEA Response

Slave ID

01h

Function code

03h

Byte counts

04h

Register value – high (0) 43h

Register value – low (0) 5Dh

Register value – high (1) 36h

Register value – low (1) E0h

CRC high

68h

CRC low

4Dh

The”Byte counts” information of KLEA response is two times”Number of registers” value of “PC

request” (1 register = 2 bytes).

Register value high(0) and low(0) together with register value high(1) and low(1) constitute a

32-bit value. This value should be converted (typecasted) to a flo t value. The flo t value of the

mentioned 32-bit variable is 221.2143555

Address 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Parameter V avg. I tot. P tot. Q tot. S tot. CosØ avg. PF avg. VLL1 VLL2 VLL3 VLL avg. I nötr THDV tot. THDI tot.

Tablo 4-4 Read-only Data
Description Average voltage of three phases Total current of three phases Total active power of three phases Total reactive power of three phases Total apparent power of three phases Average CosØ of three phases Average PF of three phases Voltage V1-2 Voltage V2-3 Voltage V3-1 Average of line to line voltage of three phases Neutral current Total har. distortion of voltage for three Total har. distortion of voltage for three

R/W Unit RO V RO A RO V RO VAr RO VA RO RO RO V RO V RO V RO V RO A RO % RO %

Data Type 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t

85

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

Address Parameter
28 L1 V 30 L1 I 32 L1 P 34 L1 Q 36 L1 S 38 L1 CosØ 40 L1 PF 42 L1 F 44 L1 THDV 46 L1 THDI 48 L1 V Harmonics1 50 L1 V Harmonics3 52 L1 V Harmonics5 54 L1 V Harmonics7 56 L1 V Harmonics9 58 L1 V Harmonics11 60 L1 V Harmonics13 62 L1 V Harmonics15 64 L1 V Harmonics17 66 L1 V Harmonics19 68 L1 V Harmonics21 70 L1 V Harmonics23 72 L1 V Harmonics25 74 L1 V Harmonics27 76 L1 V Harmonics29 78 L1 V Harmonics31 80 L1 V Harmonics33 82 L1 V Harmonics35 84 L1 V Harmonics37 86 L1 V Harmonics39 88 L1 V Harmonics41 90 L1 V Harmonics43 92 L1 V Harmonics45 94 L1 V Harmonics47 96 L1 V Harmonics49 98 L1 V Harmonics51 100 L1 I Harmonics1 102 L1 I Harmonics3 104 L1 I Harmonics5 106 L1 I Harmonics7 108 L1 I Harmonics9 110 L1 I Harmonics11 112 L1 I Harmonics13 114 L1 I Harmonics15

Description Phase 1
Phase1 voltage Phase1 current Phase1 active power Phase1 reactive power Phase1 apparent power Phase1 CosØ Phase1 power factor Phase1 frequency Phase1 total har. distortion of voltage Phase1 total har. distortion of current Phase1 voltage first harmonic Phase1 voltage third harmonic Phase1 voltage 5th harmonic Phase1 voltage 7th harmonic Phase1 voltage 9th harmonic Phase1 voltage 11th harmonic Phase1 voltage 13th harmonic Phase1 voltage 15th harmonic Phase1 voltage 17th harmonic Phase1 voltage 19th harmonic Phase1 voltage 21th harmonic Phase1 voltage 23th harmonic Phase1 voltage 25th harmonic Phase1 voltage 27th harmonic Phase1 voltage 29th harmonic Phase1 voltage 31th harmonic Phase1 voltage 33th harmonic Phase1 voltage 35th harmonic Phase1 voltage 37th harmonic Phase1 voltage 39th harmonic Phase1 voltage 41th harmonic Phase1 voltage 43th harmonic Phase1 voltage 45th harmonic Phase1 voltage 47th harmonic Phase1 voltage 49th harmonic Phase1 voltage 51th harmonic Phase1 current first harmonic Phase1 current third harmonic Phase1 current 5th harmonic Phase1 current 7th harmonic Phase1 current 9th harmonic Phase1 current 11th harmonic Phase1 current 13th harmonic Phase1 current 15th harmonic

86

R/W Unit Data Type

RO V RO A RO W RO VAr RO VA RO RO RO Hz RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO %

32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t

4 Quadrant
Energy Analyzer

SECTION 4 MODBUS PROTOCOL

Address 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150

Parameter L1 I Harmonics17 L1 I Harmonics19 L1 I Harmonics21 L1 I Harmonics23 L1 I Harmonics25 L1 I Harmonics27 L1 I Harmonics29 L1 I Harmonics31 L1 I Harmonics33 L1 I Harmonics35 L1 I Harmonics37 L1 I Harmonics39 L1 I Harmonics41 L1 I Harmonics43 L1 I Harmonics45 L1 I Harmonics47 L1 I Harmonics49 L1 I Harmonics51

152 L2 V 154 L2 I 156 L2 P 158 L2 Q 160 L2 S 162 L2 CosØ 164 L2 PF 166 L2 F 168 L2 THDV 170 L2 THDI 172 L2 V Harmonics1 174 L2 V Harmonics3 176 L2 V Harmonics5 178 L2 V Harmonics7 180 L2 V Harmonics9 182 L2 V Harmonics11 184 L2 V Harmonics13 186 L2 V Harmonics15 188 L2 V Harmonics17 190 L2 V Harmonics19 192 L2 V Harmonics21 194 L2 V Harmonics23 196 L2 V Harmonics25 198 L2 V Harmonics27 200 L2 V Harmonics29 202 L2 V Harmonics31

Description Phase1 current 17th harmonic Phase1 current 19th harmonic Phase1 current 21th harmonic Phase1 current 23th harmonic Phase1 current 25th harmonic Phase1 current 27th harmonic Phase1 current 29th harmonic Phase1 current 31th harmonic Phase1 current 33th harmonic Phase1 current 35th harmonic Phase1 current 37th harmonic Phase1 current 39th harmonic Phase1 current 41th harmonic Phase1 current 43th harmonic Phase1 current 45th harmonic Phase1 current 47th harmonic Phase1 current 49th harmonic Phase1 current 51th harmonic
Phase 2 Phase2 voltage Phase2 current Phase2 active power Phase2 reactive power Phase2 apparent power Phase2 CosØ Phase2 power factor Phase2 frequency Phase2 total har. distortion of voltage Phase2 total har. distortion of current Phase2 voltage first harmonic Phase2 voltage third harmonic Phase2 voltage 5th harmonic Phase2 voltage 7th harmonic Phase2 voltage 9th harmonic Phase2 voltage 11th harmonic Phase2 voltage 13th harmonic Phase2 voltage 15th harmonic Phase2 voltage 17th harmonic Phase2 voltage 19th harmonic Phase2 voltage 21th harmonic Phase2 voltage 23th harmonic Phase2 voltage 25th harmonic Phase2 voltage 27th harmonic Phase2 voltage 29th harmonic Phase2 voltage 31th harmonic
87

R/W Unit RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO % RO %

Data Type 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 bit flo t 32 b

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals