ROHM BD9P608MFF-C Primary Buck DC DC Converter User Guide

June 15, 2024
ROHM

**ROHM BD9P608MFF-C Primary Buck DC DC Converter User Guide

**

Introduction

This user’s guide will provide the necessary steps to operate the Evaluation Board of ROHM’s BD9P608MFF-C Buck DC/DC converter. This includes the external parts, operating procedures and application data.

Description

This Evaluation Board was developed for ROHM’s single 440 kHz or 2.2 MHz buck DC/DC converter BD9P608MFF-C. BD9P608MFF-C is a current mode synchronous buck DC/DC converter with integrated POWER MOSFETs. The BD9P608MFF-C accepts a power supply input range of 3.5V to 40V and generates a maximum output current of 6A. BD9P608MFF-C generates an output voltage range of 0.8V to 8.5V using external resistors.

Application

Automotive Powered Supplies
Consumer Powered Supplies

Recommended Operating Conditions

Table 1. Recommended Operating Conditions

Parameter Min Typ Max Units Conditions
Input Voltage 3.5 40 V Initial startup is 4.0 V or more
Output Voltage (Note1) 0.8 8.5 V
Output Current Range 6.0 A
Switching Frequency fsw1 2.2 MHz FREQ_SEL = 0 V
Switching Frequency fsw2 440 kHz FREQ_SEL = 5 V
Maximum Efficiency 96.6 % VIN = 12V, VO = 5.0V, fsw = 440kHz, Io =

1.74 A, Ta = 25 °C
Maximum Efficiency| –| 93.9| –| %| VIN = 12V, VO = 5.0V, fsw = 2.2MHz, Io = 2.21 A, Ta = 25 °C

(Note1) Although the minimum output voltage is configurable up to 0.8 V, it may be limited by the SW min ON pulse width. For the same reason, although the maximum output voltage is configurable up to 8.5 V, it may be limited by the SW minimum OFF pulse width.

**Evaluation Board

Figure 1. 2.2 MHz setting (FREQ_SEL = Low) (Top View)
**

Evaluation Board Schematic

Figure 2. BD9P608MFF-C Circuit Diagram

Operating Procedure

  1. Turn off EN and connect the GND terminal of the power supply to the GND terminal of Evaluation Board.
  2. Connect VCC pin of power supply to the VBAT pin of the Evaluation Board.
  3. Connect the load to the Evaluation Board’s VOUT and GND terminals. When using an electronic load, connect with the load turned off.
  4. Connect a voltmeter to the Evaluation Board’s VOUT and GND terminals.
  5. Turn on the Power supply of VBAT. Turn ON the switch of EN terminal.
  6. Make sure that the voltmeter is set to measure voltage.
  7. Turn on the electronic load.

(Caution) This Evaluation Board does not support hot plug. Do not perform hot plug test.

(Note) If EN=High (EN short to VIN) before Power ON, the turn ON and turn OFF is controlled by VBAT only

Operation Mode Settings

Below is a table of BD9P608MFF-C operation modes selectable using FREQ_SEL, MODE and SSCG terminals.

Table 2. Mode Settings

Terminal Setting Operation Mode Function
FREQ_SEL (Note1) HIGH Switching frequency selection Switching

frequency is set to 440 kHz (Typ.)
LOW| Switching frequency is set to 2.2 MHz (Typ.)
MODE| HIGH| FPWM| Forced PWM mode
LOW or OPEN| AUTO| Automatically switched between PWM and LLM mode.
Apply a clock to this pin| SYNC| Activate synchronization mode
SSCG| ON (HIGH)| Select Spread Spectrum function| Enable Spread Spectrum
OFF (LOW)| Disable Spread Spectrum

(Note1) Do not change the setting of the FREQ_SEL terminal during IC operation.

(Note2) If setting is High, the terminal is shorted to VREG, and if setting is Low, the terminal is shorted to GND.

Pin Configuration

Figure 3. Pin Configuration (Top View)

Parts List (BD9P608MFF-C)

Table 3. Parts list (5.0 V, 6.0 A, 2.2 MHz (FREQ_SEL = Low))

| Part No.| Value| PKG(inch)| PKG(mm)| Manufacturer| Part Name(Series)
---|---|---|---|---|---|---
π type filter| CF1| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
LF1| 1.5μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-1R5N-D
CF2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CF2B| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CBLK| 220μF| 0404h04| 1010h10| Nichicon| UWD1V221MCL1GS
Basic| CIN4| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN3| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CIN1| 0.022μF| 0402| 1005| Murata| GCM155R71H223K
CVREG| 1μF| 0805| 2012| Murata| GCM21BR71C105K
CBST| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
RBST| 0Ω| 0402| 1005| ROHM| MCR01 Series
RRST| 10kΩ| 0402| 1005| ROHM| MCR01 Series
RRST2(Note3)| Open| –| –| –| –
Application| L1(Note1)| 2.2μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-2R2N-D
COUT1(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT2(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT3(Note1)| Open| –| –| –| –
COUT4(Note1)| Open| –| –| –| –
COUT5(Note1)| Open| –| –| –| –
COUT6(Note1)| Open| –| –| –| –
RFB0| 0Ω| 0402| 1005| ROHM| MCR01 Series
RFB1| 68kΩ| 0402| 1005| ROHM| MCR01 Series
RFB2| 13kΩ| 0402| 1005| ROHM| MCR01 Series
CFB1| Open| –| –| –| –
CFB2| Open| –| –| –| –
RSNB| Open| –| –| –| –
CSNB| Open| –| –| –| –
REX(Note2)| 0Ω| 0402| 1005| ROHM| MCR01 Series
REXN(Note2)| Open| –| –| –| –

Table 4. Parts list (5.0 V, 6.0 A, 440 kHz (FREQ_SEL = High))

| Part No| Value| PKG(inch)| PKG(mm)| Manufacturer| Part Name(Series)
---|---|---|---|---|---|---
π type filter| CF1| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
LF1| 1.5μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-1R5N-D
CF2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CF2B| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CBLK| 220μF| 0404h04| 1010h10| Nichicon| UWD1V221MCL1GS
Basic| CIN4| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN3| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CIN1| 0.022μF| 0402| 1005| Murata| GCM155R71H223K
CVREG| 1μF| 0805| 2012| Murata| GCM21BR71C105K
CBST| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
RBST| 0Ω| 0402| 1005| ROHM| MCR01 Series
RRST| 10kΩ| 0402| 1005| ROHM| MCR01 Series
RRST2(Note3)| Open| –| –| –| –
Application| L1(Note1)| 6.8μH| –| W12.1 x H5.5 x L12.5| TDK| CLF12555T-6R8N-D
COUT1(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT2(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT3(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT4(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT5(Note1)| Open| –| –| –| –
COUT6(Note1)| Open| –| –| –| –
RFB0| 0Ω| 0402| 1005| ROHM| MCR01 Series
RFB1| 68kΩ| 0402| 1005| ROHM| MCR01 Series
RFB2| 13kΩ| 0402| 1005| ROHM| MCR01 Series
CFB1| Open| –| –| –| –
CFB2| Open| –| –| –| –
RSNB| Open| –| –| –| –
CSNB| Open| –| –| –| –
REX(Note2)| 0Ω| 0402| 1005| ROHM| MCR01 Series
REXN(Note2)| Open| –| –| –| –

Table 5. Parts list (3.3 V, 6.0 A, 2.2 MHz (FREQ_SEL = Low))

| Part No| Value| PKG(inch)| PKG(mm)| Manufacturer| Part Name(Series)
---|---|---|---|---|---|---
π type filter| CF1| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
LF1| 1.5μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-1R5N-D
CF2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CF2B| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CBLK| 220μF| 0404h04| 1010h10| Nichicon| UWD1V221MCL1GS
Basic| CIN4| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN3| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CIN1| 0.022μF| 0402| 1005| Murata| GCM155R71H223K
CVREG| 1μF| 0805| 2012| Murata| GCM21BR71C105K
CBST| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
RBST| 0Ω| 0402| 1005| ROHM| MCR01 Series
RRST| 10kΩ| 0402| 1005| ROHM| MCR01 Series
RRST2(Note3)| Open| –| –| –| –
Application| L1(Note1)| 2.2μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-2R2N-D
COUT1(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT2(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT3(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT4(Note1)| Open| –| –| –| –
COUT5(Note1)| Open| –| –| –| –
COUT6(Note1)| Open| –| –| –| –
RFB0| 0Ω| 0402| 1005| ROHM| MCR01 Series
RFB1| 75kΩ| 0402| 1005| ROHM| MCR01 Series
RFB2| 24kΩ| 0402| 1005| ROHM| MCR01 Series
CFB1| Open| –| –| –| –
CFB2| Open| –| –| –| –
RSNB| Open| –| –| –| –
CSNB| Open| –| –| –| –
REX(Note2)| Open| –| –| –| –
REXN(Note2)| 0Ω| 0402| 1005| ROHM| MCR01 Series

Table 6. Parts list (3.3 V, 6.0 A, 440 kHz (FREQ_SEL = High))

| Part No| Value| PKG(inch)| PKG(mm)| Manufacturer| Part Name(Series)
---|---|---|---|---|---|---
π type filter| CF1| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
LF1| 1.5μH| –| W9.7 x H3.8 x L10.0| TDK| CLF10040T-1R5N-D
CF2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CF2B| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CBLK| 220μF| 0404h04| 1010h10| Nichicon| UWD1V221MCL1GS
Basic| CIN4| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN3| 4.7μF| 1210| 3225| Murata| GCM32ER71H475K
CIN2| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
CIN1| 0.022μF| 0402| 1005| Murata| GCM155R71H223K
CVREG| 1μF| 0805| 2012| Murata| GCM21BR71C105K
CBST| 0.1μF| 0402| 1005| Murata| GCM155R71H104K
RBST| 0Ω| 0402| 1005| ROHM| MCR01 Series
RRST| 10kΩ| 0402| 1005| ROHM| MCR01 Series
RRST2(Note3)| Open| –| –| –| –
Application| L1(Note1)| 6.8μH| –| W12.1 x H5.5 x L12.5| TDK| CLF12555T-6R8N-D
COUT1(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT2(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT3(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT4(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT5(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
COUT6(Note1)| 22μF| 1210| 3225| Murata| GCM32ER71A226K
RFB0| 0Ω| 0402| 1005| ROHM| MCR01 Series
RFB1| 75kΩ| 0402| 1005| ROHM| MCR01 Series
RFB2| 24kΩ| 0402| 1005| ROHM| MCR01 Series
CFB1| Open| –| –| –| –
CFB2| Open| –| –| –| –
RSNB| Open| –| –| –| –
CSNB| Open| –| –| –| –
REX(Note2)| Open| –| –| –| –
REXN(Note2)| 0Ω| 0402| 1005| ROHM| MCR01 Series

(Note 1)

VOUT| FREQ_SEL| SWFrequency| Recommended L Value| Recommended COUT Value| Minimum COUT Value (Note1-1,2)
---|---|---|---|---|---
≥ 5 V| L| 2.2 MHz| 2.2 μH| COUT ≥ 44 μF| COUT_WORST ≥ 30 μF
< 5 V| L| 2.2 MHz| 2.2 μH| COUT ≥ 220 [ μF] ()????| COUT_WORST ≥ 150 [ μF] ()????
≥ 5 V| H| 440 kHz| 6.8 μH| COUT ≥ 88 μF| COUT_WORST ≥ 60 μF
< 5 V| H| 440 kHz| 6.8 μH| COUT ≥ 440 [ μF] ()????| COUT_WORST ≥ 300 [ μF] ()????

* VOUT is the output voltage [V]

(Note 1-1) When selecting the output capacitor, ensure that the capacitance, COUT_WORST, of the above equation is maintained at the characteristics of DC Bias, AC Voltage, temperature, and tolerance.

(Note 1-2) If the capacitance falls below this value, oscillation may happen. When using electrolytic capacitor and conductive polymer hybrid aluminum electrolytic capacitor, please place it in addition to the ceramic capacitors with the capacity described above. The changes in the frequency characteristic are greatly affected by the type and the condition (temperature, etc.) of parts that are used, the wire routing and the layout of the PCB. Please confirm stability and responsiveness in actual application.

(Note 2) VCC_EX is power supply input for internal circuit. VREG voltage is supplied from VCC_EX when voltage between 4.6 V (VTEXH, Max) and 5.65 V (VEXOVPL, Min) is connected to this pin. Connecting this pin to VOUT improves efficiency. In case of not use this function, connect this pin to GND.

Output Voltage REX setting REXN setting VCC_EX State
4.6 V ≤ VOUT ≤ 5.65 V 0 Ω Open Connected to VOUT
VOUT < 4.6 V or VOUT > 5.65 V Open 0 Ω Connected to GND

Note 3) RESET terminal should be pulled-up to VREG via RRST2 when the output setting is over 6.5 V because RESET pin’s  absolute maximum rating is 7.0 V. If RESET is not pulled-up to VOUT, it can be pulled-up to VREG via RRST2 by default. Board Layout

Evaluation Board PCB information

Number of Layers Material Board Size Copper Thickness
4 FR-4 High Tg 100mm x 75mm x 1.6mm 2oz(70μm) / 1oz (35μm) / 1oz (35μm) /

2oz(70μm)

The layout of BD9P608MFF-C is shown below.

Figure 4. Top Layer Layout

Figure 5. Middle1 Layer Layout

Figure 6. Middle2 Layer Layout

Figure 7. Bottom Layer Layout

Reference application data

(Ta=25°C, VIN=12V, VOUT=5V, FREQ=2.2MHz)

Figure 11. Input Current vs Output Current

Figure 12. Load Response 1
(VIN = 12 V, VMODE = 5 V, IOUT = 0 A to 6 A)
Figure 13. Efficiency vs Output Current

Figure 14. Input Current vs Output Current

Figure 15. Efficiency vs Output Current

Figure 16. Input Current vs Output Current

Reference application data – continued

(Ta=25°C, VIN=12V, VOUT=3.3V, FREQ=440kHz)

Figure 17. Efficiency vs Output Current

Figure 18. Input Current vs Output Current

Other series application data please refer to datasheet

Revision History

Date Revision Number Description
17. Nov. 2022 001 New release

Notes

  1. The information contained herein is subject to change without notice.
  2. Before you use our Products, please contact our sales representative and verify the latest specifica- tions:
  3. Although ROHM is continuously working to improve product reliability and quality, semicon- ductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
  4. Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
  5. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
  6. The Products specified in this document are not designed to be radiation tolerant.
  7. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
  8. Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
  9. ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
  10. ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
  11. Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
  12. When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
  13. This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
©2016 ROHM Co., Ltd. All rights reserved.

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

ROHM User Manuals

Related Manuals