ALTERA Cyclone V E FPGA Development Board User Manual
- June 16, 2024
- ALTERA
Table of Contents
ALTERA Cyclone V E FPGA Development Board
Product Information
Specifications
- FPGA Model: Cyclone V E FPGA (5CEFA7F31I7N)
- FPGA Package: 896-pin FineLine BGA (FBGA)
- Controller: Flash fast passive parallel (FPP) configuration
- CPLD Model: MAX II CPLD (EPM240M100I5N)
- CPLD Package: 100-pin FBGA
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
- Memory:
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
- Mechanical: 6.5 x 4.5 size board
Product Usage Instructions
Chapter 1: Overview
General Description
The Cyclone V E FPGA Development Board is designed to provide advanced design capabilities with features such as partial reconfiguration. It offers faster operation, lower power consumption, and faster time to market compared to previous FPGA families.
Useful Links
For more information on the following topics, refer to the respective documents:
- Cyclone V device family: Cyclone V Device Handbook
- HSMC Specification: High Speed Mezzanine Card (HSMC) Specification
Chapter 2: Board Components
Board Component Blocks
The development board features the following major component blocks:
- One Cyclone V E FPGA (5CEFA7F31I7N) in a 896-pin FineLine BGA (FBGA)
- Controller: Flash fast passive parallel (FPP) configuration
- MAX II CPLD (EPM240M100I5N) in a 100-pin FBGA package
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
- Memory:
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
Mechanical
The development board has a size of 6.5 x 4.5 inches.
Chapter 3: Board Components Reference
This section provides detailed information about each board component and its functionality. Please refer to the Cyclone V E FPGA Development Board Reference Manual for more information.
FAQs
Q: Where can I find the latest HSMCs available?
A: To see a list of the latest HSMCs available or to download a copy of the HSMC specification, refer to the Development Board Daughtercards page of the Altera website.
Q: What are the advantages of the Cyclone V E FPGA Development Board?
A: The Cyclone V E FPGA Development Board offers design advancements and innovations, such as partial reconfiguration, which ensure faster operation, lower power consumption, and faster time to market compared to previous FPGA families.
Q: Where can I find more information about the Cyclone V device family?
A: For more information about the Cyclone V device family, refer to the Cyclone V Device Handbook.
Q: What is the size of the development board?
A: The development board has a size of 6.5 x 4.5 inches.
101 Innovation Drive
San Jose, CA 95134
www.altera.com
MNL-01075-1.4
© 2017 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE,
HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and
Trademark Office and in other countries. All other words and logos identified
as trademarks or service marks are the property of their respective holders as
described at www.altera.com/common/legal.html. Altera warrants performance of
its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed
to in writing by Altera. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information
and before placing orders for products or services.
August 2017 Altera Corporation Cyclone V E FPGA Development Board
Reference Manual
This document describes the hardware features of the Cyclone® V E FPGA development board, including the detailed pin-out and component reference information required to create custom FPGA designs that interface with all components of the board.
Overview
General Description
The Cyclone V E FPGA development board provides a hardware platform for developing and prototyping low-power, high-performance, and logic-intensive designs using Altera’s Cyclone V E FPGA. The board provides a wide range of peripherals and memory interfaces to facilitate the development of Cyclone V E FPGA designs. One high-speed mezzanine card (HSMC) connector is available to add additional functionality via a variety of HSMCs available from Altera® and various partners.
-
To see a list of the latest HSMCs available or to download a copy of the HSMC specification, refer to the Development Board Daughtercards page of the Altera website.
Design advancements and innovations, such as partial reconfiguration, ensure that designs implemented in the Cyclone V E FPGAs operate faster, with lower power, and have a faster time to market than previous FPGA families. -
For more information on the following topics, refer to the respective documents:
- Cyclone V device family, refer to the Cyclone V Device Handbook.
- HSMC Specification, refer to the High Speed Mezzanine Card (HSMC) Specification.
Board Component Blocks
The development board features the following major component blocks:
-
One Cyclone V E FPGA (5CEFA7F31I7N) in a 896-pin FineLine BGA (FBGA) package
- 149,500 LEs
- 56,480 adaptive logic modules (ALMs)
- 6,860 Kbit (Kb) M10K and 836 Kb MLAB memory
- Seven fractional phase locked loops (PLLs)
- 312 18×18-bit multipliers
- 480 general purpose input/output (GPIO)
- 1.1-V core voltage
-
FPGA configuration circuitry
- Active Serial (AS) x1 or AS x4 configuration (EPCQ256SI16N)
- MAX® V CPLD (5M2210ZF256I5N) in a 256-pin FBGA package as the System Controller
- Flash fast passive parallel (FPP) configuration
- MAX II CPLD (EPM240M100I5N) in a 100-pin FBGA package as part of the embedded USB-BlasterTM II for use with the Quartus® II Programmer
-
Clocking circuitry
- Programmable clock generator for the FPGA reference clock input
- 50-MHz single-ended oscillator for the FPGA and MAX V CPLD clock input
- 100-MHz single-ended oscillator for the MAX V CPLD configuration clock input
- SMA input (LVDS)
-
Memory
- Two 256-Mbyte (MB) DDR3 SDRAM devices with a 16-bit data bus
- One 18-Mbit (Mb) SSRAM
- One 512-Mb synchronous flash
- One 512-MB LPDDR2 SDRAM with a 32-bit data bus (only 16-bit data bus is used on this board)
- One 64-Kb I2C serial electrically erasable PROM (EEPROM)
-
General user input/output
- LEDs and displays
- Four user LEDs
- One configuration load LED
- One configuration done LED
- One error LED
- Three configuration select LEDs
- Four embedded USB-Blaster II status LEDs
- Three HSMC interface LEDs
- Ten Ethernet LEDs
- Two UART data transmit and receive LEDs
- Two USB-UART interface TX / RX LEDs
- One power on LED
- One two-line character LCD display
-
Push buttons
- One CPU reset push button
- One MAX V reset push button
- One program select push button
- One program configuration push button
- Four general user push buttons
-
DIP switches
- Four MAX V CPLD System Controller control switches
- Two JTAG chain control DIP switches
- One fan control DIP switch
- Four general user DIP switches
-
Power supply
14–20-V (laptop) DC input -
Mechanical
6.5″ x 4.5″ size board
Development Board Block Diagram
Figure 1–1 shows a block diagram of the Cyclone V E FPGA development board.
Handling the Board
When handling the board, it is important to observe the following static discharge precaution:
caution
Without proper anti-static handling, the board can be damaged. Therefore, use
anti-static handling precautions when touching the board.
Board Components
This chapter introduces the major components on the Cyclone V E FPGA development board. Figure 2–1 illustrates the component locations and Table 2–1 provides a brief description of all component features of the board.
A complete set of schematics, a physical layout database, and GERBER files for the development board reside in the Cyclone V E FPGA development kit documents directory.
For information about powering up the board and installing the demonstration software, refer to the Cyclone V E FPGA Development Kit User Guide.
This chapter consists of the following sections:
- “Board Overview”
- “Featured Device: Cyclone V E FPGA” on page 2–4
- “MAX V CPLD 5M2210 System Controller” on page 2–5
- “FPGA Configuration” on page 2–10
- “Clock Circuitry” on page 2–18
- “General User Input/Output” on page 2–20
- “Components and Interfaces” on page 2–24
- “Memory” on page 2–32
- “Power Supply” on page 2–41
Board Overview
This section provides an overview of the Cyclone V E FPGA development board, including an annotated board image and component descriptions. Figure 2–1 shows an overview of the board features.
Table 2–1 describes the components and lists their corresponding board references.
Table 2–1. Board Components (Part 1 of 3)
Board Reference | Type | Description |
---|
Featured Devices
U1| FPGA| Cyclone V E FPGA, 5CEFA7F31I7N, 896-pin FBGA.
U13| CPLD| MAX V CPLD, 5M2210ZF256I5N, 256-pin FBGA.
Configuration, Status, and Setup Elements
J4| JTAG chain header| Provides access to the JTAG chain and disables the
embedded USB-Blaster II when using an external USB-Blaster cable.
SW2| JTAG chain control DIP switch| Remove or include devices in the active
JTAG chain.
J10| USB type-B connector| USB interface for FPGA programming and debugging
through the embedded USB-Blaster II JTAG via a type-B USB cable.
Table 2–1. Board Components (Part 2 of 3)
Board Reference | Type | Description |
---|
SW3
| ****
Board settings DIP switch
| Controls the MAX V CPLD 5M2210 System Controller functions such as clock
enable, SMA clock input control, and which image to load from flash memory at
power-up.
SW1| MSEL DIP switch| Controls the configuration scheme on the board. MSEL
pins 0, 1, 2 and 4 connects to the DIP switch while MSEL pin 3 connects to
ground.
S2| Program select push button| Toggles the program select LEDs, which selects
the program image that loads from flash memory to the FPGA.
S1| Program configuration push button| Load image from flash memory to the
FGPA based on the settings of the program select LEDs.
D19| Configuration done LED| Illuminates when the FPGA is configured.
D18| Load LED| Illuminates when the MAX V CPLD 5M2210 System Controller is
actively configuring the FPGA.
D17| Error LED| Illuminates when the FPGA configuration from flash memory
fails.
D35| Power LED| Illuminates when 5.0-V power is present.
D25~D27
| ****
Program select LEDs
| Illuminates to show the LED sequence that determines which flash memory
image loads to the FPGA when you press the program select push button. Refer
to Table 2–6 for the LED settings.
D1~D10| Ethernet LEDs| Illuminates to show the connection speed as well as
transmit or receive activity.
D20, D21| HSMC port LEDs| You can configure these LEDs to indicate transmit or
receive activity.
D22| HSMC port present LED| Illuminates when a daughter card is plugged into
the HSMC port.
D15, D16| USB-UART LEDs| Illuminates when the USB-UART transmitter and
receiver are in use.
D23, D24| Serial UART LEDs| Illuminates when UART transmitter and receiver are
in use.
Clock Circuitry
X1
| ****
Programmable oscillator
| Programmable oscillator with default frequencies of 125 MHz. The frequency
is programmable using the clock control GUI running on the MAX V CPLD 5M2210
System Controller.
U4| 50-MHz oscillator| 50.000-MHz crystal oscillator for general purpose
logic.
X3| 100-MHz oscillator| 100.000-MHz crystal oscillator for the MAX V CPLD
5M2210 System Controller.
J2, J3| Clock input SMA connectors| Drive LVDS-compatible clock inputs into
the clock multiplexer buffer.
J4| Clock output SMA connector| Drive out 2.5-V CMOS clock output from the
FPGA.
General User Input/Output
D28~D31| User LEDs| Four user LEDs. Illuminates when driven low.
SW3| User DIP switch| Quad user DIP switches. When the switch is ON, a logic 0
is selected.
S4| CPU reset push button| Reset the FPGA logic.
S3| MAX V reset push button| Reset the MAX V CPLD 5M2210 System Controller.
S5~S8| General user push buttons| Four user push buttons. Driven low when
pressed.
Memory Devices
U7, U8| DDR3 x32 memory| Two 256-MB DDR3 SDRAM with a 16-bit data bus.
U9| LPDDR2 x 16 memory| 512-MB LPDDR 2 SDRAM with 32-bit bus, only 16-bit bus
is used on this board.
Table 2–1. Board Components (Part 3 of 3)
Board Reference | Type | Description |
---|---|---|
U10 | Flash x16 memory | 512-Mb synchronous flash devices with a 16-bit data bus |
for non-volatile memory.
U11| SSRAM x16 memory| 18-Mb standard synchronous RAM with a 12-bit data bus
and 4-bit parity.
U12| EEPROM| 64-Mb I2C serial EEPROM.
Communication Ports
J1| HSMC port| Provides 84 CMOS or 17 LVDS channels per HSMC specification.
J11
| ****
Gigabit Ethernet port
| RJ-45 connector which provides a 10/100/1000 Ethernet connection via a
Marvell 88E1111 PHY and the FPGA-based Altera Triple Speed Ethernet MegaCore
function in RGMII mode.
J12| Serial UART port| DSUB 9-pin connector with RS-232 transceiver to
implement RS-232 serial UART channel.
J13| USB-UART port| USB connector with USB-to-UART bridge for serial UART
interface.
J15, J16| Debug headers| Two 2×8 headers for debug purposes.
Video and Display Ports
J14| Character LCD| Connector that interfaces to a provided 16 character × 2
line LCD module along with two standoffs.
Power Supply
J17| DC input jack| Accepts a 14–20-V DC power supply.
SW5| Power switch| Switch to power on or off the board when power is supplied
from the DC input jack.
Featured Device: Cyclone V E FPGA
The Cyclone V E FPGA development board features a Cyclone V E FPGA 5CEFA7F31I7N device (U1) in a 896-pin FBGA package.
For more information about Cyclone V device family, refer to the Cyclone V
Device Handbook.
Table 2–2 describes the features of the Cyclone V E FPGA 5CEFA7F31I7N device.
Table 2–2. Cyclone V E FPGA Features
ALMs| Equivalent LEs| M10K RAM Blocks| Total
RAM (Kbits)| 18-bit × 18-bit Multipliers| PLLs|
Package Type
---|---|---|---|---|---|---
56,480| 149,500| 6,860| 836| 312| 7| 896-pin FBGA
I/O Resources
The Cyclone V E FPGA 5CEFA7F31I7N device has total of 480 user I/Os. Table 2–3
lists the Cyclone V E FPGA I/O pin count and usage by function on the board.
Table 2–3. Cyclone V E FPGA I/O Pin Count
Function| I/O Standard| I/O Count| Special
Pins
---|---|---|---
DDR3| 1.5-V SSTL| 71| One differential x4 DQS pin
LPDDR2| 1.2-V HSUL| 37| One differential x2 DQS pin
Flash, SSRAM, EEPROM, and MAX V
FSM bus
| 2.5-V CMOS, 3.3-V LVCMOS| 69| —
HSMC port| 2.5-V CMOS + LVDS| 79| 17 LVDS, I2C
Gigabit Ethernet port| 2.5-V CMOS| 42| —
Embedded USB-Blaster II| 2.5-V CMOS| 20| —
Debug Header| 1.5-V, 2.5-V| 20| —
UART| 3.3-V LVTTL| 4| —
USB-UART| 2.5-V CMOS| 12| —
Push buttons| 2.5-V CMOS| 5| One DEV_CLRn pin
DIP switches| 2.5-V CMOS| 4| —
Character LCD| 2.5-V CMOS| 11| —
LEDs| 2.5-V CMOS| 9| —
Clock or Oscillators| 2.5-V CMOS + LVDS| 12| One clock out pin
Total I/O Used:| 395
MAX V CPLD 5M2210 System Controller
The board utilizes the 5M2210 System Controller, an Altera MAX V CPLD, for the
following purposes:
- FPGA configuration from flash
- Power measurement
- Control and status registers for remote system update
Figure 2–2 illustrates the MAX V CPLD 5M2210 System Controller’s functionality and external circuit connections as a block diagram.\
Figure 2–2. MAX V CPLD 5M2210 System Controller Block Diagram
Table 2–4 lists the I/O signals present on the MAX V CPLD 5M2210 System Controller. The signal names and functions are relative to the MAX V device.
You can download an example design with pin locations and assignments completed according to the following table from the Altera Design Store. In the Cyclone V E FPGA Development Kit, under Design Examples, click Cyclone V E FPGA Development Kit Baseline Pinout.
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 1 of 5)
Board Reference (U13)| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
N4| 5M2210_JTAG_TMS| 3.3-V| MAX V JTAG TMS
E9| CLK50_EN| 2.5-V| 50 MHz oscillator enable
H12| CLK_CONFIG| 2.5-V| 100 MHz configuration clock input
A15| CLK_ENABLE| 2.5-V| DIP switch for clock oscillator enable
A13| CLK_SEL| 2.5-V| DIP switch for clock select—SMA or oscillator
J12| CLKIN_50_MAXV| 2.5-V| 50 MHz clock input
D9| CLOCK_SCL| 2.5-V| Programmable oscillator I2C clock
C9| CLOCK_SDA| 2.5-V| Programmable oscillator I2C data
D10| CPU_RESETN| 2.5-V| FPGA reset push button
P12| EXTRA_SIG0| 2.5-V| Embedded USB-Blaster II interface. Reserved for future
use
T13| EXTRA_SIG1| 2.5-V| Embedded USB-Blaster II interface. Reserved for future
use
T15| EXTRA_SIG2| 2.5-V| Embedded USB-Blaster II interface. Reserved for future
use
A2| FACTORY_LOAD| 2.5-V| DIP switch to load factory or user design at power-up
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 2 of 5)
Board Reference (U13)| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
R14| FACTORY_REQUEST| 2.5-V| Embedded USB-Blaster II request to send FACTORY
command
N12| FACTORY_STATUS| 2.5-V| Embedded USB-Blaster II FACTORY command status
C8| FAN_FORCE_ON| 2.5-V| DIP switch to on or off the fan
N7| FLASH_ADVN| 2.5-V| FSM bus flash memory address valid
R5| FLASH_CEN| 2.5-V| FSM bus flash memory chip enable
R6| FLASH_CLK| 2.5-V| FSM bus flash memory clock
M6| FLASH_OEN| 2.5-V| FSM bus flash memory output enable
T5| FLASH_RDYBSYN| 2.5-V| FSM bus flash memory ready
P7| FLASH_RESETN| 2.5-V| FSM bus flash memory reset
N6| FLASH_WEN| 2.5-V| FSM bus flash memory write enable
K1| FPGA_CONF_DONE| 3.3-V| FPGA configuration done LED
D3| FPGA_CONFIG_D0| 3.3-V| FPGA configuration data
C2| FPGA_CONFIG_D1| 3.3-V| FPGA configuration data
C3| FPGA_CONFIG_D2| 3.3-V| FPGA configuration data
E3| FPGA_CONFIG_D3| 3.3-V| FPGA configuration data
D2| FPGA_CONFIG_D4| 3.3-V| FPGA configuration data
E4| FPGA_CONFIG_D5| 3.3-V| FPGA configuration data
D1| FPGA_CONFIG_D6| 3.3-V| FPGA configuration data
E5| FPGA_CONFIG_D7| 3.3-V| FPGA configuration data
F3| FPGA_CONFIG_D8| 3.3-V| FPGA configuration data
E1| FPGA_CONFIG_D9| 3.3-V| FPGA configuration data
F4| FPGA_CONFIG_D10| 3.3-V| FPGA configuration data
F2| FPGA_CONFIG_D11| 3.3-V| FPGA configuration data
F1| FPGA_CONFIG_D12| 3.3-V| FPGA configuration data
F6| FPGA_CONFIG_D13| 3.3-V| FPGA configuration data
G2| FPGA_CONFIG_D14| 3.3-V| FPGA configuration data
G3| FPGA_CONFIG_D15| 3.3-V| FPGA configuration data
K4| FPGA_MAX_DCLK| 3.3-V| FPGA configuration clock
J3| FPGA_DCLK| 3.3-V| FPGA configuration clock
N1| FPGA_NCONFIG| 3.3-V| FPGA configuration active
J4| FPGA_NSTATUS| 3.3-V| FPGA configuration ready
H1| FPGA_PR_DONE| 3.3-V| FPGA partial reconfiguration done
P2| FPGA_PR_ERROR| 3.3-V| FPGA partial reconfiguration error
E2| FPGA_PR_READY| 3.3-V| FPGA partial reconfiguration ready
F5| FPGA_PR_REQUEST| 3.3-V| FPGA partial reconfiguration request
L5| FPGA_MAX_NCS| 3.3-V| FPGA configuration chip select
E14| FSM_A1| 2.5-V| FSM address bus
C14| FSM_A2| 2.5-V| FSM address bus
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 3 of 5)
Board Reference (U13)| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
C15| FSM_A3| 2.5-V| FSM address bus
E13| FSM_A4| 2.5-V| FSM address bus
E12| FSM_A5| 2.5-V| FSM address bus
D15| FSM_A6| 2.5-V| FSM address bus
F14| FSM_A7| 2.5-V| FSM address bus
D16| FSM_A8| 2.5-V| FSM address bus
F13| FSM_A9| 2.5-V| FSM address bus
E15| FSM_A10| 2.5-V| FSM address bus
E16| FSM_A11| 2.5-V| FSM address bus
F15| FSM_A12| 2.5-V| FSM address bus
G14| FSM_A13| 2.5-V| FSM address bus
F16| FSM_A14| 2.5-V| FSM address bus
G13| FSM_A15| 2.5-V| FSM address bus
G15| FSM_A16| 2.5-V| FSM address bus
G12| FSM_A17| 2.5-V| FSM address bus
G16| FSM_A18| 2.5-V| FSM address bus
H14| FSM_A19| 2.5-V| FSM address bus
H20| FSM_A20| 2.5-V| FSM address bus
H13| FSM_A21| 2.5-V| FSM address bus
H16| FSM_A22| 2.5-V| FSM address bus
J13| FSM_A23| 2.5-V| FSM address bus
J16| FSM_A24| 2.5-V| FSM address bus
T2| FSM_A25| 2.5-V| FSM address bus
P5| FSM_A26| 2.5-V| FSM address bus
J14| FSM_D0| 2.5-V| FSM data bus
J15| FSM_D1| 2.5-V| FSM data bus
K16| FSM_D2| 2.5-V| FSM data bus
K13| FSM_D3| 2.5-V| FSM data bus
K15| FSM_D4| 2.5-V| FSM data bus
K14| FSM_D5| 2.5-V| FSM data bus
L16| FSM_D6| 2.5-V| FSM data bus
L11| FSM_D7| 2.5-V| FSM data bus
L15| FSM_D8| 2.5-V| FSM data bus
L12| FSM_D9| 2.5-V| FSM data bus
M16| FSM_D10| 2.5-V| FSM data bus
L13| FSM_D11| 2.5-V| FSM data bus
M15| FSM_D12| 2.5-V| FSM data bus
L14| FSM_D13| 2.5-V| FSM data bus
N16| FSM_D14| 2.5-V| FSM data bus
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 4 of 5)
Board Reference (U13)| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
M13| FSM_D15| 2.5-V| FSM data bus
B8| HSMA_PRSNTN| 2.5-V| HSMC port present
L6| JTAG_5M2210_TDI| 3.3-V| MAX V CPLD JTAG chain data in
M5| JTAG_5M2210_TDO| 3.3-V| MAX V CPLD JTAG chain data out
P3| JTAG_TCK| 3.3-V| JTAG chain clock
P11| M570_CLOCK| 2.5-V| 25-MHz clock to embedded USB-Blaster II for sending
FACTORY command
M1| M570_JTAG_EN| 3.3-V| Low signal to disable the embedded USB-Blaster II
P10| MAX5_BEN0| 2.5-V| FSM bus MAX V byte enable 0
R11| MAX5_BEN1| 2.5-V| FSM bus MAX V byte enable 1
T12| MAX5_BEN2| 2.5-V| FSM bus MAX V byte enable 2
N11| MAX5_BEN3| 2.5-V| FSM bus MAX V byte enable 3
T11| MAX5_CLK| 2.5-V| FSM bus MAX V clock
R10| MAX5_CSN| 2.5-V| FSM bus MAX V chip select
M10| MAX5_OEN| 2.5-V| FSM bus MAX V output enable
N10| MAX5_WEN| 2.5-V| FSM bus MAX V write enable
E11| MAX_CONF_DONEN| 2.5-V| Embedded USB-Blaster II configuration done LED
A4| MAX_ERROR| 2.5-V| FPGA configuration error LED
A6| MAX_LOAD| 2.5-V| FPGA configuration active LED
M9| MAX_RESETN| 2.5-V| MAX V reset push button
B7| OVERTEMP| 2.5-V| Temperature monitor fan enable
D12| PGM_CONFIG| 2.5-V| Load the flash memory image identified by the PGM LEDs
B14| PGM_LED0| 2.5-V| Flash memory PGM select indicator 0
C13| PGM_LED1| 2.5-V| Flash memory PGM select indicator 1
B16| PGM_LED2| 2.5-V| Flash memory PGM select indicator 2
B13| PGM_SEL| 2.5-V| Toggles the PGM_LED[2:0] LED sequence
H4| PSAS_CSn| 3.3-V| AS configuration chip select
G1| PSAS_DCLK| 3.3-V| AS configuration clock
G4| PSAS_CONF_DONE| 3.3-V| AS configuration done
H2| PSAS_CONFIGn| 3.3-V| AS configuration active
G5| PSAS_DATA1| 3.3-V| AS configuration data
H3| PSAS_DATA0_ASD0| 3.3-V| AS configuration data
J1| PSAS_CEn| 3.3-V| AS configuration chip enable
R12| SECURITY_MODE| 2.5-V| DIP switch for the embedded USB-Blaster II to send
FACTORY command at power up
E7| SENSE_CS0N| 2.5-V| Power monitor chip select
A5| SENSE_SCK| 2.5-V| Power monitor SPI clock
D7| SENSE_SDI| 2.5-V| Power monitor SPI data in
B6| SENSE_SDO| 2.5-V| Power monitor SPI data out
Table 2–4. MAX V CPLD 5M2210 System Controller Device Pin-Out (Part 5 of 5)
Board Reference (U13)| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
M13| FSM_D15| 2.5-V| FSM data bus
B8| HSMA_PRSNTN| 2.5-V| HSMC port present
L6| JTAG_5M2210_TDI| 3.3-V| MAX V CPLD JTAG chain data in
M5| JTAG_5M2210_TDO| 3.3-V| MAX V CPLD JTAG chain data out
P3| JTAG_TCK| 3.3-V| JTAG chain clock
P11| M570_CLOCK| 2.5-V| 25-MHz clock to embedded USB-Blaster II for sending
FACTORY command
M1| M570_JTAG_EN| 3.3-V| Low signal to disable the embedded USB-Blaster II
P10| MAX5_BEN0| 2.5-V| FSM bus MAX V byte enable 0
R11| MAX5_BEN1| 2.5-V| FSM bus MAX V byte enable 1
T12| MAX5_BEN2| 2.5-V| FSM bus MAX V byte enable 2
N11| MAX5_BEN3| 2.5-V| FSM bus MAX V byte enable 3
T11| MAX5_CLK| 2.5-V| FSM bus MAX V clock
R10| MAX5_CSN| 2.5-V| FSM bus MAX V chip select
M10| MAX5_OEN| 2.5-V| FSM bus MAX V output enable
N10| MAX5_WEN| 2.5-V| FSM bus MAX V write enable
E11| MAX_CONF_DONEN| 2.5-V| Embedded USB-Blaster II configuration done LED
A4| MAX_ERROR| 2.5-V| FPGA configuration error LED
A6| MAX_LOAD| 2.5-V| FPGA configuration active LED
M9| MAX_RESETN| 2.5-V| MAX V reset push button
B7| OVERTEMP| 2.5-V| Temperature monitor fan enable
D12| PGM_CONFIG| 2.5-V| Load the flash memory image identified by the PGM LEDs
B14| PGM_LED0| 2.5-V| Flash memory PGM select indicator 0
C13| PGM_LED1| 2.5-V| Flash memory PGM select indicator 1
B16| PGM_LED2| 2.5-V| Flash memory PGM select indicator 2
B13| PGM_SEL| 2.5-V| Toggles the PGM_LED[2:0] LED sequence
H4| PSAS_CSn| 3.3-V| AS configuration chip select
G1| PSAS_DCLK| 3.3-V| AS configuration clock
G4| PSAS_CONF_DONE| 3.3-V| AS configuration done
H2| PSAS_CONFIGn| 3.3-V| AS configuration active
G5| PSAS_DATA1| 3.3-V| AS configuration data
H3| PSAS_DATA0_ASD0| 3.3-V| AS configuration data
J1| PSAS_CEn| 3.3-V| AS configuration chip enable
R12| SECURITY_MODE| 2.5-V| DIP switch for the embedded USB-Blaster II to send
FACTORY command at power up
E7| SENSE_CS0N| 2.5-V| Power monitor chip select
A5| SENSE_SCK| 2.5-V| Power monitor SPI clock
D7| SENSE_SDI| 2.5-V| Power monitor SPI data in
B6| SENSE_SDO| 2.5-V| Power monitor SPI data out
FPGA Configuration
This section describes the FPGA, flash memory, and MAX V CPLD 5M2210 System Controller device programming methods supported by the Cyclone V E FPGA development board.
The Cyclone V E FPGA development board supports the following configuration methods:
- Embedded USB-Blaster II is the default method for configuring the FPGA using the Quartus II Programmer in JTAG mode with the supplied USB cable.
- Flash memory download for configuring the FPGA using stored images from the flash memory on either power-up or pressing the program configuration push button (S1).
- External USB-Blaster for configuring the FPGA using an external USB-Blaster that connects to the JTAG chain header (J4).
- EPCQ device for serial or quad-serial FPGA configuration that supports AS x1 or AS x4 configuration schemes.
FPGA Programming over Embedded USB-Blaster II
This configuration method implements a USB type-B connector (J10), a USB 2.0
PHY device (U18), and an Altera MAX II CPLD EPM570GF100I5N (U16) to allow FPGA
configuration using a USB cable. This USB cable connects directly between the
USB type-B connector on the board and a USB port of a PC running the Quartus
II software.
The embedded USB-Blaster II in the MAX II CPLD EPM570GF100I5N normally masters
the JTAG chain.
Figure 2–3 illustrates the JTAG chain.
The JTAG chain control DIP switch (SW2) controls the jumpers shown in Figure
2–3.
To connect a device or interface in the chain, their corresponding switch must
be in the OFF position. Slide all the switches to the ON position to only have
the FPGA in the chain.
The MAX V CPLD 5M2210 System Controller must be in the JTAG chain to use some of the GUI interfaces.
Table 2–5 lists the USB 2.0 PHY schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–5. USB 2.0 PHY Schematic Signal Names and Functions (Part 1 of 2)
Board Reference (U18)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
C1| 24M_XTALIN| —| 3.3-V| Crystal oscillator input
C2| 24M_XTALOUT| —| 3.3-V| Crystal oscillator output
E1| FX2_D_N| —| 3.3-V| USB 2.0 PHY data
E2| FX2_D_P| —| 3.3-V| USB 2.0 PHY data
H7| FX2_FLAGA| —| 3.3-V| Slave FIFO output status
Table 2–5. USB 2.0 PHY Schematic Signal Names and Functions (Part 2 of 2)
Board Reference (U18)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
G7| FX2_FLAGB| —| 3.3-V| Slave FIFO output status
H8| FX2_FLAGC| —| 3.3-V| Slave FIFO output status
G6| FX2_PA1| —| 3.3-V| USB 2.0 PHY port A interface
F8| FX2_PA2| —| 3.3-V| USB 2.0 PHY port A interface
F7| FX2_PA3| —| 3.3-V| USB 2.0 PHY port A interface
F6| FX2_PA4| —| 3.3-V| USB 2.0 PHY port A interface
C8| FX2_PA5| —| 3.3-V| USB 2.0 PHY port A interface
C7| FX2_PA6| —| 3.3-V| USB 2.0 PHY port A interface
C6| FX2_PA7| —| 3.3-V| USB 2.0 PHY port A interface
H3| FX2_PB0| —| 3.3-V| USB 2.0 PHY port B interface
F4| FX2_PB1| —| 3.3-V| USB 2.0 PHY port B interface
H4| FX2_PB2| —| 3.3-V| USB 2.0 PHY port B interface
G4| FX2_PB3| —| 3.3-V| USB 2.0 PHY port B interface
H5| FX2_PB4| —| 3.3-V| USB 2.0 PHY port B interface
G5| FX2_PB5| —| 3.3-V| USB 2.0 PHY port B interface
F5| FX2_PB6| —| 3.3-V| USB 2.0 PHY port B interface
H6| FX2_PB7| —| 3.3-V| USB 2.0 PHY port B interface
A8| FX2_PD0| —| 3.3-V| USB 2.0 PHY port D interface
A7| FX2_PD1| —| 3.3-V| USB 2.0 PHY port D interface
B6| FX2_PD2| —| 3.3-V| USB 2.0 PHY port D interface
A6| FX2_PD3| —| 3.3-V| USB 2.0 PHY port D interface
B3| FX2_PD4| —| 3.3-V| USB 2.0 PHY port D interface
A3| FX2_PD5| —| 3.3-V| USB 2.0 PHY port D interface
C3| FX2_PD6| —| 3.3-V| USB 2.0 PHY port D interface
A2| FX2_PD7| —| 3.3-V| USB 2.0 PHY port D interface
B8| FX2_RESETN| V21| 3.3-V| Embedded USB-Blaster hard reset
F3| FX2_SCL| —| 3.3-V| USB 2.0 PHY serial clock
G3| FX2_SDA| —| 3.3-V| USB 2.0 PHY serial data
A1| FX2_SLRDN| —| 3.3-V| Read strobe for slave FIFO
B1| FX2_SLWRN| —| 3.3-V| Write strobe for slave FIFO
B7| FX2_WAKEUP| —| 3.3-V| USB 2.0 PHY wake signal
G2| USB_CLK| AA23| 3.3-V| USB 2.0 PHY 48-MHz interface clock
FPGA Programming from Flash Memory
Flash memory programming is possible through a variety of methods. The default method is to use the factory design—Board Update Portal. This design is an embedded webserver, which serves the Board Update Portal web page. The web page allows you to select new FPGA designs including hardware, software, or both in an industry-standard S-Record File (.flash) and write the design to the user hardware page (page 1) of the flash memory over the network.
The secondary method is to use the pre-built parallel flash loader (PFL) design included in the development kit. The development board implements the Altera PFL megafunction for flash memory programming. The PFL megafunction is a block of logic that is programmed into an Altera programmable logic device (FPGA or CPLD). The PFL functions as a utility for writing to a compatible flash memory device. This pre-built design contains the PFL megafunction that allows you to write either page 0, page 1, or other areas of flash memory over the USB interface using the Quartus II software. This method is used to restore the development board to its factory default settings.
Other methods to program the flash memory can be used as well, including the Nios® II processor.
For more information on the Nios II processor, refer to the Nios II Processor
page of the Altera website.
On either power-up or by pressing the program configuration push button,
PGM_CONFIG (S1), the MAX V CPLD 5M2210 System Controller’s PFL configures the
FPGA from the flash memory. The PFL megafunction reads 16-bit data from the
flash memory and converts it to fast passive parallel (FPP) format. This
16-bit data is then written to the dedicated configuration pins in the FPGA
during configuration.
Pressing the PGM_CONFIG push button (S1) loads the FPGA with a hardware page
based on which PGM_LED[2:0] (D25, D26, D27) illuminates. Table 2–6 lists the
design that loads when you press the PGM_CONFIG push button.
Table 2–6. PGM_LED Settings (1)
PGM_LED0 (D25)| PGM_LED1 (D26)| PGM_LED2 (D27)|
Design
---|---|---|---
ON| OFF| OFF| Factory hardware
OFF| ON| OFF| User hardware 1
OFF| OFF| ON| User hardware 2
Figure 2–4 shows the PFL configuration.
For more information on the following topics, refer to the respective documents:
- Board Update Portal, PFL design, and flash memory map storage, refer to the Cyclone V E FPGA Development Kit User Guide.
- PFL megafunction, refer to Parallel Flash Loader Megafunction User Guide.
FPGA Programming over External USB-Blaster
The JTAG chain header provides another method for configuring the FPGA using
an external USB-Blaster device with the Quartus II Programmer running on a PC.
To prevent contention between the JTAG masters, the embedded USB-Blaster is
automatically disabled when you connect an external USB-Blaster to the JTAG
chain through the JTAG chain header.
FPGA Programming using EPCQ
The low-cost ECPQ device with non-volatile memory features a simple six-pin
interface and a small form factor. The ECPQ supports AS x1 and x4 modes. By
default, this board has a FPP configuration scheme setting. In order to set
the configuration scheme to AS mode, resistor rework needs to be done.
Configure the MSEL setting using the MSEL DIP switch (SW1) to change the
configuration scheme.
Figure 2–5 shows the connection between the EPCQ and the Cyclone V E FPGA.
Figure 2–5. EPCQ Configuration
Status Elements
The development board includes status LEDs. This section describes the status
elements.
Table 2–7 lists the LED board references, names, and functional descriptions.
Table 2–7. Board-Specific LEDs (Part 1 of 2)
Board Reference| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
D35| Power| 5.0-V| Blue LED. Illuminates when 5.0 V power is active.
D19| MAX_CONF_DONEn| 2.5-V| Green LED. Illuminates when the FPGA is
successfully configured. Driven by the MAX V CPLD 5M2210 System Controller.
D17
| ****
MAX_ERROR
| ****
2.5-V
| Red LED. Illuminates when the MAX V CPLD 5M2210 System Controller fails to configure the FPGA. Driven by the MAX V CPLD 5M2210 System Controller.
D18
| ****
MAX_LOAD
| ****
2.5-V
| Green LED. Illuminates when the MAX V CPLD 5M2210 System Controller is
actively configuring the FPGA. Driven by the MAX V CPLD 5M2210 System
Controller.
D25
D26 D27
| PGM_LED[0]
PGM_LED[1] PGM_LED[2]
| ****
2.5-V
| ****
Green LEDs. Illuminates to indicate which hardware page loads from flash memory when you press the PGM_SEL push button.
Table 2–7. Board-Specific LEDs (Part 2 of 2)
Board Reference| Schematic Signal Name| I/O
Standard| Description
---|---|---|---
D11, D12
D13, D14
| JTAG_RX, JTAG_TX
SC_RX, SC_TX
| 2.5-V| Green LEDs. Illuminates to indicate USB-Blaster II receive and
transmit activities.
D1| ENETA_LED_TX| 2.5-V| Green LED. Illuminates to indicate Ethernet PHY
transmit activity. Driven by the Marvell 88E1111 PHY.
D2| ENETA_LED_RX| 2.5-V| Green LED. Illuminates to indicate Ethernet PHY
receive activity. Driven by the Marvell 88E1111 PHY.
D5| ENETA_LED_LINK10| 2.5-V| Green LED. Illuminates to indicate Ethernet
linked at 10 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D4| ENETA_LED_LINK100| 2.5-V| Green LED. Illuminates to indicate Ethernet
linked at 100 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D3| ENETA_LED_LINK1000| 2.5-V| Green LED. Illuminates to indicate Ethernet
linked at 1000 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D19| ENETB_LED_TX| 2.5-V| Green LED. Illuminates to indicate Ethernet PHY B
transmit activity. Driven by the Marvell 88E1111 PHY.
D22| ENETB_LED_RX| 2.5-V| Green LED. Illuminates to indicate Ethernet PHY B
receive activity. Driven by the Marvell 88E1111 PHY.
D24| ENETB_LED_LINK10| 2.5-V| Green LED. Illuminates to indicate Ethernet B
linked at 10 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D20| ENETB_LED_LINK100| 2.5-V| Green LED. Illuminates to indicate Ethernet B
linked at 100 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D21| ENETB_LED_LINK1000| 2.5-V| Green LED. Illuminates to indicate Ethernet B
linked at 1000 Mbps connection speed. Driven by the Marvell 88E1111 PHY.
D15, D16| USB_UART_TX_TOGGLE, USB_UART_RX_TOGGLE| 2.5-V| Green LED.
Illuminates to indicate USB_UART receive and transmit activities.
D23, D24| UART_RXD_LED, UART_TXD_LED| 2.5-V| Green LED. Illuminates to
indicate UART receive and transmit activities.
D3
| ****
HSMA_PRSNTn
| ****
3.3-V
| Green LED. Illuminates when HSMC port has a board or cable plugged-in such that pin 160 becomes grounded. Driven by the add-in card.
Setup Elements
The development board includes several different kinds of setup elements. This
section describes the following setup elements:
- Board settings DIP switch
- JTAG settings DIP switch
- CPU reset push button
- MAX V reset push button
- Program configuration push button
- Program select push button
For more information about the default settings of the DIP switches, refer to the Cyclone V E FPGA Development Kit User Guide.
Board Settings DIP Switch
The board settings DIP switch (SW4) controls various features specific to the
board and the MAX V CPLD 5M2210 System Controller logic design. Table 2–8
lists the switch controls and descriptions.
Table 2–8. Board Settings DIP Switch Controls
Switch | Schematic Signal Name | Description |
---|---|---|
1 | **** |
CLK_SEL
| ON : Select programmable oscillator clock
OFF : Select SMA input clock
2| ****
CLK_ENABLE
| ON : Disable on-board oscillator
OFF : Enable on-board oscillator
3| ****
FACTORY_LOAD
| ON : Load the user design from flash at power up
OFF : Load the factory design from flash at power up
4
| ****
SECURITY_MODE
| ON : Embedded USB-Blaster II sends FACTORY command at power up.
OFF : Embedded USB-Blaster II does not send FACTORY command at power up.
JTAG Chain Control DIP Switch
The JTAG chain control DIP switch (SW2) either removes or includes devices in
the active JTAG chain. The Cyclone V E FPGA is always in the JTAG chain. Table
2–9 lists the switch controls and its descriptions.
Table 2–9. JTAG Chain Control DIP Switch
Switch | Schematic Signal Name | Description |
---|---|---|
1 | **** |
5M2210_JTAG_EN
| ON : Bypass MAX V CPLD 5M2210 System Controller
OFF : MAX V CPLD 5M2210 System Controller in-chain
2| ****
HSMC_JTAG_EN
| ON : Bypass HSMC port
OFF : HSMC port in-chain
3| ****
FAN_FORCE_ON
| ON : Enable fan
OFF : Disable fan
4| RESERVED| Reserved
CPU Reset Push Button
The CPU reset push button, CPU_RESETn (S4), is an input to the Cyclone V E
FPGA DEV_CLRn pin and is an open-drain I/O from the MAX V CPLD System
Controller. This push button is the default reset for both the FPGA and CPLD
logic. The MAX V CPLD 5M2210 System Controller also drives this push button
during power-on-reset (POR).
MAX V Reset Push Button
The MAX V reset push button, MAX_RESETn (S3), is an input to the MAX V CPLD
5M2210 System Controller. This push button is the default reset for the CPLD
logic.
Program Configuration Push Button
The program configuration push button, PGM_CONFIG (S1), is an input to the MAX
V CPLD 5M2210 System Controller. This input forces a FPGA reconfiguration from
the flash memory. The location in the flash memory is based on the settings
ofPGM_LED[2:0], which is controlled by the program select push button,
PGM_SEL. Valid settings include PGM_LED0, PGM_LED1, or PGM_LED2 on the three
pages in flash memory reserved for FPGA designs.
Program Select Push Button
The program select push button, PGM_SEL (S2), is an input to the MAX V CPLD
5M2210 System Controller. This push button toggles the PGM_LED[2:0]sequence
that selects which location in the flash memory is used to configure the FPGA.
Refer to Table 2–6 for the PGM_LED[2:0] sequence definitions.
Clock Circuitry
This section describes the board’s clock inputs and outputs.
On-Board Oscillators
The development board include oscillators with a frequency of 50-MHz, 100-MHz,
and a programmable oscillator.
Figure 2–6 shows the default frequencies of all external clocks going to the Cyclone V E FPGA development board.
Figure 2–6. Cyclone V E FPGA Development Board Clocks
Table 2–10 lists the oscillators, its I/O standard, and voltages required for the development board.
Table 2–10. On-Board Oscillators
Source| Schematic Signal Name| Frequency| I/O
Standard| Cyclone V E FPGA Pin Number| Application
---|---|---|---|---|---
U4| CLKIN_50_FPGA_TOP| 50.000 MHz| Single-Ended| L14| Top and right edge
CLKIN_50_FPGA_RIGHT| P22
X3| CLK_CONFIG| 100.000 MHz| 2.5V CMOS| —| Fast FPGA configuration
X1 and U3 (buffer)
| DIFF_CLKIN_TOP_125_P| ****
125.000 MHz
| ****
LVDS
| L15| ****
Top and bottom edge
DIFF_CLKIN_TOP_125_N| K15
DIFF_CLKIN_BOT_125_P| AB17
DIFF_CLKIN_BOT_125_N| AB18
Off-Board Clock Input/Output
The development board has input and output clocks which can be driven onto the
board. The output clocks can be programmed to different levels and I/O
standards according to the FPGA device’s specification.
Table 2–11 lists the clock inputs for the development board.
Table 2–11. Off-Board Clock Inputs
Source
| Schematic Signal Name| ****
I/O Standard
| Cyclone V E FPGA Pin
Number
| ****
Description
---|---|---|---|---
SMA| CLKIN_SMA_P| LVDS| —| Input to LVDS fan-out buffer.
CLKIN_SMA_N| LVDS| —
Samtec HSMC| HSMA_CLK_IN0| 2.5-V| AB16| Single-ended input from the installed
HSMC cable or board.
Samtec HSMC| HSMA_CLK_IN_P1| LVDS/2.5-V| AB14| LVDS input from the installed
HSMC cable or board. Can also support 2x LVTTL inputs.
HSMA_CLK_IN_N1| LVDS/LVTTL| AC14
Samtec HSMC| HSMA_CLK_IN_P2| LVDS/LVTTL| Y15| LVDS input from the installed
HSMC cable or board. Can also support 2x LVTTL inputs.
HSMA_CLK_IN_N2| LVDS/LVTTL| AA15
Table 2–12 lists the clock outputs for the development board.
Table 2–12. Off-Board Clock Outputs
Source
| Schematic Signal Name| ****
I/O Standard
| Cyclone V E FPGA Pin
Number
| ****
Description
---|---|---|---|---
Samtec HSMC| HSMA_CLK_OUT0| 2.5V CMOS| AJ14| FPGA CMOS output (or GPIO)
Samtec HSMC| HSMA_CLK_OUT_P1| LVDS/2.5V CMOS| AE22| LVDS output. Can also
support 2x CMOS outputs.
HSMA_CLK_OUT_N1| LVDS/2.5V CMOS| AF23
Samtec HSMC| HSMA_CLK_OUT_P2| LVDS/2.5V CMOS| AG23| LVDS output. Can also
support 2x CMOS outputs.
HSMA_CLK_OUT_N2| LVDS/2.5V CMOS| AH22
SMA| CLKOUT_SMA| 2.5V CMOS| F9| FPGA CMOS output (or GPIO)
General User Input/Output
This section describes the user I/O interface to the FPGA, including the push
buttons, DIP switches, LEDs, and character LCD.
User-Defined Push Buttons
The development board includes three user-defined push buttons. For
information on the system and safe reset push buttons, refer to “Setup
Elements” on page 2–16. Board references S5, S6, S7, and S8 are push buttons
for controlling the FPGA designs that loads into the Cyclone V E FPGA device.
When you press and hold down the switch, the device pin is set to logic 0;
when you release the switch, the device pin is set to logic 1. There are no
board-specific functions for these general user push buttons.
Table 2–13 lists the user-defined push button schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–13. User-Defined Push Button Schematic Signal Names and Functions
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard
---|---|---|---
S5| USER_PB0| AB12| 2.5-V
S6| USER_PB1| AB13| 2.5-V
S7| USER_PB2| AF13| 2.5-V
S8| USER_PB3| AG12| 2.5-V
User-Defined DIP Switch
Board reference SW3 is a four-pin DIP switch. This switch is user-defined and
provides additional FPGA input control. When the switch is in the OFF
position, a logic 1 is selected. When the switch is in the ON position, a
logic 0 is selected. There are no board-specific functions for this switch.
Table 2–14 lists the user-defined DIP switch schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–14. User-Defined DIP Switch Schematic Signal Names and Functions
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard
---|---|---|---
S5| USER_PB0| AB12| 2.5-V
S6| USER_PB1| AB13| 2.5-V
S7| USER_PB2| AF13| 2.5-V
S8| USER_PB3| AG12| 2.5-V
User-Defined LEDs
The development board includes general and HSMC user-defined LEDs. This
section describes all user-defined LEDs. For information on board specific or
status LEDs, refer to “Status Elements” on page 2–15.
General LEDs
Board references D28 through D31 are four user-defined LEDs. The status and
debugging signals are driven to the LEDs from the designs loaded into the
Cyclone V E FPGA. Driving a logic 0 on the I/O port turns the LED on while
driving a logic 1 turns the LED off. There are no board-specific functions for
these LEDs.
Table 2–15 lists the general LED schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–15. General LED Schematic Signal Names and Functions
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard
---|---|---|---
D28| USER_LED0| AK3| 2.5-V
D29| USER_LED1| AJ4| 2.5-V
D30| USER_LED2| AJ5| 2.5-V
D31| USER_LED3| AK6| 2.5-V
HSMC LEDs
Board references D20 and D21 are LEDs for the HSMC port. There are no
boardspecific functions for the HSMC LEDs. The LEDs are labeled TX and RX, and
are intended to display data flow to and from the connected daughtercards. The
LEDs are driven by the Cyclone V E FPGA device.
Table 2–16 lists the HSMC LED schematic signal names and their corresponding Cyclone V E FPGA pin numbers.
Table 2–16. HSMC LED Schematic Signal Names and Functions
Board Reference| Schematic Signal Name| Cyclone V E FPGA
Pin Number| I/O Standard
---|---|---|---
D1| HSMC_RX_LED| AH12| 2.5-V
D2| HSMC_TX_LED| AH11| 2.5-V
Character LCD
The development board includes a single 14-pin 0.1″ pitch dual-row header that
interfaces to a 2 line × 16 character Lumex character LCD. The character LCD
has a 14-pin receptacle that mounts directly to the board’s 14-pin header, so
it can be easilyremoved for access to components under the display. You can
also use the header for debugging or other purposes.
Table 2–17 summarizes the character LCD pin assignments. The signal names and directions are relative to the Cyclone V E FPGA device.
Table 2–17. Character LCD Pin Assignments, Schematic Signal Names, and Functions
Board Reference (J14)| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
7| LCD_DATA0| AJ7| 2.5-V| LCD data bus
8| LCD_DATA1| AK7| 2.5-V| LCD data bus
9| LCD_DATA2| AJ8| 2.5-V| LCD data bus
10| LCD_DATA3| AK8| 2.5-V| LCD data bus
11| LCD_DATA4| AF9| 2.5-V| LCD data bus
12| LCD_DATA5| AG9| 2.5-V| LCD data bus
13| LCD_DATA6| AH9| 2.5-V| LCD data bus
14| LCD_DATA7| AJ9| 2.5-V| LCD data bus
Table 2–17. Character LCD Pin Assignments, Schematic Signal Names, and Functions
Board Reference (J14)| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
4| LCD_D_Cn| AK11| 2.5-V| LCD data or command select
5| LCD_WEn| AK10| 2.5-V| LCD write enable
6| LCD_CSn| AJ12| 2.5-V| LCD chip select
Table 2–18 lists the LCD pin definitions, and is an excerpt from Lumex data sheet.
Table 2–18. LCD Pin Definitions and Functions
Pin Number | Symbol | Level | Function |
---|---|---|---|
1 | VDD | — | **** |
Power supply
| 5 V
2| VSS| —| GND (0 V)
3| V0| —| For LCD drive
4
| ****
RS
| ****
H/L
| Register select signal H: Data input
L: Instruction input
5| R/W| H/L| H: Data read (module to MPU)
L: Data write (MPU to module)
6| E| H, H to L| Enable
7–14| DB0–DB7| H/L| Data bus—software selectable 4-bit or 8-bit mode
For more information such as timing, character maps, interface guidelines, and other related documentation, visit www.lumex.com.
Debug Header
This development board includes two 2×8 debug headers for debug purposes. The
FPGA I/Os route directly to the header for design testing, debugging, or quick
verification.
Table 2–19 summarizes the debug header pin assignments, signal names, and functions.
Table 2–19. Debug Header Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
Debug Header (J15)
1| HEADER_D0| H21| 1.5-V| Single-ended signal for debug purposes only
5| HEADER_D1| G21| 1.5-V| Single-ended signal for debug purposes only
9| HEADER_D2| G22| 1.5-V| Single-ended signal for debug purposes only
13| HEADER_D3| E26| 1.5-V| Single-ended signal for debug purposes only
4| HEADER_D4| E25| 1.5-V| Single-ended signal for debug purposes only
8| HEADER_D5| C27| 1.5-V| Single-ended signal for debug purposes only
12| HEADER_D6| C26| 1.5-V| Single-ended signal for debug purposes only
Table 2–19. Debug Header Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 2)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
16| HEADER_D7| B27| 1.5-V| Single-ended signal for debug purposes only
Debug Header (J16)
1 and 2| HEADER_P0 and HEADER_N0| H25 and H26| 2.5-V| Pseudo-differential
signals for debug purposes only
3 and 4| HEADER_P1 and
HEADER_N1
| P20 and N20| 2.5-V| Pseudo-differential signals for debug purposes only
7 and 8| HEADER_P2 and HEADER_N2| J22 and J23| 2.5-V| Pseudo-differential
signals for debug purposes only
9 and 10| HEADER_P3 and HEADER_N3| D28 and D29| 2.5-V| Pseudo-differential
signals for debug purposes only
13 and 14| HEADER_P4 and HEADER_N4| E27 and D27| 2.5-V| Pseudo-differential
signals for debug purposes only
15 and 16| HEADER_P5 and HEADER_N5| H24 and J25| 2.5-V| Pseudo-differential
signals for debug purposes only
Components and Interfaces
This section describes the development board’s communication ports and
interface cards relative to the Cyclone V E FPGA device. The development board
supports the following communication ports:
- RS-232 Serial UART
- 10/100/1000 Ethernet
- HSMC
- USB UART
10/100/1000 Ethernet
The development board supports two 10/100/1000 base-T Ethernet using two
external Marvell 88E1111 PHY and Altera Triple-Speed Ethernet MegaCore MAC
function. The PHY-to-MAC interfaces employ RGMII interface. The MAC function
must be provided in the FPGA for typical networking applications. The Marvell
88E1111 PHY uses 2.5-V and 1.0-V power rails and requires a 25-MHz reference
clock driven from a dedicated oscillator. The PHY interfaces to a RJ45 model
with internal magnetics that can be used for driving copper lines with
Ethernet traffic.
Figure 2–7 shows the RGMII interface between the FPGA (MAC) and Marvell 88E1111 PHY.
Figure 2–7. RGMII Interface between FPGA (MAC) and Marvell 88E1111 PHY
Table 2–20 lists the Ethernet PHY interface pin assignments
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 1 of 3)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
16| HEADER_D7| B27| 1.5-V| Single-ended signal for debug purposes only
Debug Header (J16)
1 and 2| HEADER_P0 and HEADER_N0| H25 and H26| 2.5-V| Pseudo-differential
signals for debug purposes only
3 and 4| HEADER_P1 and
HEADER_N1
| P20 and N20| 2.5-V| Pseudo-differential signals for debug purposes only
7 and 8| HEADER_P2 and HEADER_N2| J22 and J23| 2.5-V| Pseudo-differential
signals for debug purposes only
9 and 10| HEADER_P3 and HEADER_N3| D28 and D29| 2.5-V| Pseudo-differential
signals for debug purposes only
13 and 14| HEADER_P4 and HEADER_N4| E27 and D27| 2.5-V| Pseudo-differential
signals for debug purposes only
15 and 16| HEADER_P5 and HEADER_N5| H24 and J25| 2.5-V| Pseudo-differential
signals for debug purposes only
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 2 of 3)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
33| ENETA_MDI_P1| —| 2.5-V CMOS| Media dependent interface
34| ENETA_MDI_N1| —| 2.5-V CMOS| Media dependent interface
39| ENETA_MDI_P2| —| 2.5-V CMOS| Media dependent interface
41| ENETA_MDI_N2| —| 2.5-V CMOS| Media dependent interface
42| ENETA_MDI_P3| —| 2.5-V CMOS| Media dependent interface
43| ENETA_MDI_N3| —| 2.5-V CMOS| Media dependent interface
Ethernet PHY B (U11)
8| ENETB_GTX_CLK| E28| 2.5-V CMOS| 125-MHz RGMII transmit clock
23| ENETB_INTN| K22| 2.5-V CMOS| Management bus interrupt
60| ENETB_LED_DUPLEX| —| 2.5-V CMOS| Duplex or collision LED. Not used
70| ENETB_LED_DUPLEX| —| 2.5-V CMOS| Duplex or collision LED. Not used
76| ENETB_LED_LINK10| —| 2.5-V CMOS| 10-Mb link LED
74| ENETB_LED_LINK100| —| 2.5-V CMOS| 100-Mb link LED
73| ENETB_LED_LINK1000| —| 2.5-V CMOS| 1000-Mb link LED
58| ENETB_LED_RX| —| 2.5-V CMOS| RX data active LED
69| ENETB_LED_RX| —| 2.5-V CMOS| RX data active LED
68| ENETB_LED_TX| —| 2.5-V CMOS| TX data active LED
25| ENETB_MDC| A29| 2.5-V CMOS| Management bus data clock
24| ENETB_MDIO| L23| 2.5-V CMOS| Management bus data
28| ENETB_RESETN| M21| 2.5-V CMOS| Device reset
2| ENETB_RX_CLK| R23| 2.5-V CMOS| RGMII receive clock
95| ENETB_RX_D0| F25| 2.5-V CMOS| RGMII receive data bus
92| ENETB_RX_D1| F26| 2.5-V CMOS| RGMII receive data bus
93| ENETB_RX_D2| R20| 2.5-V CMOS| RGMII receive data bus
91| ENETB_RX_D3| T21| 2.5-V CMOS| RGMII receive data bus
94| ENETB_RX_DV| L24| 2.5-V CMOS| RGMII receive data valid
11| ENETB_TX_D0| F29| 2.5-V CMOS| RGMII transmit data bus
12| ENETB_TX_D1| D30| 2.5-V CMOS| RGMII transmit data bus
14| ENETB_TX_D2| C30| 2.5-V CMOS| RGMII transmit data bus
16| ENETB_TX_D3| F28| 2.5-V CMOS| RGMII transmit data bus
9| ENETB_TX_EN| B29| 2.5-V CMOS| RGMII transmit enable
55| ENETB_XTAL_25MHZ| —| 2.5-V CMOS| 25-MHz RGMII transmit clock
29| ENETB_MDI_P0| —| 2.5-V CMOS| Media dependent interface
31| ENETB_MDI_N0| —| 2.5-V CMOS| Media dependent interface
33| ENETB_MDI_P1| —| 2.5-V CMOS| Media dependent interface
34| ENETB_MDI_N1| —| 2.5-V CMOS| Media dependent interface
39| ENETB_MDI_P2| —| 2.5-V CMOS| Media dependent interface
41| ENETB_MDI_N2| —| 2.5-V CMOS| Media dependent interface
Table 2–20. Ethernet PHY Pin Assignments, Signal Names and Functions (Part 3 of 3)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
42| ENETB_MDI_P3| —| 2.5-V CMOS| Media dependent interface
43| ENETB_MDI_N3| —| 2.5-V CMOS| Media dependent interface
HSMC
- The development board supports a HSMC interface. The HSMC interface supports a full SPI4.2 interface (17 LVDS channels), three input and output clocks, as well as JTAG and SMB signals. The LVDS channels can be used for CMOS signaling or LVDS.
- The HSMC is an Altera-developed open specification, which allows you to expand the functionality of the development board through the addition of daughtercards (HSMCs).
- For more information about the HSMC specification such as signaling standards, signal integrity, compatible connectors, and mechanical information, refer to the High Speed Mezzanine Card (HSMC) Specification manual.
- The HSMC connector has a total of 172 pins, including 120 signal pins, 39 power pins, and 13 ground pins. The ground pins are located between the two rows of signal and power pins, acting both as a shield and a reference. The HSMC host connector is based on the 0.5 mm-pitch QSH/QTH family of high-speed, board-to-board connectors from Samtec. There are three banks in this connector. Bank 1 has every third pin removed as done in the QSH-DP/QTH-DP series. Bank 2 and bank 3 have all the pins populated as done in the QSH/QTH series. Since the Cyclone V E FPGA development board is not a transceiver board, the transceiver pins of the HSMC is not connected to the Cyclone V E FPGA device.
Figure 2–8 shows the bank arrangement of signals with respect to the Samtec connector’s three banks.
Figure 2–8. HSMC Signal and Bank Diagram
The HSMC interface has programmable bi-directional I/O pins that can be used
as 2.5-V LVCMOS, which is 3.3-V LVTTL-compatible. These pins can also be used
as various differential I/O standards including, but not limited to, LVDS,
mini-LVDS, and RSDS with up to 17 full-duplex channels.
As noted in the High Speed Mezzanine Card (HSMC) Specification manual, LVDS
and single-ended I/O standards are only guaranteed to function when mixed
according toeither the generic single-ended pin-out or generic differential
pin-out.
Table 2–21 lists the HSMC interface pin assignments, signal names, and functions.
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 3)
Board Reference (J7)| ****
Schematic Signal Name
| Cyclone V E FPGA Pin
Number
| ****
I/O Standard
| ****
Description
---|---|---|---|---
33| HSMC_SDA| AB22| 2.5-V CMOS| Management serial data
34| HSMC_SCL| AC22| 2.5-V CMOS| Management serial clock
35| JTAG_TCK| AC7| 2.5-V CMOS| JTAG clock signal
36| HSMC_JTAG_TMS| —| 2.5-V CMOS| JTAG mode select signal
37| HSMC_JTAG_TDO| —| 2.5-V CMOS| JTAG data output
38| JTAC_FPGA_TDO_RETIMER| —| 2.5-V CMOS| JTAG data input
39| HSMC_CLK_OUT0| AJ14| 2.5-V CMOS| Dedicated CMOS clock out
40| HSMC_CLK_IN0| AB16| 2.5-V CMOS| Dedicated CMOS clock in
41| HSMC_D0| AH10| 2.5-V CMOS| Dedicated CMOS I/O bit 0
42| HSMC_D1| AJ10| 2.5-V CMOS| Dedicated CMOS I/O bit 1
43| HSMC_D2| Y13| 2.5-V CMOS| Dedicated CMOS I/O bit 2
44| HSMC_D3| AA14| 2.5-V CMOS| Dedicated CMOS I/O bit 3
47| HSMC_TX_D_P0| AK27| LVDS or 2.5-V| LVDS TX bit 0 or CMOS bit 4
48| HSMC_RX_D_P0| Y16| LVDS or 2.5-V| LVDS RX bit 0 or CMOS bit 5
49| HSMC_TX_D_N0| AK28| LVDS or 2.5-V| LVDS TX bit 0n or CMOS bit 6
50| HSMC_RX_D_N0| AA26| LVDS or 2.5-V| LVDS RX bit 0n or CMOS bit 7
53| HSMC_TX_D_P1| AJ27| LVDS or 2.5-V| LVDS TX bit 1 or CMOS bit 8
54| HSMC_RX_D_P1| Y17| LVDS or 2.5-V| LVDS RX bit 1 or CMOS bit 9
55| HSMC_TX_D_N1| AK26| LVDS or 2.5-V| LVDS TX bit 1n or CMOS bit 10
56| HSMC_RX_D_N1| Y18| LVDS or 2.5-V| LVDS RX bit 1n or CMOS bit 11
59| HSMC_TX_D_P2| AG26| LVDS or 2.5-V| LVDS TX bit 2 or CMOS bit 12
60| HSMC_RX_D_P2| AA18| LVDS or 2.5-V| LVDS RX bit 2 or CMOS bit 13
61| HSMC_TX_D_N2| AH26| LVDS or 2.5-V| LVDS TX bit 2n or CMOS bit 14
62| HSMC_RX_D_N2| AA19| LVDS or 2.5-V| LVDS RX bit 2n or CMOS bit 15
65| HSMC_TX_D_P3| AJ25| LVDS or 2.5-V| LVDS TX bit 3 or CMOS bit 16
66| HSMC_RX_D_P3| Y20| LVDS or 2.5-V| LVDS RX bit 3 or CMOS bit 17
67| HSMC_TX_D_N3| AK25| LVDS or 2.5-V| LVDS TX bit 3n or CMOS bit 18
68| HSMC_RX_D_N3| AA20| LVDS or 2.5-V| LVDS RX bit 3n or CMOS bit 19
71| HSMC_TX_D_P4| AH24| LVDS or 2.5-V| LVDS TX bit 4 or CMOS bit 20
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 3)
Board Reference (J7)| ****
Schematic Signal Name
| Cyclone V E FPGA Pin
Number
| ****
I/O Standard
| ****
Description
---|---|---|---|---
72| HSMC_RX_D_P4| AA21| LVDS or 2.5-V| LVDS RX bit 4 or CMOS bit 21
73| HSMC_TX_D_N4| AJ24| LVDS or 2.5-V| LVDS TX bit 4n or CMOS bit 22
74| HSMC_RX_D_N4| AB21| LVDS or 2.5-V| LVDS RX bit 4n or CMOS bit 23
77| HSMC_TX_D_P5| AH21| LVDS or 2.5-V| LVDS TX bit 5 or CMOS bit 24
78| HSMC_RX_D_P5| AB19| LVDS or 2.5-V| LVDS RX bit 5 or CMOS bit 25
79| HSMC_TX_D_N5| AJ22| LVDS or 2.5-V| LVDS TX bit 5n or CMOS bit 26
80| HSMC_RX_D_N5| AC19| LVDS or 2.5-V| LVDS RX bit 5n or CMOS bit 27
83| HSMC_TX_D_P6| AJ23| LVDS or 2.5-V| LVDS TX bit 6 or CMOS bit 28
84| HSMC_RX_D_P6| AC21| LVDS or 2.5-V| LVDS RX bit 6 or CMOS bit 29
85| HSMC_TX_D_N6| AK23| LVDS or 2.5-V| LVDS TX bit 6n or CMOS bit 30
86| HSMC_RX_D_N6| AD20| LVDS or 2.5-V| LVDS RX bit 6n or CMOS bit 31
89| HSMC_TX_D_P7| AK21| LVDS or 2.5-V| LVDS TX bit 7 or CMOS bit 32
90| HSMC_RX_D_P7| AD19| LVDS or 2.5-V| LVDS RX bit 7 or CMOS bit 33
91| HSMC_TX_D_N7| AK22| LVDS or 2.5-V| LVDS TX bit 7n or CMOS bit 34
92| HSMC_RX_D_N7| AE20| LVDS or 2.5-V| LVDS RX bit 7n or CMOS bit 35
95| HSMC_CLK_OUT_P1| AE22| LVDS or 2.5-V| LVDS or CMOS clock out 1 or CMOS bit
36
96| HSMC_CLK_IN_P1| AB14| LVDS or 2.5-V| LVDS or CMOS clock in 1 or CMOS bit
37
97| HSMC_CLK_OUT_N1| AF23| LVDS or 2.5-V| LVDS or CMOS clock out 1 or CMOS bit
38
98| HSMC_CLK_IN_N1| AC14| LVDS or 2.5-V| LVDS or CMOS clock in 1 or CMOS bit
39
101| HSMC_TX_D_P8| AJ20| LVDS or 2.5-V| LVDS TX bit 8 or CMOS bit 40
102| HSMC_RX_D_P8| AF21| LVDS or 2.5-V| LVDS RX bit 8 or CMOS bit 41
103| HSMC_TX_D_N8| AK20| LVDS or 2.5-V| LVDS TX bit 8n or CMOS bit 42
104| HSMC_RX_D_N8| AG22| LVDS or 2.5-V| LVDS RX bit 8n or CMOS bit 43
107| HSMC_TX_D_P9| AJ19| LVDS or 2.5-V| LVDS TX bit 9 or CMOS bit 44
108| HSMC_RX_D_P9| AF20| LVDS or 2.5-V| LVDS RX bit 9 or CMOS bit 45
109| HSMC_TX_D_N9| AK18| LVDS or 2.5-V| LVDS TX bit 9n or CMOS bit 46
110| HSMC_RX_D_N9| AG21| LVDS or 2.5-V| LVDS RX bit 9n or CMOS bit 47
113| HSMC_TX_D_P10| AJ17| LVDS or 2.5-V| LVDS TX bit 10 or CMOS bit 48
114| HSMC_RX_D_P10| AF18| LVDS or 2.5-V| LVDS RX bit 10 or CMOS bit 49
115| HSMC_TX_D_N10| AJ18| LVDS or 2.5-V| LVDS TX bit 10n or CMOS bit 50
116| HSMC_RX_D_N10| AF19| LVDS or 2.5-V| LVDS RX bit 10n or CMOS bit 51
119| HSMC_TX_D_P11| AK25| LVDS or 2.5-V| LVDS TX bit 11 or CMOS bit 52
120| HSMC_RX_D_P11| AG18| LVDS or 2.5-V| LVDS RX bit 11 or CMOS bit 53
121| HSMC_TX_D_N11| AG24| LVDS or 2.5-V| LVDS TX bit 11n or CMOS bit 54
122| HSMC_RX_D_N11| AG19| LVDS or 2.5-V| LVDS RX bit 11n or CMOS bit 55
125| HSMC_TX_D_P12| AH19| LVDS or 2.5-V| LVDS TX bit 12 or CMOS bit 56
126| HSMC_RX_D_P12| AK16| LVDS or 2.5-V| LVDS RX bit 12 or CMOS bit 57
127| HSMC_TX_D_N12| AH20| LVDS or 2.5-V| LVDS TX bit 12n or CMOS bit 58
Table 2–21. HSMC Interface Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 3)
Board Reference (J7)| ****
Schematic Signal Name
| Cyclone V E FPGA Pin
Number
| ****
I/O Standard
| ****
Description
---|---|---|---|---
128| HSMC_RX_D_N12| AK17| LVDS or 2.5-V| LVDS RX bit 12n or CMOS bit 59
131| HSMC_TX_D_P13| AG17| LVDS or 2.5-V| LVDS TX bit 13 or CMOS bit 60
132| HSMC_RX_D_P13| AF16| LVDS or 2.5-V| LVDS RX bit 13 or CMOS bit 61
133| HSMC_TX_D_N13| AH17| LVDS or 2.5-V| LVDS TX bit 13n or CMOS bit 62
134| HSMC_RX_D_N13| AG16| LVDS or 2.5-V| LVDS RX bit 13n or CMOS bit 63
137| HSMC_TX_D_P14| AJ15| LVDS or 2.5-V| LVDS TX bit 14 or CMOS bit 64
138| HSMC_RX_D_P14| AE16| LVDS or 2.5-V| LVDS RX bit 14 or CMOS bit 65
139| HSMC_TX_D_N14| AK15| LVDS or 2.5-V| LVDS TX bit 14n or CMOS bit 66
140| HSMC_RX_D_N14| AF15| LVDS or 2.5-V| LVDS RX bit 14n or CMOS bit 67
143| HSMC_TX_D_P15| AH14| LVDS or 2.5-V| LVDS TX bit 15 or CMOS bit 68
144| HSMC_RX_D_P15| AD17| LVDS or 2.5-V| LVDS RX bit 15 or CMOS bit 69
145| HSMC_TX_D_N15| AH15| LVDS or 2.5-V| LVDS TX bit 15n or CMOS bit 70
146| HSMC_RX_D_N15| AE17| LVDS or 2.5-V| LVDS RX bit 15n or CMOS bit 71
149| HSMC_TX_D_P16| AE15| LVDS or 2.5-V| LVDS TX bit 16 or CMOS bit 72
150| HSMC_RX_D_P16| AD18| LVDS or 2.5-V| LVDS RX bit 16 or CMOS bit 73
151| HSMC_TX_D_N16| AF14| LVDS or 2.5-V| LVDS TX bit 16n or CMOS bit 74
152| HSMC_RX_D_N16| AE18| LVDS or 2.5-V| LVDS RX bit 16n or CMOS bit 75
155| HSMC_CLK_OUT_P2| AG23| LVDS or 2.5-V| LVDS or CMOS clock out 2 or CMOS
bit 76
156| HSMC_CLK_IN_P2| Y15| LVDS or 2.5-V| LVDS or CMOS clock in 2 or CMOS bit
77
157| HSMC_CLK_OUT_N2| AH22| LVDS or 2.5-V| LVDS or CMOS clock out 2 or CMOS
bit 78
158| HSMC_CLK_IN_N2| AA15| LVDS or 2.5-V| LVDS or CMOS clock in 2 or CMOS bit
79
160| HSMC_PRSNTn| AK5| 2.5-V CMOS| HSMC port presence detect
RS-232 Serial UART
A female angled DSUB 9-pin connector along with a supporting RS-232
transceiver provides support for implementing a standard RS-232 serial UART
channel on this board. The connector has the same pinouts as a data terminal
device and requires only a standard cable (no null modem required for PC
interface). A dedicated level-shifting buffer is used to translate between
LVTTL and RS-232 levels. Board references D23 and D24 are serial UART LEDs
that illuminate to indicate RX and TX activity.
Table 2–24 lists the RS-232 serial UART pin assignments, signal names, and functions.
The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–22. RS-232 Serial UART Schematic Signal Names and Functions
Board Reference (U20)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
14| UART_TXD| AB9| 3.3-V| Transmit data
15| UART_RTS| AH6| 3.3-V| Request to send
Table 2–22. RS-232 Serial UART Schematic Signal Names and Functions
Board Reference (U20)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
16| UART_RXD| AG6| 3.3-V| Receive data
13| UART_CTS| AF8| 3.3-V| Clear to send
USB-UART
The development board supports UART interface through a USB connector using
Silicon Labs CP2104 USB-to-UART bridge. To facilitate host communication with
CP2104, you are required to use the USB-to-UART bridge Virtual COM Port (VCP)
drivers.
The VCP drivers are available at: www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
Table 2–23 lists the USB-UART pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction
Table 2–23. USB-UART Schematic Signal Names and Functions
Board Reference (U20)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
1| USB_UART_RI| AD12| 2.5-V| Ring indicator control input (active low)
24| USB_UART_DCD| AD13| 2.5-V| Data carrier detect control input (active low)
22| USB_UART_DSR| V12| 2.5-V| Data set ready control input (active low)
21| USB_UART_RXD| AF10| 2.5-V| Asynchronous data input (UART receive)
19| USB_UART_RTS| AE12| 2.5-V| Ready to send control output (active low)
12| USB_UART_GPIO2| AE13| 2.5-V| User-configurable input or output.
23| USB_UART_DTR| AE10| 2.5-V| Data terminal ready control output (active low)
20| USB_UART_TXD| W12| 2.5-V| Asynchronous data output (UART transmit)
18| USB_UART_CTS| AJ1| 2.5-V| Clear to send control input (active low)
15| USB_UART_SUSPENDn| —| 2.5-V| Pin is logic low when the CP2104 is in the
USB suspend state.
17| USB_UART_SUSPEND| —| 2.5-V| Pin is logic high when the CP2104 is in the
USB suspend state.
9| USB_UART_RSTn| —| 2.5-V| Device reset
Memory
This section describes the development board’s memory interface support and
also their signal names, types, and connectivity relative to the Cyclone V E
FPGA. The development board has the following memory interfaces:
- DDR3 SDRAM
- LPDDR2 SDRAM
- EEPROM
- Synchronous SRAM
- Synchronous flash
For more information about the memory interfaces, refer to the following documents:
- Timing Analysis section in the External Memory Interface Handbook.
- DDR, DDR2, and DDR3 SDRAM Design Tutorials section in the External Memory Interface Handbook.
DDR3 SDRAM
- The development board supports two 16Mx16x8 and two 16Mx8x8 DDR3 SDRAM interfaces for very high-speed sequential memory access.
- The 32-bit data bus comprises of two x16 devices using soft memory controller (SMC) interface. With SMC, this memory interface runs at a target frequency of 300 MHz for a maximum theoretical bandwidth of over 9.6 Gbps. The maximum frequency for this DDR3 device is 800 MHz with a CAS latency of 11.
- Table 2–24 lists the DDR3 pin assignments, signal names, and functions. The signal names and types are relative to the Cyclone V E FPGA in terms of I/O setting and direction.
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 4)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
DDR3 x16 (U8)
N3| DDR3_A0| A16| 1.5-V SSTL Class I| Address bus
P7| DDR3_A1| G23| 1.5-V SSTL Class I| Address bus
P3| DDR3_A2| E21| 1.5-V SSTL Class I| Address bus
N2| DDR3_A3| E22| 1.5-V SSTL Class I| Address bus
P8| DDR3_A4| A20| 1.5-V SSTL Class I| Address bus
P2| DDR3_A5| A26| 1.5-V SSTL Class I| Address bus
R8| DDR3_A6| A15| 1.5-V SSTL Class I| Address bus
R2| DDR3_A7| B26| 1.5-V SSTL Class I| Address bus
T8| DDR3_A8| H17| 1.5-V SSTL Class I| Address bus
R3| DDR3_A9| D14| 1.5-V SSTL Class I| Address bus
L7| DDR3_A10| E23| 1.5-V SSTL Class I| Address bus
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 4)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
R7| DDR3_A11| E20| 1.5-V SSTL Class I| Address bus
N7| DDR3_A12| C25| 1.5-V SSTL Class I| Address bus
T3| DDR3_A13| B13| 1.5-V SSTL Class I| Address bus
M2| DDR3_BA0| J18| 1.5-V SSTL Class I| Bank address bus
N8| DDR3_BA1| F20| 1.5-V SSTL Class I| Bank address bus
M3| DDR3_BA2| D19| 1.5-V SSTL Class I| Bank address bus
K3| DDR3_CASN| L20| 1.5-V SSTL Class I| Row address select
K9| DDR3_CKE| C11| 1.5-V SSTL Class I| Column address select
J7| DDR3_CLK_P| J20| Differential 1.5-V SSTL Class I| Differential output
clock
K7| DDR3_CLK_N| H20| Differential 1.5-V SSTL Class I| Differential output
clock
L2| DDR3_CSN| G17| 1.5-V SSTL Class I| Chip select
E7| DDR3_DM0| D23| 1.5-V SSTL Class I| Write mask byte lane
D3| DDR3_DM1| D18| 1.5-V SSTL Class I| Write mask byte lane
E3| DDR3_DQ0| A25| 1.5-V SSTL Class I| Data bus byte lane 0
H8| DDR3_DQ1| D22| 1.5-V SSTL Class I| Data bus byte lane 0
F7| DDR3_DQ2| C21| 1.5-V SSTL Class I| Data bus byte lane 0
H7| DDR3_DQ3| C19| 1.5-V SSTL Class I| Data bus byte lane 0
F2| DDR3_DQ4| C20| 1.5-V SSTL Class I| Data bus byte lane 0
G2| DDR3_DQ5| C22| 1.5-V SSTL Class I| Data bus byte lane 0
F8| DDR3_DQ6| D25| 1.5-V SSTL Class I| Data bus byte lane 0
H3| DDR3_DQ7| D20| 1.5-V SSTL Class I| Data bus byte lane 0
A7| DDR3_DQ8| B24| 1.5-V SSTL Class I| Data bus byte lane 1
C3| DDR3_DQ9| A21| 1.5-V SSTL Class I| Data bus byte lane 1
A3| DDR3_DQ10| B21| 1.5-V SSTL Class I| Data bus byte lane 1
D7| DDR3_DQ11| F19| 1.5-V SSTL Class I| Data bus byte lane 1
A2| DDR3_DQ12| C24| 1.5-V SSTL Class I| Data bus byte lane 1
C2| DDR3_DQ13| B23| 1.5-V SSTL Class I| Data bus byte lane 1
B8| DDR3_DQ14| E18| 1.5-V SSTL Class I| Data bus byte lane 1
C8| DDR3_DQ15| A23| 1.5-V SSTL Class I| Data bus byte lane 1
F3| DDR3_DQS_P0| K20| Differential 1.5-V SSTL Class I| Data strobe P byte lane
0
G3| DDR3_DQS_N0| J19| Differential 1.5-V SSTL Class I| Data strobe N byte lane
0
C7| DDR3_DQS_P1| L18| Differential 1.5-V SSTL Class I| Data strobe P byte lane
1
B7| DDR3_DQS_N1| K18| Differential 1.5-V SSTL Class I| Data strobe N byte lane
1
K1| DDR3_ODT| H19| 1.5-V SSTL Class I| On-die termination enable
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 4)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
J3| DDR3_RASN| A24| 1.5-V SSTL Class I| Row address select
T2| DDR3_RESETN| L19| 1.5-V SSTL Class I| Reset
L3| DDR3_WEN| B22| 1.5-V SSTL Class I| Write enable
L8| DDR3_ZQ01| —| 1.5-V SSTL Class I| ZQ impedance calibration
DDR3 x16 (U7)
N3| DDR3_A0| A16| 1.5-V SSTL Class I| Address bus
P7| DDR3_A1| G23| 1.5-V SSTL Class I| Address bus
P3| DDR3_A2| E21| 1.5-V SSTL Class I| Address bus
N2| DDR3_A3| E22| 1.5-V SSTL Class I| Address bus
P8| DDR3_A4| A20| 1.5-V SSTL Class I| Address bus
P2| DDR3_A5| A26| 1.5-V SSTL Class I| Address bus
R8| DDR3_A6| A15| 1.5-V SSTL Class I| Address bus
R2| DDR3_A7| B26| 1.5-V SSTL Class I| Address bus
T8| DDR3_A8| H17| 1.5-V SSTL Class I| Address bus
R3| DDR3_A9| D14| 1.5-V SSTL Class I| Address bus
L7| DDR3_A10| E23| 1.5-V SSTL Class I| Address bus
R7| DDR3_A11| E20| 1.5-V SSTL Class I| Address bus
N7| DDR3_A12| C25| 1.5-V SSTL Class I| Address bus
T3| DDR3_A13| B13| 1.5-V SSTL Class I| Address bus
M2| DDR3_BA0| J18| 1.5-V SSTL Class I| Bank address bus
N8| DDR3_BA1| F20| 1.5-V SSTL Class I| Bank address bus
M3| DDR3_BA2| D19| 1.5-V SSTL Class I| Bank address bus
K3| DDR3_CASN| L20| 1.5-V SSTL Class I| Row address select
K9| DDR3_CKE| AK18| 1.5-V SSTL Class I| Column address select
K7| DDR3_CLK_P| J20| 1.5-V SSTL Class I| Differential output clock
J7| DDR3_CLK_N| H20| 1.5-V SSTL Class I| Differential output clock
L2| DDR3_CSN| G17| 1.5-V SSTL Class I| Chip select
E7| DDR3_DM2| A19| 1.5-V SSTL Class I| Write mask byte lane
D3| DDR3_DM3| B14| 1.5-V SSTL Class I| Write mask byte lane
F2| DDR3_DQ16| G18| 1.5-V SSTL Class I| Data bus byte lane 2
F8| DDR3_DQ17| B18| 1.5-V SSTL Class I| Data bus byte lane 2
E3| DDR3_DQ18| A18| 1.5-V SSTL Class I| Data bus byte lane 2
F7| DDR3_DQ19| F18| 1.5-V SSTL Class I| Data bus byte lane 2
H3| DDR3_DQ20| C14| 1.5-V SSTL Class I| Data bus byte lane 2
G2| DDR3_DQ21| C17| 1.5-V SSTL Class I| Data bus byte lane 2
H7| DDR3_DQ22| B17| 1.5-V SSTL Class I| Data bus byte lane 2
H8| DDR3_DQ23| B19| 1.5-V SSTL Class I| Data bus byte lane 2
A2| DDR3_DQ24| C15| 1.5-V SSTL Class I| Data bus byte lane 3
Table 2–24. DDR3 Device Pin Assignments, Schematic Signal Names, and Functions (Part 4 of 4)
Board Reference| Schematic Signal Name| Cyclone V E
FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
C2| DDR3_DQ25| D17| 1.5-V SSTL Class I| Data bus byte lane 3
D7| DDR3_DQ26| C12| 1.5-V SSTL Class I| Data bus byte lane 3
A7| DDR3_DQ27| E17| 1.5-V SSTL Class I| Data bus byte lane 3
A3| DDR3_DQ28| C16| 1.5-V SSTL Class I| Data bus byte lane 3
C3| DDR3_DQ29| A14| 1.5-V SSTL Class I| Data bus byte lane 3
B8| DDR3_DQ30| D12| 1.5-V SSTL Class I| Data bus byte lane 3
C8| DDR3_DQ31| A13| 1.5-V SSTL Class I| Data bus byte lane 3
F3| DDR3_DQS_P2| K16| Differential 1.5-V SSTL Class I| Data strobe P byte lane
2
G3| DDR3_DQS_N2| L16| Differential 1.5-V SSTL Class I| Data strobe N byte lane
2
C7| DDR3_DQS_P3| K17| Differential 1.5-V SSTL Class I| Data strobe P byte lane
3
B7| DDR3_DQS_N3| J17| Differential 1.5-V SSTL Class I| Data strobe N byte lane
3
K1| DDR3_ODT| H19| 1.5-V SSTL Class I| On-die termination enable
J3| DDR3_RASN| A24| 1.5-V SSTL Class I| Row address select
T2| DDR3_RESETN| L19| 1.5-V SSTL Class I| Reset
L3| DDR3_WEN| B22| 1.5-V SSTL Class I| Write enable
L8| DDR3_ZQ2| —| 1.5-V SSTL Class I| ZQ impedance calibration
LPDDR2 SDRAM
The LPDDR2 is a mobile low-power DDR2 SDRAM device that operates at 1.2 V.
This interface connects to the horizontal I/O banks on the top edge of the
FPGA device.
The device speed is 300 MHz. Only x16 configuration is used although the
LPDDR2 SDRAM on the board is a x32 device.
Table 2–25 lists the LPDDR2 SDRAM pin assignments, signal names, and
functions.
The signal names and types are relative to the Cyclone V E FPGA in terms of
I/O setting and direction.
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
AC6| LPDDR2_CA0| Y30| 1.2-V HSUL| Address bus
AB6| LPDDR2_CA1| T30| 1.2-V HSUL| Address bus
AC7| LPDDR2_CA2| W29| 1.2-V HSUL| Address bus
AB8| LPDDR2_CA3| AB29| 1.2-V HSUL| Address bus
AB9| LPDDR2_CA4| W30| 1.2-V HSUL| Address bus
W1| LPDDR2_CA5| U29| 1.2-V HSUL| Address bus
V2| LPDDR2_CA6| AC30| 1.2-V HSUL| Address bus
U1| LPDDR2_CA7| R30| 1.2-V HSUL| Address bus
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
T2| LPDDR2_CA8| T28| 1.2-V HSUL| Address bus
T1| LPDDR2_CA9| T25| 1.2-V HSUL| Address bus
Y2| LPDDR2_CK| V21| Differential 1.2-V HSUL| Differential output clock P
Y1| LPDDR2_CKN| V22| Differential 1.2-V HSUL| Differential output clock N
AC3| LPDDR2_CKE| T29| 1.2-V HSUL| Clock enable
AB3| LPDDR2_CSN| R26| 1.2-V HSUL| Chip select
N23| LPDDR2_DM0| AG29| 1.2-V HSUL| Data mask
L23| LPDDR2_DM1| AB27| 1.2-V HSUL| Data mask
AB20| LPDDR2_DM2| —| 1.2-V HSUL| Data mask
B20| LPDDR2_DM3| —| 1.2-V HSUL| Data mask
AA23| LPDDR2_DQ0| AG28| 1.2-V HSUL| Data bus byte lane 0
Y22| LPDDR2_DQ1| AH30| 1.2-V HSUL| Data bus byte lane 0
W22| LPDDR2_DQ2| AA28| 1.2-V HSUL| Data bus byte lane 0
W23| LPDDR2_DQ3| AH29| 1.2-V HSUL| Data bus byte lane 0
V23| LPDDR2_DQ4| Y28| 1.2-V HSUL| Data bus byte lane 0
U22| LPDDR2_DQ5| AE30| 1.2-V HSUL| Data bus byte lane 0
T22| LPDDR2_DQ6| AJ28| 1.2-V HSUL| Data bus byte lane 0
T23| LPDDR2_DQ7| AD30| 1.2-V HSUL| Data bus byte lane 0
H22| LPDDR2_DQ8| AC29| 1.2-V HSUL| Data bus byte lane 1
H23| LPDDR2_DQ9| AF30| 1.2-V HSUL| Data bus byte lane 1
G23| LPDDR2_DQ10| AA30| 1.2-V HSUL| Data bus byte lane 1
F22| LPDDR2_DQ11| AE28| 1.2-V HSUL| Data bus byte lane 1
E22| LPDDR2_DQ12| AF29| 1.2-V HSUL| Data bus byte lane 1
E23| LPDDR2_DQ13| AD28| 1.2-V HSUL| Data bus byte lane 1
D23| LPDDR2_DQ14| V27| 1.2-V HSUL| Data bus byte lane 1
C22| LPDDR2_DQ15| W28| 1.2-V HSUL| Data bus byte lane 1
AB12| LPDDR2_DQ16| —| 1.2-V HSUL| Data bus byte lane 2
AC13| LPDDR2_DQ17| —| 1.2-V HSUL| Data bus byte lane 2
AB14| LPDDR2_DQ18| —| 1.2-V HSUL| Data bus byte lane 2
AC14| LPDDR2_DQ19| —| 1.2-V HSUL| Data bus byte lane 2
AB15| LPDDR2_DQ20| —| 1.2-V HSUL| Data bus byte lane 2
AC16| LPDDR2_DQ21| —| 1.2-V HSUL| Data bus byte lane 2
AB17| LPDDR2_DQ22| —| 1.2-V HSUL| Data bus byte lane 2
AC17| LPDDR2_DQ23| —| 1.2-V HSUL| Data bus byte lane 2
B17| LPDDR2_DQ24| —| 1.2-V HSUL| Data bus byte lane 3
A17| LPDDR2_DQ25| —| 1.2-V HSUL| Data bus byte lane 3
A16| LPDDR2_DQ26| —| 1.2-V HSUL| Data bus byte lane 3
B15| LPDDR2_DQ27| —| 1.2-V HSUL| Data bus byte lane 3
B14| LPDDR2_DQ28| —| 1.2-V HSUL| Data bus byte lane 3
Table 2–25. LPDDR2 SDRAM Schematic Signal Names and Functions
Board Reference (U9)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
A14| LPDDR2_DQ29| —| 1.2-V HSUL| Data bus byte lane 3
A13| LPDDR2_DQ30| —| 1.2-V HSUL| Data bus byte lane 3
B12| LPDDR2_DQ31| —| 1.2-V HSUL| Data bus byte lane 3
R23| LPDDR2_DQS0| V26| Differential 1.2-V HSUL| Data strobe P byte lane 0
P22| LPDDR2_DQSN0| U26| Differential 1.2-V HSUL| Data strobe N byte lane 0
J22| LPDDR2_DQS1| U27| Differential 1.2-V HSUL| Data strobe P byte lane 1
K23| LPDDR2_DQSN1| U28| Differential 1.2-V HSUL| Data strobe N byte lane 1
AB18| LPDDR2_DQS2| —| Differential 1.2-V HSUL| Data strobe P byte lane 2
AC19| LPDDR2_DQSN2| —| Differential 1.2-V HSUL| Data strobe N byte lane 2
B18| LPDDR2_DQS3| —| Differential 1.2-V HSUL| Data strobe P byte lane 3
A19| LPDDR2_DQSN4| —| Differential 1.2-V HSUL| Data strobe N byte lane 3
P1| LPDDR2_ZQ| —| 1.2-V| ZQ impedance calibration
EEPROM
This board includes a 64-Kb EEPROM device. This device has a 2-wire serial
interface bus I2C.
Table 2–26 lists the EEPROM pin assignments, signal names, and functions. The
signal names and types are relative to the Cyclone V E FPGA in terms of I/O
setting and direction.
Table 2–26. EEPROM Schematic Signal Names and Functions
Board Reference (U12)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
1| EEPROM_A0| —| 3.3-V| Chip address
2| EEPROM_A1| —| 3.3-V| Chip address
3| EEPROM_A2| —| 3.3-V| Chip address
5| EEPROM_SDA| AH7| 3.3-V| Serial address or data
6| EEPROM_SCL| AG7| 3.3-V| Serial clock
7| EEPROM_WP| —| 3.3-V| Write protect input
Synchronous SRAM
The development board supports a 18-Mb standard synchronous SRAM for
instruction and data storage with low-latency random access capability. The
device has a 1024K x 18-bits interface. This device is part of the shared FSM
bus that connects to the flash memory, SRAM, and MAX V CPLD 5M2210 System
Controller. The device speed is 250 MHz single-data-rate. There is no minimum
speed for this device. The theoretical bandwidth of this interface is 4 Gbps
for continuous bursts. The read latency for any address is two clocks while
the write latency is one clock.
Table 2–27 lists the SSRAM pin assignments, signal names, and functions.
Table 2–27. SSRAM Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 2)
Board Reference (U11)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
86| SRAM_OEN| E7| 2.5-V| Output enable
87| SRAM_WEN| D6| 2.5-V| Write enable
37| FSM_A1| B11| 2.5-V| Address bus
36| FSM_A2| A11| 2.5-V| Address bus
44| FSM_A3| D9| 2.5-V| Address bus
42| FSM_A4| C10| 2.5-V| Address bus
34| FSM_A5| A10| 2.5-V| Address bus
47| FSM_A6| A9| 2.5-V| Address bus
43| FSM_A7| C9| 2.5-V| Address bus
46| FSM_A8| B8| 2.5-V| Address bus
45| FSM_A9| B7| 2.5-V| Address bus
35| FSM_A10| A8| 2.5-V| Address bus
32| FSM_A11| B6| 2.5-V| Address bus
33| FSM_A12| A6| 2.5-V| Address bus
50| FSM_A13| C7| 2.5-V| Address bus
48| FSM_A14| C6| 2.5-V| Address bus
100| FSM_A15| F13| 2.5-V| Address bus
99| FSM_A16| E13| 2.5-V| Address bus
82| FSM_A17| A5| 2.5-V| Address bus
80| FSM_A18| A4| 2.5-V| Address bus
49| FSM_A19| J7| 2.5-V| Address bus
81| FSM_A20| H7| 2.5-V| Address bus
39| FSM_A21| J9| 2.5-V| Address bus
58| FSM_D0| F16| 2.5-V| Data bus
59| FSM_D1| E16| 2.5-V| Data bus
62| FSM_D2| M9| 2.5-V| Data bus
63| FSM_D3| M8| 2.5-V| Data bus
68| FSM_D4| F15| 2.5-V| Data bus
69| FSM_D5| E15| 2.5-V| Data bus
Table 2–27. SSRAM Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 2)
Board Reference (U11)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
72| FSM_D6| E12| 2.5-V| Data bus
73| FSM_D7| D13| 2.5-V| Data bus
23| FSM_D8| J15| 2.5-V| Data bus
22| FSM_D9| H15| 2.5-V| Data bus
19| FSM_D10| E11| 2.5-V| Data bus
18| FSM_D11| D10| 2.5-V| Data bus
12| FSM_D12| L10| 2.5-V| Data bus
13| FSM_D13| L9| 2.5-V| Data bus
8| FSM_D14| G14| 2.5-V| Data bus
9| FSM_D15| F14| 2.5-V| Data bus
85| SRAM_ADSCN| E6| 2.5-V| Address status controller
84| SRAM_ADSPN| J10| 2.5-V| Address status processor
83| SRAM_ADVN| G6| 2.5-V| Address valid
93| SRAM_BWAN| A3| 2.5-V| Byte write select
94| SRAM_BWBN| A2| 2.5-V| Byte write select
97| SRAM_CE2| —| 2.5-V| Chip enable 2
92| SRAM_CE3N| —| 2.5-V| Chip enable 3
98| SRAM_CEN| D7| 2.5-V| Chip enable 1
89| SRAM_CLK| K10| 2.5-V| Clock
88| SRAM_GWN| —| 2.5-V| Global write enable
31| SRAM_MODE| —| 2.5-V| Burst sequence selection
64| SRAM_ZZ| —| 2.5-V| Power sleep mode
Flash
The development board supports a 512-Mb CFI-compatible synchronous flash
device for non-volatile storage of FPGA configuration data, board information,
test application data, and user code space. This device is part of the shared
FSM bus that connects to the flash memory, SSRAM, and MAX V CPLD 5M2210 System
Controller. This 16-bit data memory interface can sustain burst read
operations at up to 52 MHz for a throughput of 832 Mbps per device. The write
performance is 270 μs for a single word buffer while the erase time is 800 ms
for a 128 K array block. Table 2–28 lists the flash pin assignments, signal
names, and functions. The signal names and types are relative to the Cyclone V
E FPGA in terms of I/O setting and direction.
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 1 of 3)
Board Reference (U10)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
F6| FLASH_ADVN| H12| 2.5-V| Address valid
B4| FLASH_CEN| H14| 2.5-V| Chip enable
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 2 of 3)
Board Reference (U10)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
E6| FLASH_CLK| N12| 2.5-V| Clock
F8| FLASH_OEN| L11| 2.5-V| Output enable
F7| FLASH_RDYBSYN| J12| 2.5-V| Ready
D4| FLASH_RESETN| K11| 2.5-V| Reset
G8| FLASH_WEN| P12| 2.5-V| Write enable
C6| FLASH_WPN| —| 2.5-V| Write protect
A1| FSM_A1| B11| 2.5-V| Address bus
B1| FSM_A2| A11| 2.5-V| Address bus
C1| FSM_A3| D9| 2.5-V| Address bus
D1| FSM_A4| C10| 2.5-V| Address bus
D2| FSM_A5| A10| 2.5-V| Address bus
A2| FSM_A6| A9| 2.5-V| Address bus
C2| FSM_A7| C9| 2.5-V| Address bus
A3| FSM_A8| B8| 2.5-V| Address bus
B3| FSM_A9| B7| 2.5-V| Address bus
C3| FSM_A10| A8| 2.5-V| Address bus
D3| FSM_A11| B6| 2.5-V| Address bus
C4| FSM_A12| A6| 2.5-V| Address bus
A5| FSM_A13| C7| 2.5-V| Address bus
B5| FSM_A14| C6| 2.5-V| Address bus
C5| FSM_A15| F13| 2.5-V| Address bus
D7| FSM_A16| E13| 2.5-V| Address bus
D8| FSM_A17| A5| 2.5-V| Address bus
A7| FSM_A18| A4| 2.5-V| Address bus
B7| FSM_A19| J7| 2.5-V| Address bus
C7| FSM_A20| H7| 2.5-V| Address bus
C8| FSM_A21| J9| 2.5-V| Address bus
A8| FSM_A22| H9| 2.5-V| Address bus
G1| FSM_A23| G9| 2.5-V| Address bus
H8| FSM_A24| F8| 2.5-V| Address bus
B6| FSM_A25| E8| 2.5-V| Address bus
B8| FSM_A26| D8| 2.5-V| Address bus
F2| FSM_D0| F16| 2.5-V| Data bus
E2| FSM_D1| E16| 2.5-V| Data bus
G3| FSM_D2| M9| 2.5-V| Data bus
E4| FSM_D3| M8| 2.5-V| Data bus
E5| FSM_D4| F15| 2.5-V| Data bus
G5| FSM_D5| E15| 2.5-V| Data bus
G6| FSM_D6| E12| 2.5-V| Data bus
Table 2–28. Flash Pin Assignments, Schematic Signal Names, and Functions (Part 3 of 3)
Board Reference (U10)| Schematic Signal Name| Cyclone
V E FPGA Pin Number| I/O Standard| Description
---|---|---|---|---
H7| FSM_D7| D13| 2.5-V| Data bus
E1| FSM_D8| J15| 2.5-V| Data bus
E3| FSM_D9| H15| 2.5-V| Data bus
F3| FSM_D10| E11| 2.5-V| Data bus
F4| FSM_D11| D10| 2.5-V| Data bus
F5| FSM_D12| L10| 2.5-V| Data bus
H5| FSM_D13| L9| 2.5-V| Data bus
G7| FSM_D14| G14| 2.5-V| Data bus
E7| FSM_D15| F14| 2.5-V| Data bus
Power Supply
You can power up the development board from a laptop-style DC power input. The
input voltage must be in the range of 14 V to 20 V, current of 4.3 A, and a
maximum wattage of 65 W. The DC voltage is then stepped down to various power
rails used by the board components and installed into the HSMC connectors. An
on-board multi-channel analog-to-digital converter (ADC) measures the current
for several specific board rails.
Power Distribution System
Figure 2–9 shows the power distribution system on the development board.
Regulator inefficiencies and sharing are reflected in the currents shown,
which are conservative absolute maximum levels.
Figure 2–9. Power Distribution System
Power Measurement
There are eight power supply rails that have on-board current sense
capabilities using 24-bit differential ADC devices. Precision sense resistors
split the ADC devices and rails from the primary supply plane for the ADC to
measure current. A SPI bus connects these ADC devices to the MAX V CPLD 5M2210
System Controller.
Figure 2–10 shows the block diagram for the power measurement circuitry.
Figure 2–10. Power Measurement Circuit
Table 2–29 lists the targeted rails. The schematic signal name column specifies the name of the rail being measured while the device pin column specifies the devices attached to the rail.
Table 2–29. Power Measurement Rails
Channel| Schematic Signal Name| Voltage (V)|
Device Pin| Description
---|---|---|---|---
1| VCC| 1.1| VCC| FPGA core power
2| VCCAUX| 2.5| VCC_AUX| Auxiliary
3| VCCA_FPLL| 2.5| VCCA_FPLL| PLL analog power
| | | VCCPD3B4A,|
| | | VCCPD5A,
VCCPD5B, VCCPD6A,
| I/O pre-drivers banks 3B, 4A, 5A, 5B, 6A, 7A, and 8A
5| VCCIO_VCCPD_2.5V| 2.5| VCCPD7A8A|
| | | VCCIO3B,|
| | | VCCIO6A, VCCIO7A,| VCC I/O banks 3B, 6A, 7A, and 8A
| | | VCCIO8A|
7| VCCIO_1.2V| 1.2| VCCIO5A, VCCIO5B,| VCC I/O banks 5A and 5B (LPDDR2)
8| VCCIO_1.5V| 1.5| VCCIO_4A| VCC I/O bank 4A (DDR3)
Board Components Reference
This chapter describes the Cyclone V E FPGA development board components, the manufacturing information, and the board compliance statements.
Board Components
Table lists the component reference and manufacturing information of all the
components on the development board.
Table 3–1. Component Reference and Manufacturing Information
Board Reference| Component| Manufacturer|
Manufacturing Part Number| Manufacturer Website
---|---|---|---|---
U1| FPGA, Cyclone V E F896, 149,500
LEs, leadfree
| Altera Corporation| 5CEFA7F31I7N| www.altera.com
U13| MAX V CPLD 5M2210 System
Controller
| Altera Corporation| 5M2210ZF256I5N| www.altera.com
U18| High-Speed USB peripheral controller| Cypress| CY7C68013A|
www.cypress.com
D1-D16, D18-D31,| Green LEDs| Lumex Inc.| SML-LXT0805GW-TR|
www.lumex.com
D17| Red LED| Lumex Inc.| SML-LXT0805IW-TR|
www.lumex.com
D35| Blue LED| Lumex Inc.| SML-LX0805USBC-TR|
www.lumex.com
SW1–SW4| Four-position DIP switches| C&K Components/ ITT Industries|
TDA04H0SB1| www.ittcannon.com
S1-S8| Push buttons| Panasonic| EVQPAC07K|
www.panasonic.com
S5| Slide switch| E-switch| EG2201A|
www.e-switch.com
X1| Programmable LVDS clock 125M defaults| Silicon Labs| 570FAB000973DG|
www.silabs.com
X3| 100 MHz crystal oscillator, ±50 ppm,
CMOS, 2.5 V
| Silicon Labs| 510GBA100M000BAGx| www.silabs.com
X2| 50 MHz crystal oscillator, ±50 ppm,
CMOS, 2.5 V
| Silicon Labs| 510GBA50M0000BAGx| www.silabs.com
J12| Female angled PCB WR-DSUB 9-pin connector| Wurth Elektronik|
618009231121| www.we-online.com
U21| USB-to-UART bridge| Silicon Labs| CP2104|
www.silabs.com
J14| 2×7 pin LCD socket strip| Samtec| TSM-107-07-G-D|
www.samtec.com
2×16 character LCD, 5×8 dot matrix| Lumex Inc.| LCM-S01602DSR/C|
www.lumex.com
U14, U15| Ethernet PHY BASE-T devices| Marvell Semiconductor| 88E1111-B2-
CAA1C000| www.marvell.com
J8, J9| RJ-45 connectors, 10/100/1000 Mbps| Wurth Elektronik| 7499111001A|
www.we-online.com
J7| HSMC, custom version of QSH-DP family high-speed socket.| Samtec|
ASP-122953-01| www.samtec.com
U20| RS-232 dual transceiver| Linear Technology| LTC2803-1|
www.linear.com
Table 3–1. Component Reference and Manufacturing Information
Board Reference| Component| Manufacturer|
Manufacturing Part Number| Manufacturer Website
---|---|---|---|---
U12| 64-Kb EEPROM| Microchip| 24AA64|
www.microchip.com
J15, J16| 2 x 8 debug headers| Samtec| TSM-108-01-L-DV|
www.samtec.com
U7, U8| 16M × 16 × 8, 256-MB DDR3 SDRAM| Micron| MT41J128M16|
www.micron.com
U9| 16M × 32 × 8, 512-MB LPDDR2 SDRAM| Micron| MT42L128M32|
www.micron.com
U11| 1024K × 18 bit 18-Mb synchronous SRAM| Integrated Silicon Solution, Inc.|
IS61VPS102418A- 250TQL| www.issi.com
U10| 512-Mb synchronous flash| Numonyx| PC28F512P30BF|
www.numonyx.com
U35| 16-channel differential 24-bit ADC| Linear Technology| LTC2418CGN#PBF|
www.linear.com
Statement of China-RoHS Compliance
Table 3–2 lists hazardous substances included with the kit.
Table 3–2. Table of Hazardous Substances’ Name and Concentration Notes (1), (2)
__
Part Name
| Lead (Pb)| Cadmium (Cd)| Hexavalent Chromium
(Cr6+)| Mercury (Hg)| Polybrominated biphenyls
(PBB)| Polybrominated diphenyl Ethers (PBDE)
---|---|---|---|---|---|---
Cyclone V E development board| X*| 0| 0| 0| 0| 0
15 V power supply| 0| 0| 0| 0| 0| 0
Type A-B USB cable| 0| 0| 0| 0| 0| 0
User guide| 0| 0| 0| 0| 0| 0
Notes to Table 3–2:
- 0 indicates that the concentration of the hazardous substance in all homogeneous materials in the parts is below the relevant threshold of the SJ/T11363-2006 standard.
- X* indicates that the concentration of the hazardous substance of at least one of all homogeneous materials in the parts is above the relevant threshold of the SJ/T11363-2006 standard, but it is exempted by EU RoHS.
CE EMI Conformity Caution
This development kit is delivered conforming to relevant standards mandated by
Directive 2004/108/EC. Because of the nature of programmable logic devices, it
is possible for the user to modify the kit in such a way as to generate
electromagnetic interference (EMI) that exceeds the limits established for
this equipment. Any EMI caused as the result of modifications to the delivered
material is the responsibility of the user.
Additional Information
This chapter provides additional information about the document and Altera.
Board Revision History
The following table lists the versions of all releases of the Cyclone V E FPGA
Development Board.
Release Date | Version | Description |
---|---|---|
March 2013 | Production silicon | ■ New board revision. New device part |
number—5CEFA7F31I7N.
■ Board passed CE compliance testing.
November 2012| Engineering silicon| Initial release.
Document Revision History
The following table lists the revision history for this document.
Date | Version | Changes |
---|---|---|
August 2017 | 1.4 | Corrected board location for Clock Output SMA Connector in |
“Overview of the Cyclone V E FPGA Development Board Features” on page 2–2.
January 2017| 1.3| Corrected ENETA_RX_DV pin number in Table 2–20 on page
2–25.
September 2015
|
1.2
| ■ Added link to Altera Design Store in “MAX V CPLD 5M2210 System Controller” on page 2–5.
■ Corrected device label in Figure 2–5 on page 2–15.
March 2013| 1.1| ■ Revised the FPGA device part number for production silicon release.
■ Added a section about “CE EMI Conformity Caution” on page 3–2.
November 2012| 1.0| Initial release.
Typographic Conventions
The following table shows the typographic conventions this document uses.
Visual Cue | Meaning |
---|---|
Bold Type with Initial Capital Letters | Indicate command names, |
dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI.
bold type
| Indicates directory names, project names, disk drive names, file names,
file name extensions, software utility names, and GUI labels. For example,
\qdesigns directory, D: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters| Indicate document titles. For
example, Stratix IV Design Guidelines.
Cyclone V E FPGA Development Board
Reference Manual
August 2017 Altera Corporation
References
- Semiconductor & System Solutions - Infineon Technologies
- E-Switch, Inc.
- E-Switch, Inc.
- issi.com
- Home | ITT Cannon
- Home | ITT Cannon
- Mixed-signal and digital signal processing ICs | Analog Devices
- Lumex Inc. - An ITW Company
- Empowering Innovation | Microchip Technology
- Micron Technology | Global Leader in Semiconductors
- Micron Technology | Global Leaders in Semiconductors | Micron Technology Inc.
- Micron Technology | Global Leaders in Semiconductors | Micron Technology Inc.
- Panasonic North America | Create Today, Enrich Tomorrow
- Panasonic North America | Create Today, Enrich Tomorrow
- Silicon Labs
- Silicon Labs
- Silicon Labs
- Würth Elektronik
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>