STMicroelectronics UM3198 Dual Active Bridge Bidirectional Power Converter User Manual

June 1, 2024
STMicroelectronics

STMicroelectronics-logo

STMicroelectronics UM3198 Dual Active Bridge Bidirectional Power

Converter

Developed using darktable 4.0.1

Product Information

Specifications

  • Model: UM3198
  • Power: 25 kW
  • Type: Dual Active Bridge Bidirectional Power Converter
  • Applications: EV charging, battery energy storage systems
  • Switching Frequency: 100 kHz
  • Efficiency: Up to 98%

Product Usage Instructions

Safety and Compliance Information

It is crucial to follow safety guidelines when operating the product:

  • High voltage levels can cause serious injury or death.
  • Components and heat sink can reach very high temperatures.
  • Intended for experienced power electronics professionals only.
  • Do not touch the board during operation.

Overview

Features

  • Modular kit design
  • Dual active bridge DC-DC power converter
  • High frequency operation with SiC MOSFETs

Main Characteristics

Description Symbol Min. Typ. Max. Unit Comments
HV DC Voltage VDCHV 720 V 800 V 880 V
LV DC Voltage VDCLV 400 V At nominal voltages
Maximum Output Power PoutMAX 25 kW At nominal voltages
Switching Frequency fSW 70 kHz
Peak Efficiency n >98%

Dual Active Bridge Topology

The dual active bridge is a bidirectional, dc-dc converter that includes two full bridges, a high-frequency transformer, energy transfer inductor, and DC- link capacitors. It allows bidirectional power flow control.

Frequently Asked Questions

  • Q: Is this product suitable for domestic use?
    • A: No, the product is not intended for domestic installations. It is designed for industrial applications and should be operated by qualified personnel in a suitable laboratory setting.

“`

UM3198
User manual
25 kW, dual active bridge bidirectional power converter for EV charging and battery energy storage systems

Introduction

This reference design represents a complete solution for high power bidirectional DC-DC power converter in dual active bridge topology based on ACEPACK2 SiC power modules. An STM32G474 MCU Mixed-Signal digital platform optimized for Digital Power is used to control the power converter. The latest generation SiC power modules and high-frequency operation (100 kHz) ensure very high performance and design optimization. Soft switching DAB behavior is managed by modulation techniques according to load/voltage variation. This reference design consists of the following separate modules: · STDES- DABBIDIRP: main power board with ACEPACK 2 SiC power modules, a full bridge A2F12M12W2-F1 and two
A2H6M12W3-F for primary HV side and secondary LV side, respectively. The power board design also includes bulk capacitors, sensing sections, and auxiliary power supply. · STDES-DABBIDIRDF: driver board for full bridge ACEPACK 2 A2F12M12W2-F1 SiC power modules based on STGAP2SiCS Galvanically isolated 4 A single gate driver for SiC MOSFETs · STDES-DABBIDIRDH: two driver boards for half bridges ACEPACK2 A2H6M12W3-F SiC power modules based on STGAP2SiCS galvanically isolated 4 A single gate driver for SiC MOSFETs · STDES- PFCBIDIRC: control board based on the STM32G4 series microcontroller with connectors for communication and programming, and test-points and status indicators for testing and monitoring.
Figure 1. STDES-DABBIDIR reference design board

The latest technology SiC MOSFETs power modules used at high switching frequency (100 kHz) and the topology structure allow nearly 98% efficiency and the use of smaller and more cost-effective passive power components.
This high efficiency bidirectional isolated DC-DC converter is designed for several end applications such as electric vehicles (EV) and industrial battery chargers, and industrial equipment requiring very high efficiency and reliability.

UM3198 – Rev 1 – December 2023 For further information contact your local STMicroelectronics sales office.

www.st.com

UM3198
Safety and compliance information

1

Safety and compliance information

Important:

·

The reference design uses voltage levels that can cause serious injury and even death.

·

Due to the high-power density, the components on the board as well as the heat sink can be heated to a

very high temperature, which can cause a burning risk when touched directly.

·

This board is intended for use by experienced power electronics professionals who understand the

necessary precautions against potential dangers and risks while operating this board, even when it is not

powered.

The STDES-DABBIDIR evaluation board is designed for demonstration purposes only and is not intended for domestic or industrial installations.

Danger:

The high voltage levels used to operate the STDES-DABBIDIR evaluation board may provoke a serious electrical shock. This evaluation board must be used in a suitable laboratory by qualified personnel only, familiar with the installation, use, and maintenance of power electrical systems. During operation, do not touch the board as some of its components may reach very high temperatures.

UM3198 – Rev 1

page 2/83

2

Overview

UM3198
Overview

2.1

Features

·

Reference design modular kit:

­ Main power board

­ Driving board (1xHV side 2xLV side)

­ STM32G474RET3 control board

·

Dual active bridge DC-DC power converter:

­ Nominal DC input voltage 800 V

­ Nominal DC output voltage 400 V

­ Nominal power 25 kW

­ Switching frequency 100 kHz

­ Peak efficiency 98.4%

·

Main features:

­ ACEPACK 2 SiC power module to optimize power section integration and thermal dissipation

­ Bidirectional capability

­ Extended soft switching behavior enabled by enhanced modulation techniques management

­ Isolated SiC gate driver

­ STM32G4 family MCU for customizable full digital solution

­ Inrush current control and soft startup

·

High frequency operation with SiC MOSFETs:

­ High efficiency ~99%

­ Smaller and lighter passive elements

UM3198 – Rev 1

page 3/83

Figure 2. STDES-DABBIDIR reference design overview

UM3198
Overview

Figure 3. STDES-DC2DCDAB block diagram

2.2

Main characteristics

Description HV DC Voltage

Table 1. Main characteristics

Symbol VDCHV

Min. Typ. Max. Unit

720

800

880

V

Comments

UM3198 – Rev 1

page 4/83

UM3198
Overview

Description LV DC Voltage Maximum output power Switching frequency Peak efficiency

Symbol VDCLV PoutMAX fSW
n

Min. Typ. Max. Unit

400

V

25

kW

70

kHz

98

%

Comments At nominal voltages At nominal voltages

2.3

Dual active bridge topology

The dual active bridge is a bidirectional, dc-dc converter that includes two full bridges, a high frequency transformer, energy transfer inductor, and dc- link capacitors. Due to the symmetry of this converter, with identical primary and secondary bridges, it is capable of bidirectional power flow control.

Each full-bridge consists of two totem-poled switching devices configuration, driven with complimentary signals. The switching frequency of these complimentary devices is referred to as the switching frequency of the converter.

The topology is shown in Figure 3, where Vin and Vout are the dc-link voltages and Lk is the actual resonance inductance, which includes leakage inductance of the transformer plus any additional auxiliary energy transfer inductance. Equivalent AC primary and secondary voltages are controlled by the actual configuration of semiconductor switches M1-M8.

With insulated gate bipolar transistor (IGBT) implementations, switching cells are traditionally implemented with antiparallel diodes and snubber capacitors to direct current commutation on switching events and to allow zero voltage switching (ZVS) through the snubber capacitor and energy transfer inductance resonance.

Now, high-voltage MOSFETs are selected for DAB designs because their intrinsic body diode and drain-to-source output capacitance take the place of external components and help reduce the part count of the converter.

Wide bandgap power MOSFETs such as silicon carbide (SiC) are commonly used for high-power DABs to increase switching frequency operation of the converter and increase power density in DAB applications.

2.4

Typical application

A typical application of DAB power converter is the EV battery DC charger. A three phase system suitable for the proposed power level is shown in the following figure.

Figure 4. Typical DC battery charger architecture

The DC fast charger consists of a three-phase active front end (AFE) rectifier that provides a regulated DC link from a universal three-phase AC input. The current from the grid must be high quality current to fulfill the power quality requirements. The DAB operation ensures isolation and bidirectional operation required by the downstream DC-DC converter.
The full-bridge A2F12M12W2-F and half-bridge A2H6M12W3 ACEPACK 2 SiC power modules selected for primary and secondary side, respectively, ensure very high integration for this topology.

UM3198 – Rev 1

page 5/83

Figure 5. SiC power module assembly

UM3198
Overview

UM3198 – Rev 1

page 6/83

UM3198

DAB converter operation

3

DAB converter operation

The DAB converter contains two voltage sourced full bridge circuits that are connected to the inductor L and the high frequency transformer. To transfer power, time varying voltages vAC1 t = vDAB1 t and vAC2 t = vDAB2 t must be provided by the full bridge circuits to both, the high frequency transformer, and the converter inductor L.

Figure 6. DAB topology

+V1 I T1, T4on&T2, T3off

vDAB1 t =

0

II T1, T4on&T2, T3off III T1, T4off&T2, T3on

(1)

-V1 IV T1, T4on&T2, T3off

+V2 I T5, T8on&T6, T7off

vDAB2 t =

0

II T5, T8on&T6, T7off III T5, T8off&T6, T7on

(2)

-V2 IV T5, T8on&T6, T7off

UM3198 – Rev 1

page 7/83

Figure 7. DAB operation (combo)

UM3198
DAB converter operation

UM3198 – Rev 1

page 8/83

UM3198
DAB converter operation The HV and LV side full-bridge circuits can therefore be replaced by the respective voltage sources vAC1 t = vDAB1 t and vAC2 t = vDAB2 t to simplify the analysis of the DAB converter.
Figure 8. Simplified diagram of DAB
The primary side referred equivalent circuit diagram is shown below. Figure 9. Primary side referred simplified diagram of DAB

According to the simplified circuit, the inductance voltage depends on the AC voltage of the full bridges.

vLk t = vDAB1 t – nvDAB2 t

(3)

Then we obtain the inductor current.

Ts

iL t

= iL t0

1 L

2

0

vLk

t

dt t0

<

t1

(4)

We now consider the instantaneous power for both sides.

(5) p1 t = vDAB1 t iL t

p2 t = nvDAB2 t iL t

The average power over one switching cycle Ts , Ts = 1/fs , is finally calculated.

P1

=

1 Ts

t0 +

t0

Ts

p1

t

dt

P2

=

1 Ts

t0 +

t0

Ts

p2

t

dt

(6)

As equivalent AC bridge voltages can be represented by two sinusoidal waveforms with phase shift :

V1 t = V1cos t V2 t = V2cos t –

(7)

For inductor current, the equivalent phasor is:

IL

=

V 1 – V 2 jLlk

=

V10 – nV2 jLlk

(8)

That

for

time

and

considering

cos j

=

sin

becomes:

iL t

=

V1 Llk

sin

t

nV2 Llk

sin

t

(9)

Next we obtain instantaneous output power:

p2 t

=

nV1V2 Llk

cos

t –

sin

t

(10)

Which averaged over the switching period T becomes:

UM3198 – Rev 1

page 9/83

UM3198
DAB converter operation

P2 = p2 t

1 T

=

1 T

0Tp2

t

dt

=

nV1V2 2fsLlk

sin

(11)

As shown by the equation, the DAB allows power flow in both directions according to the sign of the phase shift.

Power transfer is modulated according to the amplitude of

the phase

shift, with maximum

at =

±

2

.

Figure 10. Power transfer vs phase shift in DAB

In addition, according to this relation, the power level of the DAB converter is thus typically adjusted using one or more of the following control parameters.

1. The phase shift, , between vDAB1 t and vDAB2 t , with – < <

2. The duty cycle, D1, of vDAB1 t , with 0 < D1 < 1/2

3. The duty cycle, D2, of vDAB2 t , with 0 < D2 < 1/2

4. The switching frequency fs

Defining

the

phase

shift

duty

ratio

D

=

rad

,

the

actual

power

transfer

can

be

derived

from

the

following

equation.

Pout

=

nVDC1VDC2 2Lfs

D

1-D

To define the control strategy of the DAB converter and the control parameters, knowledge of the equivalent dynamic model of the converter must be considered.

The equivalent average model of the DAB can be described by the following schematic and equivalent controlled source mathematical representation.

UM3198 – Rev 1

page 10/83

Figure 11. Average model of the DAB

UM3198
DAB converter operation

I2

=

nVi 2Lfs

D

1

D

Ii, avg

=

nVo 2Lfs

D

1-D

To obtain the small-signal model, perturbation is injected to define the effects of the parameters on the equation.

ii, avg = Ii, avg + ii, avg

i2 = I2 + i2

ii, avg

=

ii, avg d

Qd +

ii, avg vo

Qvo

=

F1d + F2vo

i2 =

i2 d

Qd +

i2 vi

Qvo = F3d + F4vo

F1 =

ii, avg d

Q=

nVo 2Lfs

1-2 d

F2 =

ii, avg vo

Q=

nVo 2Lfs

d

1-

d

F3 =

i2 d

Q=

nVi 2Lfs

1-2 d

F4 =

i2 vi

Q=

nVi 2Lfs

d

1-

d

Thanks to input capacitance and PFC stage regulation, input voltage perturbation may be neglected.

F4 =

i2 vi

Q=

nVi 2Lfs

d

1-

d

0

The output capacitor ripple voltage is now included through the following equation.

C2

dvo dt

=

i2

ii, avg

The final equivalent small signal circuit is then obtained.

ii, avg = F1d + F2vo =

nVo 2Lfs

1-2 d

d

nVo 2Lfs

d

1-

d

vo

i2 = F3d =

nVi 2Lfs

1-2 d

d

C2

dvo dt

=

i2

ii, avg

UM3198 – Rev 1

page 11/83

UM3198
DAB converter operation
Figure 12. Simplified small signal equivalent circuit of DAB converter

UM3198 – Rev 1

page 12/83

UM3198
STDES-DABBIDIR reference design overview

4

STDES-DABBIDIR reference design overview

4.1

Power stage of the STDES-DABBIDIR reference design

STDES-DABBIDIRP consists of a dual active bridge converter topology implementing ACEPACK 2 SiC power modules in the power section.

The driving section is based on two different PCB modules to optimize the driving path of each module. Fan cooling is used to simplify the evaluation of the reference design platform.

Figure 13. Power stage blocks

4.2

Driving stage of the STDES-DABBIDIR reference design

Two different driving boards are proposed to feed the driving signal to ACEPACK 2 SiC power modules. Both solutions are based on STGAP2SICS gate drivers for SiC technology.

The STGAP2SICS single gate driver provides galvanic isolation between the gate driving channel and the low voltage control and interface circuitry. The gate driver is characterized by 4 A capability and rail-to-rail outputs, making the device also suitable for mid and high-power applications such as power conversion and motor driver inverters in industrial applications. The configuration featuring a single output pin and Miller clamp function prevents gate spikes during fast commutations in half-bridge topologies.

The device integrates UVLO protection with optimized value for SiC MOSFETs and thermal shutdown to facilitate the design of highly reliable systems. Dual input pins allow the selection of signal polarity control and implementation of hardware interlocking protection to avoid cross-conduction in case of controller malfunction.

UM3198 – Rev 1

page 13/83

UM3198
STDES-DABBIDIR reference design overview

Figure 14. STDES-DABBIDIRDF driver board based on 4xSTGAP2SIC

Figure 15. STDES-DABBIDIRDH driver board based on 2xSTGAP2SIC

4.3

Control stage of the STDES-DABBIDIR reference design

The control stage is based on STM32G474RE MCU devices with high-performance Arm® Cortex®-M4 32-bit RISC core. The Cortex-M4 core features a single- precision floating-point unit (FPU), which supports all the Arm single- precision data-processing instructions and all the data types. It also implements a full set of digital signal processing (DSP) instructions and a memory protection unit (MPU) to enhance application security.

Reference design firmware is provided to help evaluate the full functionality of this power platform. The digital power converter architecture and STM32Cube environments help optimize the implementation and use of the source code.

The hardware abstraction and middleware layers contain the peripheral and application-related functions to manage and extend the functionality.

The application layer allows us to manage operation features such as startup procedure load management, control, and protection, as well as the finite state machine.

UM3198 – Rev 1

page 14/83

UM3198
STDES-DABBIDIR reference design overview Figure 16. STDES-DABBIDIR FW architecture
The general purpose STDES-PFCBIDIR control board based on the STM32G474 MCU is suitable for various high-power applications. This control board supports additional communication and debugging features such as I2C, UART, status LEDs, and analog monitoring, to extend the usage of the MCU peripherals.
Figure 17. Control stage blocks

UM3198 – Rev 1

page 15/83

UM3198
STDES-DABBIDIR hardware implementation

5

STDES-DABBIDIR hardware implementation

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5 5.1.6 5.1.7
5.2
5.2.1

Input/output requirements

Maximum input power

The maximum input power related to high voltage is obtained according to maximum output (low-voltage side) and worst-case efficiency considered.

Pin_max

=

Pout_max w

=

28kW 95%

=

29,4kW

(12)

Maximum DC input current

The maximum DC input current with the variation of the Vin value is now considered. When Vin is minimal, the maximum DC input current is obtained.

Iin_max

=

Pin Vin_min

=

29,4kW 720V

=

40.93A

(13)

Nominal DC input current

The maximum DC input current with the variation of the Vin value is now considered. When Vin is minimal, the maximum DC input current is obtained.

Iin

=

Pin Vin_nom

=

29,4kW 800

=

36.84A

(14)

Minimum DC input current

The mean input current changes with the variation of the Vin value. When Vin is minimal, the maximum average current is obtained.

Iin

=

Pin Vin_max

=

29,4kW 880

=

33,49A

(15)

Maximum DC output current

The maximum DC output current is obtained from the typical output voltage at maximum output power.

Iout

=

Pmax Vout_nom

=

28000 450

=

62.22A

(16)

Minimum DC output current

The minimum DC output current is obtained from the maximum output voltage at maximum output power.

Iout

=

Pout_max Vout_max

=

28000 500

=

56A

(17)

Nominal DC output current

The nominal DC output current is obtained for the typical output voltage at nominal output power.

Iout

=

Pout Vout_nom

=

25000 450

=

55.55A

(18)

Sensing circuitry

HV voltage sensing
The high-voltage-side voltage is obtained using a two-stage sensor circuit isolated architecture. The first stage represents an isolated op amp that allows measurement of the HV through a voltage divider with an isolation barrier.
Isol-Op-AMP output is limited in volts and is scaled with a second stage of op amps with appropriate gain and bias.

UM3198 – Rev 1

page 16/83

UM3198
STDES-DABBIDIR hardware implementation
Figure 18. HV voltage sensing equivalent circuit.

Figure 19. STDES-DABBIDIR HV sensing circuit

To define the maximum high-voltage-side measurement, the maximum voltage range is considered.

Parameters Vin_nom Vin_min Vin_max

Table 2. HV-side input voltages

Value 800 V 720 V 880 V

Description Nominal input Voltage
Min. input voltage Max. input voltage

High voltage maximum voltage range is considered with +20% margin.

VSDeCn1seMax = VMDCa1x + 20%VMDCa1x = 880*1.2 = 1056 1050V

The maximum voltage of the isolated op amp must be guaranteed at HV max sense voltage.

VMisoalxOA = 2V

From this, voltage divider transfer function is obtained.

kdDiCv1

=

VMisoalxOA VMDCa1x

=

2 1050

=

1.905e-3

The resistor values of voltage divider are now calculated.

RB = 22k

RA

=

1

– kdDiCv1 kdDiCv1

RB

=

11.53M

3×3.90k

UM3198 – Rev 1

page 17/83

Note: 5.2.2

UM3198
STDES-DABBIDIR hardware implementation

Isolated op amp unity and voltage gain must be followed by proper signal conditioning to fulfill ADC range requirements.

Parameters Vout_max Vin_max

Table 3. HV sensing input and output voltage range

Value

Description

3.3 V Maximum value of the voltage range of the microcontroller ADC

2 V Op amp maximum input voltage | maximum output voltage of ISO op amp

According to these input and output values, the voltage gain of signal conditioning is defined.

K

=

Vout_max Vin_max

=

3.3V 2V

=

1.65

The differential amplifier configuration is designed according to the voltage gain requirement.

Parameters VHV_range VADC_range GTv_HVDC
GADC_Bits BTv_HVDC BADC_Bits GTv_HVDC_tot BTv_HVDC_tot invGTv_HVDC_tot

Table 4. STDES-DABBIDIR effective value of HV sensing

Value

0V – 1050V

0V – 3.3V

3.13e-3

V V

1240

Bits V

0V

0Bits

3.881

Bits V

0Bits

0.2576

V Bits

Description HV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain

LV voltage sensing
The low-voltage-side voltage is obtained using a two-stage sensor circuit isolated architecture. The first stage represents an isolated op amp that allows measurement of the HV through a voltage divider with an isolation barrier.
Isol-Op-AMP output is limited in volts and is scaled with a second stage of op amps with appropriate gain and bias.

Figure 20. LV sensing equivalent circuit

UM3198 – Rev 1

page 18/83

UM3198
STDES-DABBIDIR hardware implementation
Figure 21. STDES-DABBIDIR LV sensing circuit

Note:

To define the maximum high voltage side measurement, the maximum voltage range is considered.

Parameters Vout_nom Vout_min Vout_max

Table 5. HV-side output voltages

Value 450 V 250 V 500 V

Description Nominal output Voltage
Min. output voltage Max. output voltage

The high voltage maximum voltage range is considered with +20% margin. VSDeCnLsVeMax = VMDCaLxV + 30%VMDCaLxV = 500*1.3 = 650 660V

The isolated op amp maximum voltage must be guaranteed at LV max sense voltage. VMAMaxC1311 = 2V

From this voltage, the divider transfer function is derived.

kdDiCvLV

=

VMAMaxC1311 VMDCaLxV

=

2 660

=

3.03e-3

The resistor values of the voltage divider are calculated.

RB = 33k

RA

=

1

– kdDiCv1 kdDiCv1

RB

=

10.86M

3×3.60k

Isolated op amp unity and voltage gain must be followed by proper signal conditioning to fulfill ADC range requirements.

Parameters Vout_max Vin_max

Table 6. LV sensing input and output voltage range

Value

Description

3.3 V Maximum value of the voltage range of the microcontroller ADC

2 V Op amp maximum input voltage | maximum output voltage of ISO op amp

From the input and output values, the voltage gain for signal conditioning is defined.

K

=

Vout_max Vin_max

=

3.3V 2V

=

1.65

The differential amplifier configuration is designed according to the voltage gain requirement.

UM3198 – Rev 1

page 19/83

5.2.3

UM3198
STDES-DABBIDIR hardware implementation

Parameters VLV_range VADC_range GTv_LVDC
GADC_Bits BTv_LVDC BADC_Bits GTv_LVDC_tot BTv_LVDC_tot invGTv_LVDC_tot

Table 7. STDES-DABBIDIR effective value of LV sensing

Value

0V – 660V

0V – 3.3V

5.07e-3

V V

1240

Bits V

0V

0Bits

6.296

Bits V

0Bits

0.1688

V Bits

Description LV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain

HV current sensing HV-side current measurement is obtained through an isolated Hall effect current transducer. The equivalent circuit is shown below.

Figure 22. HV current sensing equivalent circuit

Figure 23. STDES-DABBIDIR HV current sensing circuit

To define the maximum high-voltage-side current measurement range, the maximum current range is considered.

UM3198 – Rev 1

page 20/83

UM3198
STDES-DABBIDIR hardware implementation

Parameters Iin_max

Value ±40.93A

Table 8. HV-side current Description
Max. input current at Vin_min = 720V and Pin_max = ± 29,4kW

The HV-side maximum voltage range is considered with +15% margin. ISDeCnHsVeMax = IMDCaHxV + 15%VMDCaIxV = ± 40.93A*1.15 = ± 47.07 ± 48A

We check this against the sensor limitation. IPCAMSR15NP > ISDeCnHsVeMax ± 51A

± 48A PASSED

The internal voltage reference of the Hall effect sensor is used. According to this, the sensor output voltage is shifted by Vref=2.5V.

The equivalent transfer function is given.

BIASHall = 2.5V

GAINHall

=

0.625 IPNCASR15NP

=

0.625 15

=

41.66e-3

V A

VLHEVMout = BIASHall + GAINHallISDeCnHsVeMax =

41.66e-

3

V A

± 48A

+ 2.5V =

4.5V 0.5V

To adapt sensor the output voltage to the ADC range, op amp conditioning is required.

Parameter IHV_range VLHEVMout_range VOA_out_range

Table 9. Parameters for HV-side op amp conditioning

Value ±48A

Description HV-side current measurement range required

0.5Vto4.5V Op amp input voltage range/output voltage range of hall sensor

0-3.3 V

Maximum value of the voltage range of the microcontroller ADC

According to the input output specs, voltage gain and offset of signal conditioning is defined.

Vout =

R4 R2 + R4

1

R3 R1

Vin

R3 R1

Vbias

Finally, the transfer function is obtained.

GAINopamp =

R4 R2 + R4

1

R3 R1

=

10k 4.12k + 10k

1

1.65k 10k

=

0.8251

V V

GAINeq

=

GAINopamp

GAINHall

=

0.8251

V V

41.66e-3

V A

=

0.03437

V A

BIASopamp =

R3 R1

Vbias

=

– 0.165 2.5V =

– 0.4125V

BIASeq = BIASHall GAINopamp + BIASopamp = 2.5V 0.8251 – 0.4125V = 1.65V

VODACHouVt = ISDeCnHsVe GAINeq + BIASeq

VBits

=

K12bits

VADC

=

212 – 1 3.3

VADC

=

1240

VADC

GTi_HVDC_tot

=

GAINeq

K12bits

=

42.65

Bits A

The digital transducer transfer function becomes: VODACHouVt = ISDeCnHsVe GAINeq + BIASeq

Sensing specifications are collected.

Parameters IHV_range VADC_range

Table 10. Theoretical overall parameters of HV current sensing

Value ±48A 0V – 3.3V

Description LV Voltage range ADC signal range

UM3198 – Rev 1

page 21/83

5.2.4

UM3198
STDES-DABBIDIR hardware implementation

Parameters GTi_HVDC
GADC_Bits BTi_HVDC BADC_Bits GTi_HVDC_tot BTi_HVDC_tot invGTi_HVDC_tot

Value

0.03437

V A

1240

Bits V

1.65V

2047Bits

42.65

Bits A

2047Bits

0.0234

A Bits

Description keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain
Overall offset term Reciprocal overall conditioning circuit gain

The design overview is also included.
R1 = 10k0.1% R2 = 4.12k0.1% R3 = 1.65k0.1% R4 = 10k0.1%

AINopamp =

R4 R2 + R4

1

R3 R1

=

0.8251

V V

Geq

=

Gopamp

GHall

=

0.8251

V V

41.66e-3

V A

=

0.03437

V A

7

GTv

=

GAINeq

K12bits

=

42.65

Bits A

LV current sensing LV-side current measurement is obtained through an isolated Hall effect current transducer. The equivalent circuit is shown below.

Figure 24. LV Current sensing equivalent circuit

UM3198 – Rev 1

page 22/83

UM3198
STDES-DABBIDIR hardware implementation
Figure 25. STDES-DABBIDIR LV current sensing circuit

To define the maximum low-voltage-side current measurement range, the maximum current range is considered.

Parameters Iout_max

Value ±62.22A

Table 11. LV-side current Description
Max. LV-side current at Vin_min = 450V and Pin_max = ± 28kW

The low voltage maximum current range is considered with +30% margin. ISDeCnLsVeMax = IMDCaLxV + 15%VMDCaLxV = ± 62.22A*1.3 = ± 80.88 ± 82A

This value is checked against the sensor limitation. IPCMASR50NP > ISDeCnHsVeMax

± 150A > ± 82A

The internal voltage reference of Hall effect sensor is used. According to this, the sensor output voltage is shifted by Vref=2.5V.

The equivalent transfer function is given.

BIASHall = 2.5V

GAINHall

=

0.625 IPNCASR15NP

=

0.625 50

=

12.5e-3

V A

VLLEVMout = BIASHall + GAINHallISDeCnLsVeMax =

12.5e-3

V A

± 82A

+ 2.5V =

3.525V 1.475V

To adapt the sensor output voltage to ADC range, op amp conditioning is required.

Parameter IHV_range VLHEVMout_range VOA_out_range

Table 12. Parameters for LV-side op amp conditioning

Value ±82A

Description HV side Current measurement range required

1.475Vto3.525V

Op amp input voltage range/output voltage range of hall sensor

0-3.3 V

Maximum value of the voltage range of the microcontroller ADC

According to the input and output values, the voltage gain and offset for signal conditioning are defined.

Vout =

R4 R2 + R4

1

R3 R1

Vin

R3 R1

Vbias

The differential amplifier configuration is designed according to the voltage gain and bias requirements.

By setting R1 , it is possible to calculate R2, R3 and R4 with the following relationships:

R1 = 13.7k

UM3198 – Rev 1

page 23/83

5.3

UM3198
STDES-DABBIDIR hardware implementation

R2 = 4.22k

R3 = R1 Y = 13.7k 0.9498 = 13.01k

R4 = R2

X 1-X

= 19.98k

Finally, the transfer function is obtained

GAINopamp =

R4 R2 + R4

1

R3 R1

=

19.98k 4.22k + 19.98k

1

13.01k 13.7k

=

1.6096

V V

GAINeq

=

GAINopamp

GAINHall

=

1.6096

V V

12.5e-3

V A

=

0.02012

V A

BIASopamp =

R3 R1

Vbias

=

– 0.9498 2.5V = 2.3745V

BIASeq = BIASHall GAINopamp + BIASopamp = 2.5V 1.6096 – 2.3745V = 1.6495V

VODACHouVt = ISDeCnHsVe GAINeq + BIASeq

We now take digital conversion into account.

VBits

=

K12bits

VADC

=

212 – 1 3.3

VADC

=

1240

VADC

GTv_LVDC_tot

=

GAINeq

K12bits

=

24.9488

Bits A

The digital transducer transfer function becomes. VODACHouVt = ISDeCnHsVe GAINeq + BIASeq

The sensing specifications are collected.

Parameters ILV_range VADC_range GTi_LVDC
GADC_Bits BTi_LVDC BADC_Bits GTi_LVDC_tot BTi_LVDC_tot invGTi_LVDC_tot

Table 13. Theoretical overall parameters of HV current sensing

Value

±82A

0V – 3.3V

0.02012

V A

1240

Bits V

1.65V

2047Bits

24.9488

Bits A

2047Bits

0.0401

A Bits

Description LV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain

Magnetics design requirements
From the power converter specifications, the magnetic parameters are calculated.

Parameters Vin_nom Vout_nom Pout_nom Pout_max fsw

Table 14. Parameters for magnetic design

Value 800 450 25 28 100

Dimension V V kW kW
kHz

Description Nominal HV-side input voltage Nominal LV-side output voltage
Nominal power Maximum power Switching frequency

UM3198 – Rev 1

page 24/83

5.3.1 5.3.2
5.3.3

UM3198
STDES-DABBIDIR hardware implementation

Transformer turn ratio

In order to optimize the operation of the high frequency transformer, transformer ratio is obtained from the primary and secondary nominal voltages.

n

=

N1 N2

=

Vin_nom Vout_nom

=

800 450

=

1.78

(19)

Total resonance inductance

To design DAB resonance inductance, nominal power is considered. According to the DAB theoretical aspects section, to manage full power operation, a single phase shift modulation technique is now considered. Ignoring the detrimental effects of efficiency parameters, the power flow equation is proposed.

P

=

P1

=

P2

=

NVin_nomVout_nom* 22FswLK

(20)

To

obtain

the

max

power

transfer

P

=

0

is

imposed,

then

=

2

allow

to

manage

maximum

power.

Pmax

=

NVin_nomVout_nom 8FswLK

(21)

Then:

LK

=

nVin_nomVout_nom 8FswPmax

=

1,78800450 8100k28k

=

28,6uF

The max leakage inductor current ( = /2 ) is:

(22)

ILkmax

=

n*Vout_nom – Vin_nom – 2*nVout_nom 4*FswLk

=

= *

1.78*450

– 800

2*

2

1.78450

4*10000028.61*10-6

= 69.90A

(23)

The max input current is:

Iprim_max = ILkmax

(24)

The MAX output current is:

Isec_max = n*Iprim_max = 124.43A

(25)

Transformer peak magnetic field estimation To define the magnetic structure and core loss estimations, the magnetic field amplitude must be calculated.

Parameters NP Ae
Ncore Ae, tot
fsw

Table 15. Parameters for transformer peak magnetic field estimation

Value 800 392

Dimension V
mm2

Description Nominal LV-side output voltage Effective area of single ferrite

5 1960(1960e-6)
100

mm2 m2
kHz

Number of stacked core elements Total effective area of ferrite block
Switching frequency

Bmax

=

1 NPAe

nVout

1/2 fsw

=

=

1 9196010-6

1.79450

1/2 100*103

=

228mT

Bmax

=

228mT 2

=

114mT

(26) (27)

UM3198 – Rev 1

page 25/83

5.3.4 5.3.5
5.3.6

UM3198
STDES-DABBIDIR hardware implementation

Auxiliary inductance – peak magnetic field estimation

Bmax =

1 NLAe

Vlk

1/2 fsw

=

1 7196010-6

*800

1/2 100*103

=

= 72.88*

350510-6 = 2*92.9mT

1250510-6 +

(28)

Transformer ­ Magnetizing inductance

The magnetizing inductance of HFT does not participate in the active power transfer, so it is designed with a

magnetizing current <2% of the rated current.

Im

2%Iin

=

2%

Pin Vin_nom

=

2%

29kW 800V

=

2%36.84

A

Im 0.7A

We now consider the inductance current.

Impp

=

1 Lm

Tsw
0 2

Vindt

=

Vin Lm

Tsw
0 2

dt

=

Vin Lm

Tsw 2

=

Vin 2fswLm

Impp

=

Vin 2fswLm

2Im

=

Vin 2fswLm

Im

=

Vin 4fswLm

The actual magnetizing inductance can now be calculated.

Lm

Vin 4fswIm

=

800 4100kHz0.73A

Lm 2.739mH

Magnetics section design proposal According to the design requirements, the actual design details are shown below.

Figure 26. Frenetic 32011-04-Design-Report (design requirements section)

Considering the specifications, Frenetic has a design based on 5 stacked cores of E80/38/20.
To maximize the performance of the converter, a sandwich interleaving arrangement is selected as the best solution to reduce AC proximity losses and to improve the coupling between the windings of the transformer.

UM3198 – Rev 1

page 26/83

UM3198
STDES-DABBIDIR hardware implementation

Figure 27. Frenetic 32011-04 Transformer winding

Figure 28. Frenetic 32011-04 Auxiliary inductor windings

The following figure provides a 3D view. Figure 29. 3D image of transformer

Unique magnetic core elements were considered to reduce the volume and weight.
UM3198 – Rev 1

page 27/83

Figure 30. 3D model of transformer

UM3198
STDES-DABBIDIR hardware implementation
Figure 31. 3D model of auxiliary inductor

5.4
5.4.1

Power section
Power device current stress The conduction losses are calculated using the rms switch currents IQ1rms and IQ5rms for the HV-side switches, PScHoVnd , and the LV-side switches, PScLoVnd , respectively. As every switch conducts current during half of the cycle time Tsw = 1/fsw in steady state operation, the rms switch currents are easily obtained from the rms inductor current ILkrms
Figure 32. Switch RMS current equivalent circuit

5.4.2

According to the selected modulation techniques, each half bridge operates at 50% duty cycle, so the rms currents are equal.
Hp . LegDuty50% IQ1rms = IQ2rms
By LKC, the relation between inductor and switch currents can be identified. ILkrms = IQ1rms2 + IQ2rms2 = 2IQrms2 = 2IQrms

ILkrms = 2IQrms

By LKC, the relation between inductor and switch currents can be identified.

IQ1rms = IQ3rms =

ILkrms 2

IQ5rms = IQ7rms =

ILkrms/n 2

IQ2rms = IQ4rms =

ILkrms 2

IQ6rms = IQ8rms =

ILkrms/n 2

Power switches conduction losses High-voltage-side conduction losses are obtained from each contribution.
PScHoVnd = 4RDS on IQ1rms2 Secondary low-voltage estimation is also obtained.

UM3198 – Rev 1

page 28/83

5.4.3

UM3198
STDES-DABBIDIR hardware implementation
PScLoVnd = 4RDS on IQ5rms2 The total switches conduction losses are obtained.
PScToOnTd = PScHoVnd + PScLoVnd
Power switch switching losses The calculation of the switching losses is more demanding as they do not only depend on the selected power MOSFETs themselves. Surrounding parasitic components like PCB stray inductances may also influence the switching losses considerably. Only power switching power losses are considered here. Very low switching losses are obtained when ZVS/ZCS is achieved. In contrast, hard switching operation leads to excessive semiconductor losses and must be avoided when using advanced modulation methods or additional circuitry.
PSWHV = 4fswEOn, QHV I, V + 4fswEOff, QHV I, V PSWLV = 4fswEOn, QLV I, V + 4fswEOff, QHV I, V The total switches switching losses are obtained.
PSTWOT = PSWHV + PSWLV

UM3198 – Rev 1

page 29/83

UM3198
STDES-DABBIDIR control implementation

6

STDES-DABBIDIR control implementation

A typical EV charger control platform consists of two different control implementations to fulfill battery charging requirements: current control is used during the first part of charging profile, and voltage control is typically required to complete the charging profile. Both control solutions are therefore proposed for the STDES-DABBIDIR reference design control implementation.
An easy and robust proportional integrator (PI) regulator is considered to follow the reference value. Comparing references and feedback for voltages and currents, control variables are obtained to address the requirements.
According to the theoretical description of the DAB converter model, the actual control terms are represented by the phase shift, so phase shifting is obtained from each control block to manage the modulator blocks adopted to configure the high-resolution timer of the STM32G474 according to the phase shifting demand. In addition, “DAB Supervisor” blocks are proposed to manage other features such as protections, monitoring, and modulations techniques.

Figure 33. Control block diagram

6.1

Software implementation

The STDES-DABBIDIR is controlled by the STM32G474RE MCU. The firmware package is based on the STM32Cube ecosystem shown in Figure 34.

Starting from STM32CUBEMX all used peripherals and pins are activated and configured according to the basic project. The application firmware is supported and tested using STM32CubeIDE IAR and KEIL development environment.

After the development, the MCU can be programmer with IDE or with STM32CubeProgrammer. To monitor and control the application, a GUI based on STM32CubeMonitor can be used.

The firmware described in this documentation development is based on STM32CubeG4 Firmware Package V1.4.0.

Figure 34. CUBE ecosystem development flow

UM3198 – Rev 1

page 30/83

UM3198
STDES-DABBIDIR control implementation
An extensive range of generic and specific firmware modules are available to support digital power conversion. Figure 35 shows the general development flow to obtain power conversion used for STDES-PFCBIDIR firmware development. This workflow allows us to start from power conversion requirements. This information is reinterpreted in application specifications that contain information linked to the MCU peripheral and DPC application configuration. According to the previous information, a CubeMX project with appropriate “config” and “init” are provided. Then the required DPC module is included and configured. CubeMX generated the IDE project for development. The MCU is flashed directly with IDE or using STM32CubeProgrammer. Finally, the DPC application is tested and debugged with appropriate instrumentation and STM32CubeMonitor. Digital Power converter firmware is released if compliant, and DPC is adapted.
Figure 35. DPC development flow

6.2

Peripheral configuration STM32CubeMX

STM32CubeMX is a graphical tool that is used to configure STM32 microcontrollers and to generate the corresponding initialization C code for the chosen development tools. The overall pinout configuration of the STM32G474RE is shown. The STM32CubeMX configuration tool simplifies pin association and functionality to avoid any peripheral conflicts.

UM3198 – Rev 1

page 31/83

UM3198
STDES-DABBIDIR control implementation
Figure 36. STM32G474 MCU pinout configuration for STDES-DABBIDIR

6.2.1

High-resolution timer
A brief representation of the high-resolution timer configuration is shown below. Accurate parameter configuration is visible in the STM32CubeMX project files.

UM3198 – Rev 1

page 32/83

UM3198
STDES-DABBIDIR control implementation
Figure 37. Generic phase shift – HRTIM block diagram

Figure 38. HRTIM pin assignment

UM3198 – Rev 1

page 33/83

UM3198
STDES-DABBIDIR control implementation
An example of the switching pattern managed according to HRTIM peripheral of the STM32G474 is shown below, with primary and secondary legs of the DAB topology synchronized to the phase shifting requirements of the Master Timer Compare Unit. Dead time insertion and nominal 50% duty cycle of each leg is also managed through hardware configuration of the A-B-C-D channels of the HRTIM.
Figure 39. HRTIM modulation pattern

6.2.2

ADC configuration and triggering Additional details about the peripheral are also proposed for the ADC.
Figure 40. ADC clock scheme

UM3198 – Rev 1

page 34/83

6.2.2.1

UM3198
STDES-DABBIDIR control implementation
ADC timing – actual configuration We use STM32CubeMX to select the clock sources for the ADC peripherals.
Figure 41. ADC clock source selection (STM32CubeMX)

fsysclk = 170MHz

fclk

=

fsysclk AHBpsc

=

170MHz 1

=

170MHz

(29)

ADC 1 and ADC2 are requested for this application. Both are configured as shown below.

Figure 42. CubeMX ADC Settings

Clock Prescaler Configuration related to CKMODE[1:0] and PRESC[3:0]

Table 16. Clock Prescaler settings

Register PRESC[3:0] CKMODE[1:0]: ADC clock mode

Value 0010 (input ADC clock divided by 4) 11: adc_hclk/4 (Synchronous clock mode)

fadcclk

=

fclk PRESC 3: 0

=

170MHz 4

=

42.5MHz

Tadcclk

=

1 fadcclk

=

1 42.5MHz

=

23,529nSec

(30)

Resolution

RES[1:0]= 12 -> 12.5 ADC clock cycles is considered for each channel and the ADC peripherals.

Tsar

=

RESclkcycleTadc_clk

=

12.5

1 42.5MHz

=

294,1nSec

UM3198 – Rev 1

page 35/83

6.2.2.2

UM3198
STDES-DABBIDIR control implementation
Trigger and sampling Considering the “clean” area available in single phase shift modulation (SPS), the total conversion time must be lower than a quarter of the switching period.
Figure 43. SPS ADC sampling requirement

tadctrigger

1

fPWM 4

7,5uSec

(31)

tadcclean

<

1 fPWM 4

=

2,5uSec

(32)

According to the PWM frequency and modulation technique, a specific trigger time is selected.

Figure 44. STM32CubeMX ADC1 Regular conversion configuration

UM3198 – Rev 1

page 36/83

UM3198
STDES-DABBIDIR control implementation
Figure 45. STM32CubeMX ADC2 regular conversion configuration

Figure 46. HRTIM ADC trigger CubeMX configuration

Figure 47. HRTIM compare unit enabled for ADC triggering

To guarantee the proposed tadctrigger timed conversion request, an external trigger conversion is configured.

ADC

N° of conversion

ADC1

1

ADC2

5

Table 17. ADC and timer configuration

ADC Configuration

Regular Conversion

Regular Oversampling

Enable

Disable

Enable

Disable

Ext Trig. Source
HRTIM Trigger1
event
HRTIM Trigger1
event

Ext Trig. Edge
Rising

HRTIM Configuration

Update Trigger Source

Trigger Source Selection

Trigger Source

Master Timer

1

Master Compare 4

Rising

Master Timer

1

Master Compare 4

The converter signals are connected to the ADCs according to the following table.

Phase VDAB1 IDAB1 VDAB2 IDAB2
Ilk

PORT PC1 PC4 PC0 PA7 PC2

Table 18. Converter signal connections

ADC ADC2 ADC2 ADC2 ADC2 ADC1

CH CH7 CH5 CH6 CH4 CH8

DMA DMA1CH4 DMA1CH4 DMA1CH4 DMA1CH4 DMA1CH3

RANK 4 2 3 1 1

FUNCTION ADC2 IN7 ADC2 IN4 ADC2 IN6 ADC2 IN4 ADC1 IN8

UM3198 – Rev 1

page 37/83

6.2.3

UM3198
STDES-DABBIDIR control implementation

Phase TEMP Temp-INT

PORT PB2 INT

ADC ADC2 ADC1

CH CH12 TEMP

DMA DMA1CH4 DMA1CH3

RANK 5 8

FUNCTION ADC2 IN12 ADC1-TEMP

Configuration files

STDES-DABBIDIR power converter configuration is based on two main configuration files, shown in the figure below:

·

“DPC_application_conf.h” contains the application-specific DEFINE (i.e., ADC gain factor PI regulator gain,

FSM configuration, control reference value, etc.

·

“DPC_Lib_conf.h” contains the configuration parameters associated with MCU peripheral configuration

Figure 48. STDES-DABBIDIR configuration file

After the “MX” initialization function, the DPC initialization function are called to configure each specific application struct, as shown in the figure below.
Figure 49. Application Init functions

6.2.4

Finite state machine
The STDES-DABBIDIR control supervisor is developed by a passthrough implementation of the finite state machine with event and status shown in the following figure.

UM3198 – Rev 1

page 38/83

UM3198
STDES-DABBIDIR control implementation Figure 50. Finite state machine bubble representation
The FSM firmware modules provide a specific “weak” function for any state. The weak function provides a simple change of state to the following state. If any state is not used, the FSM main function allows a bypass to move forward automatically (Figure 51). The STDES-DABBIDIR provides a typical FSM execution to obtain a typical startup procedure of the converter. The nominal operation is managed with the FSM and the ERROR and FAULT states are supported.
Figure 51. STDES-DABBIDIR FSM application service execution

UM3198 – Rev 1

page 39/83

UM3198
How to manage the STDES-DABBIDIR reference design

7

How to manage the STDES-DABBIDIR reference design

This section describes how to configure and evaluate the power platform. Preliminary information regarding the typical test bench and testing procedures are provided in the following sections.

7.1

System setup requirement

To perform functions of the STDES-DABBIDIR, the following equipment is needed:

·

Programmable DC source

·

DC electronic load

·

Power analyzer

·

Digital oscilloscope

In addition to the hardware equipment, additional software tools are suggested to fully evaluate the reference environment.

A fully integrated design environment like STM32CUBEIDE allows evaluation and management of software source code and STM32G474 peripheral configuration. In addition, thanks to STM32CubeMX, support for other IDEs such as EWARM and AMR Keil is available as well.

Tools STM32CubeMX STM32CubeIDE
IAR EWARM Arm Keil

Table 19. Software compatibility Version
v.6.6 or above v.1.8 or above v.9.20.2 or above v5.36 or above

7.2
Important:

Safety precautions and protective equipment
The STDES-DABBIDIR evaluation board is designed for demonstration purposes only and is not intended for domestic or industrial installations.

Danger:

The high voltage levels used to operate the STDES-DABBIDIR evaluation board may provoke a serious electrical shock. This evaluation board must be used in a suitable laboratory by qualified personnel only, familiar with the installation, use, and maintenance of power electrical systems. During operation, do not touch the board as some of its components could reach very high temperatures.

7.3

How to use the STDES-DABBIDIR

STDES-DABBIDIR is a high-power, high-voltage application and an appropriate testbench is required for safety operation.

A typical configuration of test bench is proposed here.

UM3198 – Rev 1

page 40/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 52. Power equipment connection example

7.4

How to connect the STDES-DABBIDIR

Before testing the reference design, the following actions and checks must be considered.

Step 1. Connect or verify the proper connection of HF transformer as described into the specific section.

Step 2. Insert or verify the STDES-DABBIDIRDF into the driving board connectors located into left side.

Step 3. Insert or verify the two STDES-DABBIDIRDH into the driving board connectors located into right side.

Step 4. Insert or verify the STDES-PFCBIDIR into the control board connector located on the bottom-right side.

Step 5. Connect 12V external power supply into the “12V” connector located in the bottom-left corner.

Step 6. Connect 7V external power supply into the “7V” connector located in the bottom-left corner.

Step 7. Connect the Programmable DC power supply in the top-left corner connectors. Polarity must be checked according to the image description.

Step 8. Connect the Programmable DC e-Load in the top-right corner connectors. Polarity must be checked according to the image description.

The control card based on STM32G474 MCU is directly powered by the main board. The required MCU 3.3V is provided by internal LDO.

UM3198 – Rev 1

page 41/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 53. Connecting the STDES-DABBIDIR

7.5

How to set up the STDES-DABBIDIR

The MCU could be programmed, monitored, and debugged using different SW/HW tools. ST-Link V2/isol and a typical 20 to10-pin JTAG adapter is used to connect the platform with a PC.
The following procedure shows how to flash and debug the reference platform from a generic configuration; referr to dedicated sections to configure the actual configuration for specific tests.

UM3198 – Rev 1

page 42/83

Figure 54. ST-LINK/V2 ISOL + adapter

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 55. ST-LINK/V2 ISOL connection

Step 1. Step 2. Step 3. Step 4. Step 5. Step 6.
Step 7. Step 8.

Install and configure the preferred IDEs Apply 7V and 12V external supply voltage Connect STlink hardware debugger Open project according to IDE selection The “main.c” file is in project/Application/User path. “Download and debug” button performs programming procedure and start-up the debugging connection. “Run button” to start the code execution.

Figure 56. IAR EWARM program procedure

UM3198 – Rev 1

page 43/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 57. IAR EWARM debug procedure

Example 1 :
Several parameters can be adapted in order to evaluate and customize the application operating condition. The main parameters are depicted in the next table showing the default configuration proposed in the source code firmware example.
Some examples are proposed in this chapter, and specific configuration of these parameters are proposed to emulate the same behavior described for each.

Table 20. Control section firmware configuration defines

Parameters

Value type

Min

Default

Max Unit

Comments

DPC_CTRL_INIT

DAB_OPEN_LOOP DAB_CURRENT_LOOP –

DAB_OPEN_LOOP

– enum

DAB_VOLTAGE_LOOP

DPC_PWM_INIT

PWM_Armed 400
PWM_Safe

enum

StartUpCheck_INIT

StartUpCheck_Disabled StartUpCheck_Enabled

StartUpCheck_Disabled

enum Startup management

DPC_INRS_EN

SET RESET

RESET

DPC_BURST_EN

SET RESET

RESET

DPC_DAB_VDC_OUT

float

0

50

880 V Target DC output voltage

DPC_DAB_IDC_OUT

float

0

1

60 A Target DC output current

UM3198 – Rev 1

page 44/83

7.6
7.6.1

UM3198
How to manage the STDES-DABBIDIR reference design

In addition to the operating mode parameters, a dedicated parameter section is proposed for the protection feature configuration. The default configuration is also given.

Table 21. Hardware protection firmware configuration defines

Parameters DPC_VDCHV_OVP DPC_VDCHV_UV DPC_VDCHV_UVLO DPC_VDCHV_MIN DPC_IDCHV_OCP DPC_IDCLV_OCP DPC_VDCLV_OVP

Value type float float float float float float float

Min

Default

Max

Unit

900

V

40

V

30

V

20

V

50

A

550

A

100

V

The STSW-DABBIDIR source code firmware package represents the control section of STDES-DABBIDIR. By using hardware section configuration of the FW, different hardware configuration proposed by the CTMs can also be supported. The main parameters such as switching frequency, dead time, sensing parameters, and magnetics section can be customized.

Table 22. Hardware parameters firmware configuration defines

Parameters

Value type Min Default Max Unit

TRAFO_TURN_RATIO

float

1.78

– N1/N2

INDUCTANCE

float

– 28e-6 –

PWM_FREQ

Uint16_t – 100000 –

DPC_DT_DAB1

float

– 0.4e-6 –

DPC_DT_DAB2

float

– 0.4e-6 –

G_VDC1

float

– 3.901 –

B_VDC1

float

0

G_IDC1

float

– 42.67 –

B_IDC1

float

– 2048 –

G_VDC2

float

– 6.296 –

B_VDC2

float

0

G_IDC2

float

– 24.948 –

B_IDC2

float

– 2048 –

Comments Transformer turn ratio Auxiliary inductance Switching Frequency of converter expressed in [Hz] Dead Time [Expressed in sec] Dead Time [Expressed in sec] Gain terms of the DC input voltage sensing Bias terms of the DC input voltage sensing Gain terms of the DC input current sensing Bias terms of the DC input current sensing Gain terms of the DC output voltage sensing Bias terms of the DC output voltage sensing Gain terms of the DC output current sensing Bias terms of the DC output current sensing

How to operate the STDES-DABBIDIR
This section provides examples of operating modes. Several setups are proposed to help evaluate and become familiar with the various features of the reference design.
Mode 1 ­ open loop, driving check
This test is for the driving section of the application. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by “PWM_FREQ”, “DPC_DT_DAB1” and “DPC_DT_DAB2” of “DPC_Appplication_Conf.h” file. No high-power equipment is required during this test. MCU and gate driver section phase shift between primary and secondary can be verified during this test.

UM3198 – Rev 1

page 45/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 58. Mode 1 test configuration

An example of the default configuration is given. Swathing frequency and dead time are configured in “DPC_Application_Conf.h” and the expected waveforms are provided.
Step 1. Configure the firmware parameters and flash the MCU.

Table 23. Mode 1 test parameters

Parameters DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN PhSh_CTRL_MAN_norm

Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm

Value DAB_OPEN_LOOP
PWM_Armed StartUpCheck_Disabled
RESET RESET
0.25

Step 2. Go to the debugging mode in the preferred IDE software.
Step 3. If emergency shoot down is required, DPC_FSM_NEW_State can be set to “DPC_FSM_FAULT” to disable PWM as well as phase shifting and energy transfer.
Example 1 :

UM3198 – Rev 1

page 46/83

UM3198
How to manage the STDES-DABBIDIR reference design

Table 24. Example of frequency and dead time configuration

Parameters PWM_FREQ DPC_DT_DAB1 DPC_DT_DAB2

Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h

Value 100000 0.4e-6 0.4e-6

Figure 59. Typical PWM and driving voltages

7.6.2

Mode 2 ­ open loop, phase shift power operation.
This test is for the power and sensing section of the application. Power equipment (programmable DC power supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent injury. Power analyzer can be connected during this test to evaluate efficiency in specific operating points. The PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by “PWM_FREQ”, “DPC_DT_DAB1” and “DPC_DT_DAB2” of “DPC_Appplication_Conf.h” file. MCU and gate driver sections phase shift between primary and secondary can be verified during this test.
Step 1. Configure firmware parameters and flash the MCU.

Table 25. Mode 2 test parameters

Parametrs DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN PhSh_CTRL_MAN_norm

Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm

Value DAB_OPEN_LOOP
PWM_Armed StartUpCheck_Disabled
RESET RESET Variable during this test

Step 2. Select and enable Constant Current mode “CC” in the High Power eLoad. Step 3. Set current reference to 9A.

UM3198 – Rev 1

page 47/83

UM3198
How to manage the STDES-DABBIDIR reference design
Step 4. Go to the debugging mode in the preferred IDE software. Step 5. Set to 0.06 in DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm. Step 6. Slowly increase the DC power supply up to 400V.
The eLoad voltage will also increase up to 210V. Step 7. Slowly increase the eLoad up to 16A.
The eLoad voltage will decrease. Step 8. Slowly increase the DC power supply up to 800V.
The eLoad voltage will also increase up to 420V. Step 9. By slowly changing phase shifting and the eLoad current requirements, the actual power level
configuration can be adjusted to evaluate several configurations. Step 10. Decrease the DC power supply until 0V is reached.
The eLoad voltage will decrease. Step 11. If emergency shoot down is required, DPC_FSM_NEW_State can be set to “DPC_FSM_FAULT” to
disable PWM as well as phase shifting and energy transfer.
Figure 60. Open loop, phase shift power operation Vin=400V Vout=210V PS=0.06 Iload=9A

UM3198 – Rev 1

page 48/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 61. Open loop, phase shift power operation Vin=800V Vout=420V PS=0.06 Iload=16A

7.6.3

Mode 3 ­ closed loop, voltage control
This test allows evaluation of the overall performance in voltage control mode of the application. Power equipment (Programmable DC Power Supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent any injury. Power analyzer can be connected during this test to evaluate efficiency into specific operating points. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by “PWM_FREQ”, “DPC_DT_DAB1” and “DPC_DT_DAB2” of “DPC_Appplication_Conf.h” file.
Step 1. Configure the firmware parameters and flash the MCU.

Parametrs DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN
fDAB_VDC_RefNext_V

Table 26. Mode 3 test parameters

Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB.pDAB_CTRL.pDAB_VCTRL_SlewRate. fDAB_VDC_RefNext_V

Value DAB_VOLTAGE_LOOP
PWM_Armed StartUpCheck_Disabled
RESET RESET
Variable during this test

Step 2. Step 3. Step 4. Step 5. Step 6.
Step 7.

Select and enable Constant Current mode “CC” in the High Power eLoad Set current reference to 1A. Go to the debugging mode by using the preferred IDE tool (“Live mode”). Set to 250 in DAB.pDAB_CTRL.pDAB_VCTRL_SlewRate. fDAB_VDC_RefNext_V Slowly increase the DC power supply up to 800V The eLoad power will also increase. Adapt the current reference of the eLoad to evaluate the operating mode at different power level.

UM3198 – Rev 1

page 49/83

UM3198
How to manage the STDES-DABBIDIR reference design Step 8. The DC output voltage can also be adapted by changing “fDAB_VDC_RefNext_V”.
The actual output voltage reference changes linearly according to the slew rate configuration. Step 9. If emergency shoot down is required, DPC_FSM_NEW_State can be set to “DPC_FSM_FAULT” to
disable PWM as well as phase shifting and energy transfer. Some operating examples are shown below:
Figure 62. Open loop, phase shift power operation Vin=800V Vout=330V(VCTRL) Iload=17A
Figure 63. Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=15A

UM3198 – Rev 1

page 50/83

UM3198
How to manage the STDES-DABBIDIR reference design
Figure 64. Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=31A

7.6.4

Mode 4 ­ closed loop, current control
This test allows evaluation of the overall performance of the application in current control mode. Power equipment (Programmable DC Power Supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent injury. Power analyzer can be connected during this test to evaluate efficiency in specific operating points. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by “PWM_FREQ”, “DPC_DT_DAB1” and “DPC_DT_DAB2” of “DPC_Appplication_Conf.h” file.
Step 1. Configure the firmware parameters and flash the MCU.

Table 27. Mode 4 test parameters

Parameters DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN
fDAB_IDC_RefNext_V

Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB.pDAB_CTRL.pDAB_ICTRL_SlewRate.
fDAB_IDC_RefNext_A

Value DAB_CURRENT_LOOP
PWM_Armed StartUpCheck_Disabled
RESET RESET
Variable during this test

Step 2. Step 3. Step 4. Step 5. Step 6. Step 7. Step 8.

Select and enable Constant Current mode “CC” in the High Power eLoad Set current reference to 250V. Go to the debugging mode by using the preferred IDE tool. Set to 2 in DAB.pDAB_CTRL.pDAB_ICTRL_SlewRate. fDAB_IDC_RefNext_A Slowly increase the DC power supply up to 800V; the eLoad power will also increase. Adapt the voltage reference of the eLoad to evaluate the operating mode at different power levels. The DC output current can also be adapted by changing “fDAB_IDC_RefNext_A”. The actual output current reference changes linearly according to the slew rate configuration.

UM3198 – Rev 1

page 51/83

UM3198
How to manage the STDES-DABBIDIR reference design
Step 9. If emergency shoot down is required, DPC_FSM_NEW_State can be set to “DPC_FSM_FAULT” to disable PWM as well as phase shifting and energy transfer.

UM3198 – Rev 1

page 52/83

UM3198
STDES-DABBIDIR results

8

STDES-DABBIDIR results

This section provides an additional overview of the reference design.

8.1

Charging mode waveforms

Waveforms analysis at:

·

Vin=800V

·

Vout=400V

·

fsw=100kHz

·

IDCload=40Amps

·

Voltage regulation operating mode

Figure 65. Switching waveform C1=DC load current C2=VDAB1 C3=VDAB2 C4=IDM7 C5=VDSM7 C6=VDSM8 C7=VGSM7 C8=ILsec

Waveforms analysis at:

·

Vin=830V

·

Vout=440V

·

fsw=100kHz

·

IDCload=56.3A

·

Voltage regulation operating mode

UM3198 – Rev 1

page 53/83

UM3198
STDES-DABBIDIR results
Figure 66. Maximum power waveforms C1=DC load current C2=VDAB1 C3=VDAB2 C4=VDS_LV_HS C5= VDS_LV_LS C6=Iprim C7=VREFL C8=ILsec F3=VL

8.2

Efficiency

Efficiency characterization at:

·

Vin=800V

·

Vout=440V

·

fsw=100kHz

·

Voltage regulation operating mode

·

Iload=4.5-56.3 A (Constant current)

Figure 67. STDESDABBIDIR Efficiency

UM3198 – Rev 1

page 54/83

UM3198 – Rev 1

9

Schematic diagrams

Figure 68. STDES-DABBIDIR – main board circuit schematic (1 of 6)

2

JP1

1 2

1 2

Con2

1

VDD_7V_EXT

J1 De v3

1

+ C1 33uF/25V

C3 1uF/25V

2 3

VDD_7V_EXT
R1 5.6k

VDD_7V
VDD_7V R2 5.6k

A

A

D1 Led Green

D2 Led Green

F1

2

1

0

0

30Ohm@ 100MHz

U1

LD29080DT50R

1 VIN

VOUT 3

4 GND

C5 470nF/25V

2

1

VDD_5V
+ C6 33uF/25V

A

VDD_5V
R3 5.6k

F2

VDD_5V 2

1
0

0
30Ohm@ 100MHz

D3 Led Green

U2

LDL1117S 33R

3 VIN

VOUT VOUT1

2 4

1 GND

C2 470nF/25V

2

1

VDD_3.3V
+ C4 33uF/25V

A

VDD_3.3V
R4 5.6k
D4 Led Green

VDD_7V_EXT

VDD_7V

C

C

C

C

2

JP2

1 2

1 2

Con2

1

VDD_12V_EXT

+ C7 33uF/25V

C8 1uF/25V

J2 De v3

1

2 3

VDD_12V_EXT
R6 5.6k

VDD_12V
VDD_12V
R7 5.6k

F3

2

1

0

0
30Ohm@ 100MHz

A

A

D5 LE D_ Ye llow

D6 LE D_ Ye llow

U3

LDL1117S 33R

3 VIN

VOUT VOUT1

2 4

1 GND

C10 470nF/25V

2

1

VDD_DRIVER VDD_3.3V_DRIVER

VDD_DRIVER
R5 5.6k

+ C9 33uF/25V

A

D7 Led Green

VDD_12V_EXT

VDD_12V

C

C

C

TW 1

TW 2

TW 3

TW 4

TW 5

TW 11

TW 13

M3 HOLE NOT P LATED TW 6

M3 HOLE NOT P LATED

M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED

M3 HOLE NOT P LATED

TW 7

TW 8

TW 9

TW 10

TW 12

TW 14

TW 15

TW 16

M3 HOLE NOT P LATED

M3 HOLE NOT P LATED

M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATEMD3 HOLE NOT P LATED

TW 17

TW 18

TW 19

M3 HOLE NOT P LMA3THEDOLE NOT P LATEMD3 HOLE NOT P LATED

UM3198
Schematic diagrams

page 55/83

page 56/83

UM3198 – Rev 1

VDD_5V
P W M_S X_LS _1 P W M_S X_HS _1 P W M_DX_LS _1
P W M_DX_HS _1 P W M_S X_LS _2 P W M_S X_HS _2 FAN

I C T a d c I C T a d c

Id c 1 LE M Id c 2 LE M
NTC LV1 Te m p NTC LV2 Te m p NTC HV Te m p
TEMP I C T a d c V_bus _DC1 V_bus _DC2

Figure 69. STDES-DABBIDIR – main board circuit schematic (2 of 6)

J3 S OLDER J UMP ER3

J4 S OLDER J UMP ER3

J5 S OLDER J UMP ER3

3

2

1

P1

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A 31A 32A

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A 31A 32A

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B 21B 22B 23B 24B 25B 26B 27B 28B 29B 30B 31B 32B

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B 21B 22B 23B 24B 25B 26B 27B 28B 29B 30B 31B 32B

Digital P ower Connector

VDD_3.3V
P W M_DX_LS _2 P W M_DX_HS _2

1

2

3

P W M_S X_LS _1 GND_S X_HS _1

P W M_S X_HS _1

P W M_DX_LS _1

GND_S X_LS _1

GND_DX_HS _1

1

2

3

J7 S OLDER J UMP ER3
P W M_S X_LS _2
GND_S X_HS _2

J8 S OLDER J UMP ER3

J9 S OLDER J UMP ER3

3

2

1

3

2

1

P W M_S X_HS _2

P W M_DX_LS _2

GND_S X_LS _2

GND_DX_HS _2

1

2

3

1

1

2

2

3

3

J6 S OLDER J UMP ER3
P W M_DX_HS _1 GND_DX_LS _1
J 10 S OLDER J UMP ER3
P W M_DX_HS _2 GND_DX_LS _2

UM3198
Schematic diagrams

UM3198 – Rev 1

Figure 70. STDES-DABBIDIR – main board circuit schematic (3 of 6)

G_S X_HS _1 S _S X_HS _1

1

J17

1 J50
6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

G_DX_HS _1 S _DX_HS _1

1

J18

1

J51

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

G_S X_LS _1 S _S X_LS _1

1

J21

1

J52

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

G_DX_LS _1 S _DX_LS _1

1

J22

1

J53

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

P WM_S X_HS _1 GND_S X_HS _1

1

J25

1

J54

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

P WM_DX_HS _1 GND_DX_HS _1

1

J26

1

J55

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

P WM_S X_LS _1 GND_S X_LS _1

1

J29

1

J56

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

P WM_DX_LS _1 GND_DX_LS _1

1

J30

1

J57

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

VDD_DRIVER

1

J31

1

J59

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

VDD_12V

1

J34

1

J58

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

G_S X_HS _2A S _S X_HS _2A
G_S X_HS _2B S _S X_HS _2B
G_S X_LS _2A S _S X_LS _2A
G_S X_LS _2B S _S X_LS _2B
P WM_S X_HS _2 GND_S X_HS _2
P WM_S X_LS _2 GND_S X_LS _2

1

J11

1 J60
6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J13

1

J62

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J15

1

J64

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J19

1

J66

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J23

1

J68

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J27

1

J70

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

G_DX_HS _2A S _DX_HS _2A
G_DX_HS _2B S _DX_HS _2B
G_DX_LS _2A S _DX_LS _2A
G_DX_LS _2B S _DX_LS _2B
P WM_DX_HS _2 GND_DX_HS _2
P WM_DX_LS _2 GND_DX_LS _2

1

J12

1

J61

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J14

1

J63

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J16

1

J65

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J20

1

J67

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J24

1

J69

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J28

1

J71

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

VDD_DRIVER

1

J32

1

J72

VDD_12V

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

1

J35

1

J74

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

VDD_DRIVER

1

J33

1

J73

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

VDD_12V

1

J36

1

J75

6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0

UM3198
Schematic diagrams

page 57/83

UM3198 – Rev 1

BUS _LEM_DC1+

BUS _LEM_DC1-

J39

74651195 J45

TP 70 TES T P OINT

74651195

TP 71 TES T P OINT

3

2

4

1

Figure 71. STDES-DABBIDIR – main board circuit schematic (4 of 6)

C11 25uF

3

2

4

1

C12 25uF

POWER_P_1

C183 100nF

C184 100nF

C185 100nF

C186 100nF

P OW ER _N_1

TP 66 TES T P OINJT37
O UTA_ D AB1

O UTB_ D AB1

74651195 J41

1

2

T1 Coilcra ft-CS T3015-100E

74651195 TP 69
TES T P OINT

TP 67

J38

TES T P OINT

O UTA_ D AB2

74651195 J42

O UTB_ D AB2

74651195 TP 68
TES T P OINT

POWER_P_2

4

3

I_CT- I_CT+

P OW ER _N_2

1

2

A

T2

C

B

D

C177 1uF

C178 1uF

C179 1uF

C180 1uF

C181 1uF

C182 1uF

C187 1uF

3

2

4

1

C14 40uF

3

2

4

1

C15 40uF

3

2

4

1

BUS _LEM_DC2+ BUS _LEM_DC2J40

C16 40uF

TP 72

74651195

TES T P OINT

J46

TP 73

74651195

TES T P OINT

NTC _ HV+

U4

G_S X_LS _1 S _S X_LS _1
P OW ER _N_1

G2 S2
N2A N2B
N2C N2D

G2 S2
N2A N2B
N2C N2D

POWER_P_1

TP 48

TES T P OINT

TP 52 TES T P OINT

P1 P2

P1

P3 P2

P4 P3

P5 P4

P6 P7

P5 P6

P8 P7

P8

T1 T1 T2 T2

NTC _ HV-

G4 S4 N4A N4B N4C N4D
S1 G1 OUT1A OUT1B OUT1C OUT1D
S3 G3 OUT2A OUT2B OUT2C OUT2D

G4 S4 N4A N4B N4C N4D
S1 G1 OUT1A OUT1B OUT1C OUT1D
S3 G3 OUT2A OUT2B OUT2C OUT2D

G_DX_LS _1 S _DX_LS _1

P OW ER _N_1

S _S X_HS _1 G_S X_HS _1

TP 49 TES T P OINT

O UTA_ D AB1
S _DX_HS _1 G_DX_HS _1 TP 50
TES T P OINT

G_S X_HS _2A G_S X_HS _2B
S _S X_HS _2A S _S X_HS _2B
G_S X_LS _2A G_S X_LS _2B
S _S X_LS _2A S _S X_LS _2B

O UTB_ D AB1

TP 51 TES T P OINT

TP 27

TES TP OINT_1MM

1

TP 28

TES TP OINT_1MM

1

TP 29

TES TP OINT_1MM

1

TP 30

TES TP OINT_1MM

1

P OW ER _N_1 POWER_P1 O UTA D AB1 O UTB_ D AB1

TP 31

TES TP OINT_1MM

1

TP 32

TES TP OINT_1MM

1

TP 33

TES TP OINT_1MM

1

TP 34

TES TP OINT_1MM

1

P OW ER _N_2 POWER_P2 O UTA D AB2 O UTB_ D AB2

POWER_P_2

P_8

P_7

P_6

P_5

P_4

P_3

P_2

P_1

GH_1 GH_2
S H_1 S H_2
GL_1 GL_2
S L_1 S L_2

N_1

N_2

N_3

N_4

N_5

N_6

N_7

N_8

U5
T1 T2

NTC LV1 + NTC LV1 –

OUT_1 OUT_2
OUT_3 OUT_4
OUT_5 OUT_6 OUT_7
OUT_8 OUT_9
OUT_10

O UTA_ D AB2

POWER_P_2

P_8

P_7

P_6

P_5

P_4

P_3

P_2

P_1

G_DX_HS _2A G_DX_HS _2B
S _DX_HS _2A S _DX_HS _2B
G_DX_LS _2A G_DX_LS _2B
S _DX_LS _2A S _DX_LS _2B

GH_1 GH_2
S H_1 S H_2
GL_1 GL_2
S L_1 S L_2

N_1

N_2

N_3

N_4

N_5

N_6

N_7

N_8

U6
T1 T2

NTC LV2 + NTC LV2 –

OUT_1 OUT_2 OUT_3
OUT_4 OUT_5
OUT_6 OUT_7 OUT_8
OUT_9 OUT_10

O UTB_ D AB2

P OW ER _N_2

TP60 TP59 TP58 TP57

TP56 TP55 TP74 TP75

TP61 TP54 TP53 TP62

TES TTPEOS TINPTOINTETS TTPEOS TINPTOINT TES TTPEOS TINTPETOS TINTPETOS TINPTOINT TES TTPEOS TINTPETOS TINTPETOS TINPTOINT

P OW ER _N_2

OUTB_DAB2 OUTA_DAB2

POWER_P_2

P OW ER _N_2

W41 HEX NUT M3
W42 HEX NUT M3

W38 HEX NUT M3
W35 HEX NUT M3

W39 HEX NUT M3
W36 HEX NUT M3

W40 HEX NUT M3
W37 HEX NUT M3

W53

W54

W55

W50

HEX NUT M5 HEX NUT M5 HEX NUT M5 HEX NUT M5

W43 HEX S TANDOFF M3

W57 HEX S TANDOFF M3

W59 HEX S TANDOFF M3

W60 HEX S TANDOFF M3

W45

W46

W47

W48

HEX NUT M5 HEX NUT M5 HEX NUT M5 HEX NUT M5

W56 HEX S TANDOFF M3

W58 HEX S TANDOFF M3

W61 HEX S TANDOFF M3

W62 HEX S TANDOFF M3

UM3198
Schematic diagrams

page 58/83

page 59/83

UM3198 – Rev 1

P OWER_P _1
R11 3.9M

TP 8 Te s tP oint_Ring

R13 3.9M
R16 3.9M

R24 22K C36 1 nF /1 6 V
P OWER_N_1

GND_DC1

P OWER_P _2

R34 3.6M

TP 17 Te s tP oint_Ring

R37 3.6M
R39 3.6M

R44 33K C54 1 nF /1 6 V
P OWER_N_2
GND_DC2

Figure 72. STDES-DABBIDIR – main board circuit schematic (5 of 6)

5 V_ DC 1

VDD_5V

1

1

2

TP 5 F6
0
3 0 Ohm@ 1 0 0 MHz
Te s tP oint_Ring

F7
0
3 0 Ohm@ 1 0 0 MHz

2

C30 1 uF /2 5 V

C31 1 0 0 nF /2 5 V

GND_DC1

GND_DC1

U8

1

8

2 VDD1 VDD2 7

3 VIN VOUTP 6

4 S HTDN VOUTN 5

GND1 GND2

AMC 1 3 1 1 QDWVRQ1

GND_DC1

C33

C32

4.7uF/25V 100nF/25V

R20 0

R25 0

R21 1.8K
R26 1.8K

VDD_5V
F8 30Ohm@100MHz 0

1

TP 4 Te s tP oint_Ring

2

C28

C29

100nF/25V 1uF/25V

R17

3K

8

U9A

3 + V+ 1

R22

C35

2 – V-

N.M.

4

TS V912IDT 0

R27

TP 9

8

C37 N.M.

5+ 6-

4

U9B Te s tP oint_Ring V+
7
VTS V912IDT

V_bus _DC1

3K

VDD_5V

F5

2

1

LE M1 CAS R 15-NP

R8

14 Vc

Ref 11

3 0 Ohm@ 100 0 MHz

13

12

GND

OUT

N.M.

C25

C26

1uF/25V 100nF/25V

N.M.

OUT-1 OUT-2 OUT-3

8 IN-3

IN-1 IN-2

9 10

1 2 3

BUS _LEM_DC1+

BUS _LEM_DC1R14
VDD_5V
100

1

VDD_5V
F4
0
3 0 Ohm@ 1 0 0 MHz

2

TP 1 Te s tP oint_Ring
C34 N.M.

R10 4.12K-0.1%
TP 6 Te s tP oint_Ring
R15

R9 10K-0.1%
3+ 4-

2

5

C23

C24

1uF/25V 100nF/25V

TP 2

U7 Te s tP oint_Ring R12
1

TP 7

0

TS V911ILT

R0 18TL431UA1C0L3T

10K-0.1%

R19 1.65K-0.1%

Te s tP oint_Ring

R23 N.M.

2 REF 3A K1

N.M.

TP 3
Te s tP ointRing Id c 1 LE M
C27 N.M.

VDD_5V

1

F9
0
3 0 Ohm@ 1 0 0 MHz

U11 1779205141

C38 1 uF /2 5 V

1
C39 1 0 0 nF /2 5 V2

+VIN -VIN

+V0 7 -VO 5

5 V_ DC 1
C40 1 uF /2 5 V

2

GND_DC1

5 V_ DC 2

1

30Ohm@100MHz 0

2

TP 16 F14
Te s tP oint_Ring

VDD_5V

1

0

F13

30Ohm@100MHz 0

2

C49 1 uF /2 5 V

C50 1 0 0 nF /2 5 V

GND_DC2

GND_DC2

U14

1

8

2 VDD1 VDD2 7

3 VIN VOUTP 6

4 S HTDN VOUTN 5

GND1 GND2

AMC 1 3 1 1 QDWVRQ1

GND_DC2

C51 4 .7 uF /2 5 V

C52 1 0 0 nF /2 5 V

R41

R42

0

1.8K

R45

R46

0

1.8K

VDD_5V

1

0

F12

3 0 Ohm@ 1 0 0 MHz

2

TP 15 Te s tP oint_Ring

C46

C47

100nF/25V 1uF/25V

C53 N.M.

R40 3K

8

U15A

3 + V+

1

R43

2 – V-

4

TS V912IDT 0

R47 3K

TP 18

8

C55 N.M.

5+ 6-

4

U15B Te s tP oint_Ring

V+

7

V_bus _DC2

V-

TS V912IDT

VDD_5V

1

0

0

F16

0

0

3 0 Ohm@ 1 0 0 MHz

U20 1779205141

5 V_ DC 2

2

1 +VIN

C58

C59

1uF/25V 100nF/2 5V -VIN

+V0 7 -VO 5

C60 1 uF /2 5 V

GND_DC2

VDD_5V

F11

2

1

0

LE M2 CAS R 50-NP

R28

14 Vc

11 Re f

3 0 Ohm@ 1 0 0 MHz

13 GND

OUT 12

N.M.

C43

C44

1uF/25V 100nF/25V

N.M.

OUT-2 OUT-3

9 OUT-1

IN-2 IN-3

2 IN-1

10

3 8

1

BUS _LEM_DC2+

BUS _LEM_DC2R32
VDD_5V
100

1

VDD_5V
F10 0 30Ohm@100MHz

2

TP 10 Te s tP oint_Ring
C48 N.M.

R30
4.22K-0.1% TP 13 Te s tP oint_Ring
R33

R29 20K-0.1%
3+ 4-

2

5

C41

C42

1uF/25V 100nF/25V

TP 11

U12 1

Te s tP oint_Ring R31

TP 14

0

TS V911ILT

R0 35TL431UA1C3L3T

13.7K-0.1%

R36 13K-0.1%

Te s tP oint_Ring

R38 N.M.

2 REF 3A K1

N.M.

TP 12
Te s tP ointRing Id c 2 LE M
C45 N.M.

R49 VDD5V
100
I
C T+ I_ C T-

TP 22

Te s tP oint_RinRg50

2 REF 3A K1

U18

0

R54 TLVH431AIL3T 0

C63 N.M.

R55 N.M.

N.M.

TP 20

Te s tP oint_Ring R48

R66

TP 19

0

1

CT7e6s tP oint_Ring

N.M.

R58

N.M. N.M.

VDD_5V

1

0

F15

30Ohm@100MHz 0

2

8

3+ 2-

4

U17A V+
1
VTS V912IDT

R56

C56 1 uF /2 5 V

C57 1 0 0 nF /2 5 V

R51 0

N.M. N.M. C65
N.M.

R52 0

C61 N.M.
C62 N.M.

8

5+ 6-

4

U17B V+
7
VTS V912IDT

R57 0

TP 21 Te s tP oint_Ring
R53 I_CT_a dc
0
C64 N.M.

UM3198
Schematic diagrams

UM3198 – Rev 1

R60
5.6k D8 LED_Ye llow

J76 1 21
2 Con2

J47

1

2

1 2

Con2

A

C

TP 24

Te s tP oint_Ring

Q1 S TS 6NF 20V

6

1

5

2

8

3

7

TP 23

Te s tP oint_Ring

R62

4

F AN

22
R64 33k

Figure 73. STDES-DABBIDIR – main board circuit schematic (6 of 6)

R59

C66

470

1 0 0 n F /2 5 V

U19

1

5

NC GND1

2 GND

3

4

VOUT VCC

R5 .611kTPS2T5LM2 0 W 8 7 F

C67 1 0 0 n F /2 5 V VDD_5V

Te s tP oint_Ring

TP 26

TEMP Te s tP oint_Ring

R63

10k

C68

1 0 0 n F /2 5 V

VDD_5V
R108 1k
R110 1.07k-0.1%
R114 5.76k-0.1%

TP 42 Te s tP oint_Ring

VDD_re f_NTC_HV NTC_HV+

NTC _ HV-

U29 TLVH431AIL3T

R 1 3 1VDD 5 VVDD 5 V

L30

2

1

0 0

R132 0

22Ohm @ 100MHz

5

R111 910R-0.1%

3+ 4-

U27 1

2

TS V911IYLT

2 REF 3A K1

VDD_re f_NTC_HV

R117 1.5k-0.1%

R118 680-0.1%

C171 100nF 25V
C172 1uF 25V

Te s tP oint_Ring TP 43
NTC_HV_Te m p TP 63 Te s tP oint_Ring

HS 1 S K_56_100_AL

F AN1

F AN2

F AN3

F AN4

F AN5

F AN6

FAN

FAN

FAN

FAN

FAN

FAN

109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013

VDD_5V
R119 1k
R120 1.07k-0.1%
R122 5.76k-0.1%

TP 44 Te s tP oint_Ring

VDD_re f_NTCLV2 NTC LV2 +

NTC _ LV2 –

U31 TLVH431AIL3T

R134
0 R133 0

VDD_5VVDD_5V L31

2

1

0

22Ohm@ 100MHz

5

R121 910R-0.1%

3+ 4-

U30 1

2

TS V911IYLT

2 REF 3A K1

VDD_re f_NTC_LV2

R123 1.5k-0.1%

R124 680-0.1%

C173 100nF 25V
C174 1uF 25V

Te s tP oint_Ring TP 45
NTC_LV2_Te m p TP 64 Te s tP oint_Ring

VDD_5V
R125 1k
R126 1.07k-0.1%
R128 5.76k-0.1%

TP 46 Te s tP oint_Ring

VDD_re f_NTCLV1 NTC LV1 +

NTC _ LV1 –
U33 TLVH431AIL3T

R135 0

VDD_5VVDD_5V L32

2

1

0

22Ohm @ 100MHz

R136 0
R127 910R-0.1%

5

3+ 4-

U32 1

2

TS V911IYLT

2 REF 3A K1

VDD_re f_NTC_LV1

R129 1.5k-0.1%

R130 680-0.1%

C175 100nF 25V
C176 1uF 25V

Te s tP oint_Ring TP 47
NTC_LV1_Te m p TP 65 Te s tP oint_Ring

UM3198
Schematic diagrams

page 60/83

UM3198 – Rev 1

VDD_ 1 2 V

C9 2 .2 u F

2

FB2

1

2

03 0 Oh m @ 1 0 0 MHz

1

2

1

2

1

2 1
L1 22uH C13 4 7 0 n F/5 0 V

DC1 7
+VOUT 6 COM 5
-VO UT

VINVIN+

R12P22005D

VDD_ 1 2 V

DC2 7
+VOUT 6 COM 5
-VO UT 2 1 VIN-
VIN+
R12P22005D

1

1

1

C25 2 .2 u F

2

FB4

10

2

3 0 Oh m @ 1 0 0 MHz 0

2

2

L2

C26

22uH

4 7 0 n F/5 0 V

2

1

2

1

2

1

2

1

C4 2 .2 u F

C5 2 .2 u F

2

1

C10 2 .2 u F

C11 2 .2 u F

2

1

2

1

2

1

Figure 74. STDES-DABBIDIR – driver board for full bridge circuit schematic

TP 1 Te s tP o in t

VH S X HS

C6 100nF C12 100nF

TP 4 Te s tP o in t

S S X HS

TP 7 Te s tP o in t

VL S X HS

TP 5 Te s tP o in t

VDD_ DR IVER

FB1

1

2

1

0 3 00Oh m @ 1 0 0 MHz C1

1uF

1

1

C2 100nF

C3 1 n F/5 0 V

2

2

2

P WM S X HS S IG+ S X HS
S IG- S X HS GND S X HS

2

R2 100
R6 100

2

1

TP 2 Te s tP o in t

C7 2 2 0 p F/5 0 V

TP 6 Te s tP o in t

1

C8 2 2 0 p F/5 0 V

U1

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

VL S X HS

R1 0

R3 22

G S X HS

VH S X HS

R5 22

TP 8 Te s tP o in t
VH S X LS

VH S X HS

Q1 2 S TF1 3 6 0

R4

1

2

12

6 .8 /2 W

R7

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q2

4

2

VL S X HS

TP 3 Te s tP o in t

R8 N.M.

R9

N.M.

R10

D1

47k

TZMB2 0 -GS 0 8

C14

D2

N.M.

TZMB3 V3 -GS 0 8

G S X HS

G S X HS

S S X HS S S X HS

VDD DR IVER VDD 1 2 V

JP1 1
1
N.M. JP2
1 1
N.M. JP3
1 1
N.M. JP4
1 1
N.M.

S IG+ S X HS S IG- S X HS
S IG+ S X LS S IG- S X LS
S IG+ DX LS S IG- DX LS
S IG+ DX HS S IG- DX HS

1

C15 2 .2 u F

C16 2 .2 u F

C17 100nF

2

2

1

1

C24 2 .2 u F

2

C23 2 .2 u F

2

C22 100nF

1

TP 9 Te s tP o in t

S S X LS

TP 1 4 Te s tP o in t
VL S X LS

TP 1 1 Te s tP o in t

2

S IG+ S X LS P WM S X LS GND S X LS S IG- S X LS

VDD_ DR IVER

FB3

1

2

0

3 0 Oh m @ 1 0 0 MHz

1

C19

1uF

2

1

2

1

C18 100nF

C20 1 n F/5 0 V

2

TP 1 0 Te s tP o in t R12

1

100 R18

2

C21 2 2 0 p F/5 0 V
TP 1 3 Te s tP o in t

U2

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

1

100

C27

2 2 0 p F/5 0 V

VL S X LS R11

1

2

12

0 R13 22

G S X LS

R15 22 VH S X LS

VH S X LS

Q3 2 S TF1 3 6 0

R14

1

2

12

6 .8 /2 W

R16

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q4

4

2

VL S X LS

TP 1 2 Te s tP o in t

R17 N.M.

R19

N.M.

R20

D3

47k

TZMB2 0 -GS 0 8

C28

D4

N.M.

TZMB3 V3 -GS 0 8

G S X LS G S X LS

S S X LS

S S X LS

VDD DR IVER VDD 1 2 V
GND

VDD DR IVER VDD 1 2 V

P WM S X HS GND S X HS
P WM S X LS GND S X LS P WM DX LS GND DX LS P WM DX HS GND DX HS

JP5 1
1 N.M.
JP6 1
1 N.M.
JP7 1
1 N.M.
JP8 1
1 N.M.
JP9 1
1 N.M.
JP10 1
1 N.M.
JP11 1
1 N.M.
JP12 1
1 N.M.

JP13 1
1
N.M. JP14
1 1
N.M.
JP15 1
1
N.M. JP16
1 1
N.M.
JP17 1
1
N.M. JP18
1 1
N.M.
JP19 1
1
N.M. JP20
1 1
N.M.

G S X HS S S X HS
G DX HS S DX HS G S X LS S S X LS G DX LS S DX LS

TP 1 5 Te s tP o in t

VH DX HS

1

1

1

VDD_ 1 2 V

C36 2 .2 u F

1

C40 4 7 0 n F/5 0 V

1

DC3 7
+VOUT 6 COM 5
-VO UT 2 1 VIN-
VIN+
R12P22005D
L3 22uH

1

2

2

2

FB6

1

2

0 3 0 Oh m @ 1 0 0 MHz

2

1

2

C29 2 .2 u F

2

C30 2 .2 u F

2

C31 100nF
TP 1 6 Te s tP o in t
S DX HS

1

1

C37 2 .2 u F

2

C39 2 .2 u F

2

C38 100nF
TP 2 1 Te s tP o in t
VL DX HS

TP 1 8 Te s tP o in t

VDD_ DR IVER

FB5

1

2

0

0

3 0 Oh m @ 1 0 0 MHz

1

0

0

C32

1uF

1

1

C33 100nF

C34 1 n F/5 0 V

2

2

2

P WM DX HS S IG+ DX HS
S IG- DX HS GND DX HS

2

R22 100
R27 100

2

1

TP 1 7 Te s tP o in t

C35 2 2 0 p F/5 0 V

TP 2 0 Te s tP o in t

1

C41 2 2 0 p F/5 0 V

U3

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

VL DX HS R21 0 G DX HS R23 22
R25 22
VH DX HS

VH DX HS

Q5 2 S TF1 3 6 0

R24

1

2

12

6 .8 /2 W

R26

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q6

4

2

VL DX HS

TP 1 9 Te s tP o in t

R28 N.M.

R29

N.M.

R30

D5

47k

TZMB2 0 -GS 0 8

D6 TZMB3 V3 -GS 0 8

C42 N.M.

G DX HS G DX HS
S DX HS S DX HS

TP 2 2 Te s tP o in t

VH DX LS

1

1

1

VDD_ 1 2 V

C52 2 .2 u F

2

FB8

1

2

0 3 00Oh m @ 1 0 0 MHz

1

2

1

2

1

DC4 7
+VOUT 6 COM 5
-VO UT 2 1 VIN-
VIN+
R12P22005D
L4 22uH
C54 4 7 0 n F/5 0 V

2

1

2

C43 2 .2 u F

C44 2 .2 u F

C45 100nF

2

2

TP 2 3 Te s tP o in t

S DX LS

1

1

C50 2 .2 u F

2

C51 2 .2 u F

2

C53 100nF

TP 2 8 Te s tP o in t

VL DX LS

2

TP 2 6 Te s tP o in t

S IG+ DX LS P WM DX LS
GND DX LS S IG- DX LS

VDD_ DR IVER

FB7

1

2

0

3 0 Oh m @ 1 0 0 MHz

1

0

C46

1uF

1

C47 100nF

1

C48 1 n F/5 0 V

2

2

2

R32 100
R40 100

1

1

2

TP 2 4 Te s tP o in t

C49 2 2 0 p F/5 0 V

U4

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

TP 2 7 Te s tP o in t

C55 2 2 0 p F/5 0 V

VL DX LS R31 0 G DX LS R33 22
R35 22
VH DX LS

VH DX LS

Q7 2 S TF1 3 6 0

R34

1

2

12

6 .8 /2 W

R36

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q8

4

2

VL DX LS

TP 2 5 Te s tP o in t

R37 N.M.

R38

N.M.

R39

D7

47k

TZMB2 0 -GS 0 8

C56

D8

N.M.

TZMB3 V3 -GS 0 8

G DX LS G DX LS

S DX LS

S DX LS

UM3198
Schematic diagrams

page 61/83

UM3198 – Rev 1

Figure 75. STDES-DABBIDIR – driver board for half bridge circuit schematic (1 of 2)

VDD_ DRIVE R VDD_12V
GND

VDD_ DRIVE R VDD_12V

VDD_12V

F2

1

2

0
3 0 Ohm@ 1 0 0 MHz

2

C12 2.2uF

1

2

1

2

DC1

2 1

VINVIN+

7

+VOUT COM

6 5

-VOUT

R12P 22005D

1

L1
C13 22uH 470nF

TP 1 5000

VH_LS

1

1

C6 22uF

2

2

C5 2.2uF

C4 0.1uF

TP 4 5000

S _LS

1

1

C11 22uF

C9 2.2uF

C10 0.1uF

2

2

TP 7 5000

VL_LS

TP 8 5000

VH_HS

1

1

VDD_12V

C26 2.2uF

1

DC2

2

1

VINVIN+

7

+VOUT 6

COM -VOUT

5

R12P 22005D

1

L2
C27 22uH 470nF

1

2

2

2

F4

1

2

0

3 0 Ohm@ 1 0 0 MHz

C17 22uF

2

C16 2.2uF

C18 0.1uF

2

TP 9 5000

S _HS

1

1

C23 22uF

2

C24 2.2uF

C25 0.1uF

2

TP 14 5000

VL_HS

TP 5 5000
TP 11 5000

P WM_LS S IG+_LS
S IG-_LS GND_LS

VDD_ DRIVE R

3 0 Ohm@ 1 0 0 MHz

1

2

F1 0

100nF

1

1nF

C1

C2

C3

2

1 uF /2 5 V

TP 2 5000 R2

100 R6 100

C7 220pF

TP 6 5000

C8 220pF

U1

1

8

2 3

VDD IN+

GNDIS O CLAMP

7 6

4

INGND

GOUT VH

5

S TGAP 2S iCS C

VL_LS R1 0
VH_LS

G_LS
R3 22 R5
22

VH_LS

Q1 2S TF1360

R4 1 12 2

8.2/2W

R7

1

2

12

6.8/2W

3

1

2S TF2550

Q2

4

2

VL_LS

GND_HS S IG-_HS
S IG+_HS P WM_HS

VDD_ DRIVE R R15

3 0 Ohm@ 1 0 0 MHz

1

2

F 30

100nF

C19

C20

1 uF /2 5 V

TP 10 5000

100 R19 100

C22 220pF

TP 13 5000

C28 220pF

2

1

1nF C21

U2

1

8

2 VDD GNDIS O 7

3 4

IN+ IN-

CLAMP GOUT

6 5

GND

VH

S TGAP 2S iCS C

VL_HS R14 0

G_HS
R16 22 R18 22

VH_HS

VH_HS

Q3 2S TF1360

R17 1 12 2

8.2/2W

R20 1 12 2

6.8/2W

3

1

2S TF2550

Q4

4

2

VL_HS

TP 3 5000

R8 N.M.

R9

R10

D1

N.M.

47k

TZMB20-GS 08

D2 TZMB3V3-GS 08

C14 N.M.

G_LS

G_LS

S _LS S _LS

R11 N.M.

R12

R13

D3

N.M.

47k

TZMB20-GS 08

D4 TZMB3V3-GS 08

C15 N.M.

TP 12 5000

R21 N.M.

R22

R23

D5

N.M.

47k

TZMB20-GS 08

D6 TZMB3V3-GS 08

C29 N.M.

VDD_ DRIVE R

GND

VDD_12V

GND

G_HS

G_HS

JP1 1
1
NM JP2
11
NM JP3
1 1
NM JP4
1 1
NM

S _HS

S _HS

R24 N.M.

R25

R26

D7

N.M.

47k

TZMB20-GS 08

D8 TZMB3V3-GS 08

C30 N.M.

S IG+_LS S IG-_LS S IG+_HS S IG-_HS

JP5 1
1
NM JP6
11
NM JP7
1 1
NM JP8
1 1
NM

JP9 1
1 J P 10 NM
11 NM
JP11 1
1 J P 12NM
1 1
NM JP13
1 1 J P 14NM
1 1
NM JP15
11 J P 16NM
1 1
NM

G_HS S _HS
G_LS S _LS

Figure 76. STDES-DABBIDIR – driver board for half bridge circuit schematic (1 of 1)

VDD_ DRIVE R VDD_12V
GND

VDD_ DRIVE R VDD_12V

VDD_12V

F2

1

2

0
3 0 Ohm@ 1 0 0 MHz

2

C12 2.2uF

1

2

1

2

DC1

2 1

VINVIN+

7

+VOUT
COM -VOUT

6 5

R12P 22005D

1

L1
C13 22uH 470nF

TP 1 5000

VH_LS

1

1

C6 22uF

2

2

C5 2.2uF

C4 0.1uF

TP 4 5000

S _LS

1

1

C11 22uF

C9 2.2uF

C10 0.1uF

2

2

TP 7 5000

VL_LS

TP 8 5000

VH_HS

1

1

VDD_12V

C26 2.2uF

1

DC2

2

1

VINVIN+

7

+VOUT 6

COM -VOUT

5

R12P 22005D

1

L2
C27 22uH 470nF

1

2

2

2

F4

1

2

0

3 0 Ohm@ 1 0 0 MHz

C17 22uF

2

C16 2.2uF

C18 0.1uF

2

TP 9 5000

S _HS

1

1

C23 22uF

2

C24 2.2uF

C25 0.1uF

2

TP 14 5000

VL_HS

TP 5 5000
TP 11 5000

P WM_LS S IG+_LS
S IG-_LS GND_LS

VDD_ DRIVE R

3 0 Ohm@ 1 0 0 MHz

1

2

F1 0

100nF

1

1nF

C1

C2

C3

2

1 uF /2 5 V

TP 2 5000 R2

100 R6 100

C7 220pF

TP 6 5000

C8 220pF

U1

1

8

2 3

VDD IN+

GNDIS O CLAMP

7 6

4

INGND

GOUT VH

5

S TGAP 2S iCS C

VL_LS R1 0
VH_LS

G_LS
R3 22 R5
22

VH_LS

Q1 2S TF1360

R4

1

2

12

8.2/2W

R7

1

2

12

6.8/2W

3

1

2S TF2550

Q2

4

2

VL_LS

GND_HS S IG-_HS
S IG+_HS P WM_HS

VDD_ DRIVE R R15

3 0 Ohm@ 1 0 0 MHz

1

2

F 30

100nF

C19

C20

1 uF /2 5 V

TP 10 5000

100 R19 100

C22 220pF

TP 13 5000

C28 220pF

2

1

1nF C21

U2

1

8

2 VDD GNDIS O 7

3 4

IN+ IN-

CLAMP GOUT

6 5

GND

VH

S TGAP 2S iCS C

VL_HS R14 0

G_HS
R16 22 R18 22

VH_HS

VH_HS

Q3 2S TF1360

R17 1 12 2

8.2/2W

R20 1 12 2

6.8/2W

3

1

2S TF2550

Q4

4

2

VL_HS

TP 3 5000

R8 N.M.

R9

R10

D1

N.M.

47k

TZMB20-GS 08

D2 TZMB3V3-GS 08

C14 N.M.

G_LS

G_LS

S _LS S _LS

R11 N.M.

R12

R13

D3

N.M.

47k

TZMB20-GS 08

D4 TZMB3V3-GS 08

C15 N.M.

TP 12 5000

R21 N.M.

R22

R23

D5

N.M.

47k

TZMB20-GS 08

D6 TZMB3V3-GS 08

C29 N.M.

VDD_ DRIVE R

GND

VDD_12V

GND

G_HS

G_HS

JP1 1
1
NM JP2
11
NM JP3
1 1
NM JP4
1 1
NM

S _HS

S _HS

R24 N.M.

R25

R26

D7

N.M.

47k

TZMB20-GS 08

D8 TZMB3V3-GS 08

C30 N.M.

S IG+_LS S IG-_LS S IG+_HS S IG-_HS

JP5 1
1
NM JP6
11
NM JP7
1 1
NM JP8
1 1
NM

JP9 1
1 J P 10 NM
1 1
NM JP11
11 J P 12NM
1 1
NM JP13
1 1 J P 14NM
1 1
NM JP15
11 J P 16NM
1 1
NM

G_HS S _HS
G_LS S _LS

UM3198
Schematic diagrams

page 62/83

UM3198 – Rev 1

Figure 77. STDES-DABBIDIR – control board circuit schematic

TP 1 Te s tP o in t

VH S X HS

1

1

1

VDD_ 1 2 V

C9 2 .2 u F

2

FB2

1

2

3 0 Oh m @ 1 0 0 MHz

1

2

1

1

2 1
L1 22uH C13 4 7 0 n F/5 0 V

DC1 7
+VOUT 6 COM 5
-VO UT

VINVIN+

R12P22005D

2

0

2

1

2

C4 2 .2 u F

C5 2 .2 u F

2

1

C10 2 .2 u F

C11 2 .2 u F

2

2

1

2

C6 100nF C12 100nF

TP 4 Te s tP o in t

S S X HS

TP 7 Te s tP o in t

VL S X HS

TP 8 Te s tP o in t
VH S X LS

1

1

1

VDD_ 1 2 V

DC2

7 +VOUT 6
COM 5 -VO UT

2

1

VIN0 VIN+

0
R12P22005D

1

1

1

C25 2 .2 u F

2

FB4

1

2

3 0 Oh m @ 1 0 0 MHz

2

2

L2

C26

22uH

4 7 0 n F/5 0 V

2

1

2

C15 2 .2 u F

C16 2 .2 u F

C17 100nF

2

2

1

1

C24 2 .2 u F

2

C23 2 .2 u F

2

C22 100nF

TP 9 Te s tP o in t

S S X LS

TP 1 4 Te s tP o in t
VL S X LS

TP 5 Te s tP o in t

VDD_ DR IVER

FB1

1

2

1

3 0 Oh m @ 1 0 0 MHz C1

1uF

1

1

C2 100nF

C3 1 n F/5 0 V

2

2

2

P WM S X HS S IG+ S X0 HS0
S IG- S X HS GND S X HS

2

R2 100
R6 100

2

1

TP 2 Te s tP o in t

C7 2 2 0 p F/5 0 V

TP 6 Te s tP o in t

1

C8 2 2 0 p F/5 0 V

U1

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

VL S X HS

R1 0

R3 22

G S X HS

VH S X HS

R5 22

VH S X HS

Q1 2 S TF1 3 6 0

R4

1

2

12

6 .8 /2 W

R7

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q2

4

2

VL S X HS

TP 3 Te s tP o in t

R8 N.M.

R9

N.M.

R10

D1

47k

TZMB2 0 -GS 0 8

D2 TZMB3 V3 -GS 0 8

C14 N.M.

G S X HS

G S X HS

S S X HS S S X HS

TP 1 1 Te s tP o in t

2

0
S IG+ S X LS P WM S X LS GND S X LS S IG- S X LS

VDD_ DR IVER

FB3

1

2

3 0 Oh m @ 1 0 0 MHz

1

C19

1uF

2

1

2

1

C18 100nF

C20 1 n F/5 0 V

2

TP 1 0 Te s tP o in t R12

1

100 R18

2

C21 2 2 0 p F/5 0 V
TP 1 3 Te s tP o in t

U2

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

1

100

C27

2 2 0 p F/5 0 V

VL S X LS R11

1

2

12

0 R13 22

G S X LS

R15 22 VH S X LS

VH S X LS

Q3 2 S TF1 3 6 0

R14

1

2

12

6 .8 /2 W

R16

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q4

4

2

VL S X LS

TP 1 2 Te s tP o in t

R17 N.M.

R19

N.M.

R20

D3

47k

TZMB2 0 -GS 0 8

D4 TZMB3 V3 -GS 0 8

C28 N.M.

G S X LS G S X LS

S S X LS

S S X LS

VDD DR IVER VDD 1 2 V

JP1 1
1
N.M. JP2
1 1
N.M. JP3
1 1
N.M. JP4
1 1
N.M.

S IG+ S X HS S IG- S X HS
S IG+ S X LS S IG- S X LS
S IG+ DX LS S IG- DX LS
S IG+ DX HS S IG- DX HS

P WM S X HS GND S X HS
P WM S X LS GND S X LS P WM DX LS GND DX LS P WM DX HS GND DX HS

JP5 1
1 N.M.
JP6 1
1 N.M.
JP7 1
1 N.M.
JP8 1
1 N.M.
JP9 1
1 N.M.
JP10 1
1 N.M.
JP11 1
1 N.M.
JP12 1
1 N.M.

JP13 1
1
N.M. JP14
1 1
N.M.
JP15 1
1
N.M. JP16
1 1
N.M.
JP17 1
1
N.M. JP18
1 1
N.M.
JP19 1
1
N.M. JP20
1 1
N.M.

G S X HS S S X HS
G DX HS S DX HS G S X LS S S X LS G DX LS S DX LS

VDD DR IVER VDD 1 2 V
GND

VDD DR IVER VDD 1 2 V

TP 1 5 Te s tP o in t

VH DX HS

0

VDD_ 1 2 V

C36 2 .2 u F

1

C40 4 7 0 n F/5 0 V

1

DC3 7
+VOUT 6 COM 5
-VO UT 2 1 VIN-
VIN+
R12P22005D
L3 22uH

1

2

2

2

FB6

1

2

3 0 Oh m @ 1 0 0 MHz

2

1

2

1

1

1

C29 2 .2 u F

2

C30 2 .2 u F

2

C31 100nF
TP 1 6 Te s tP o in t
S DX HS

1

1

C37 2 .2 u F

2

C39 2 .2 u F

2

C38 100nF
TP 2 1 Te s tP o in t
VL DX HS

0

0

TP 2 2 Te s tP o in t

VH DX LS

1

1

1

VDD_ 1 2 V

C52 2 .2 u F

2

FB8

1

2

3 0 Oh m @ 1 0 0 MHz

1

2

1

2

1

DC4 7
+VOUT 6 COM 5
-VO UT 2 1 VIN-
VIN+
R12P22005D
L4 22uH
C54 4 7 0 n F/5 0 V

2

1

2

C43 2 .2 u F

C44 2 .2 u F

C45 100nF

2

2

TP 2 3 Te s tP o in t

S DX LS

1

1

C50 2 .2 u F

2

C51 2 .2 u F

2

C53 100nF

TP 2 8 Te s tP o in t

VL DX LS

TP 1 8 Te s tP o in t

VDD_ DR IVER

FB5

1

2

0

0

3 0 Oh m @ 1 0 0 MHz

1

0

0

C32

1uF

1

1

C33 100nF

C34 1 n F/5 0 V

2

2

2

P WM DX HS S IG+ DX HS
S IG- DX HS GND DX HS
0 0

2

R22 100
R27 100

2

1

TP 1 7 Te s tP o in t

C35 2 2 0 p F/5 0 V

TP 2 0 Te s tP o in t

1

C41 2 2 0 p F/5 0 V

U3

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

VL DX HS R21 0 G DX HS R23 22
R25 22
VH DX HS

VH DX HS

Q5 2 S TF1 3 6 0

R24

1

2

12

6 .8 /2 W

R26

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q6

4

2

VL DX HS

TP 1 9 Te s tP o in t

R28 N.M.

R29

N.M.

R30

D5

47k

TZMB2 0 -GS 0 8

C42

D6

N.M.

TZMB3 V3 -GS 0 8

G DX HS G DX HS
S DX HS S DX HS

2

TP 2 6 Te s tP o in t

S IG+ DX LS P WM DX LS
GND DX LS S IG- DX LS

VDD_ DR IVER

FB7

1

2

1

3 0 Oh m @ 1 0 0 MHz C46
1uF

1

C47 100nF

1

C48 1 n F/5 0 V

2

2

2

R32 100
R40 100

1

1

2

TP 2 4 Te s tP o in t

C49 2 2 0 p F/5 0 V

U4

1

8

2 VDD GNDISO 7

3 IN+ CLAMP 6

4 IN- GOUT 5

GND VH

S TGAP 2 S iC S C

TP 2 7 Te s tP o in t

C55 2 2 0 p F/5 0 V

VL DX LS R31 0 G DX LS R33 22
R35 22
VH DX LS

VH DX LS

Q7 2 S TF1 3 6 0

R34

1

2

12

6 .8 /2 W

R36

1

2

12

4 .7 /2 W

3

1

2 S TF2 5 5 0

Q8

4

2

VL DX LS

TP 2 5 Te s tP o in t

R37 N.M.

R38

N.M.

R39

D7

47k

TZMB2 0 -GS 0 8

D8 TZMB3 V3 -GS 0 8

C56 N.M.

G DX LS G DX LS

S DX LS

S DX LS

UM3198
Schematic diagrams

page 63/83

UM3198
Bill of materials

10

Bill of materials

Item 1 2 3 4

Q.ty 1 1 2 1

Table 28. STDES-DABBIDIR bill of materials

Ref.

Part/value

Table 29. Main

board bill of

materials

Table 30. Driver

board for full bridge bill of

materials

Table 31. Driver

board for half bridge bill of

materials

Table 32. STDE S-DABBIDIR control board

Description Manufacturer

Order code

Main board

ST

Not available for separate sale

Driver board for full bridge

ST

Not available for separate sale

Driver board for half bridge

ST

Control board ST

Not available for separate sale
Not available for separate sale

Item 1 2 3 4 5 6
7 8

Q.ty 5 3 15 2 3 16
14 2

Table 29. Main board bill of materials

Ref.

Part/value

C1 C4 C6 C7 C9

33uF/25V

C2 C5 C10

470nF/25V

C3 C8 C23 C25 C29 C30 C38 C40 C41 C43 C47 C49 C56 C58 C60

1uF/25V

C11 C12

25uF

C14 C15 C16 40uF

C24 C26 C28 C31 C32 C39 C42 C44 C46 C50 C52 C57 C59 C66 C67 C68
C27 C34 C35 C37 C45 C48 C53 C55 C61 C62 C63 C64 C65 C76

100nF/25V N.M.

C33 C51

4.7uF/25V

Description Manufacturer

Order code

Cap Pol Radial (Electrolytic); 6.60 mm X 6.60 mm X 5.50 mm H body

WURTH

865230443004

CAPACITOR CERAMIC SMD WURTH 0603

885012206075

CAPACITOR CERAMIC SMD WURTH 0603

885012206076

WCAP-FTDB

DC-Link Capacitor,32.5m

WURTH

m,25uF

WCAP-FTDB

DC-Link Capacitor,32.5m

WURTH

m,40uF

890744428006CS 890764428004CS

CAPACITOR CERAMIC SMD WURTH 0603

885012206071

CAPACITOR CERAMIC SMD ANY 0603
CAPACITOR CERAMIC SMD WURTH 0603

ANY 885012106012

UM3198 – Rev 1

page 64/83

UM3198
Bill of materials

Item 9 10 11 12 13 14 15 16
17
18 19 20
21

Q.ty 2 3 3 7 4 5 3 16
6
1 2 8
52

Ref.

Part/value

Description Manufacturer

Order code

C36 C54

1nF/16V

CAPACITOR CERAMIC SMD WURTH 0603

885012006029

C171 C173 C175

100nF 25V

CAPACITOR CERAMIC SMD 0603

Würth Elektronik

885012206071R

C172 C174 C176

1uF 25V

CAPACITOR CERAMIC SMD 0603

Würth Elektronik

885012206076

C177 C178

C179 C180 C181 C182

1uF

C187

CAPACITOR CERAMIC SMD WURTH 2220

885342214001

C183 C184 C185 C186

100nF

CAPACITOR CERAMIC SMD WURTH 2220

885342214173

D1 D2 D3 D4 D7

Led Green

LED GREEN CLEAR 0805 SMD

Wurth

150080YS75000

D5 D6 D8

LED_Yellow

LED YELLOW CLEAR 0805 SMD

Wurth

150080GS75000

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

30Ohm@100M Hz

FERRITE BEAD 30 OHM 0805 WURTH 1LN

742792030

FAN1 FAN2 FAN3 FAN4 FAN5 FAN6

109P0412G301 3

Sanyo Denki 109P Series Axial Fan, 12 V dc, DC Operation, 25.1m³/h, 3.72W, 40 x 40 x 28mm

Sanyo Denki

109P0412G3013

SK 56 100 AL |

HS1

SK_56_100_AL FISCHER

fischerelektronik SK 56 100 AL

ELEKTRONIK

J1 J2

Dev3

SWITCH SLIDE SPDT 500MA WURTH 12V

450301014042

J3 J4 J5 J6 J7 SOLDER

J8 J9 J10

JUMPER3

TIN DROP JUMPER 0603 3pin

J11 J12 J13 J14

J15 J16 J17 J18

J19 J20 J21 J22

J23 J24 J25 J26

J27 J28 J29 J30

J31 J32 J33 J34 J35 J36 J50 J51 J52 J53 J54 J55

6061-0-00-15-0 0-00-03-0

J56 J57 J58 J59

J60 J61 J62 J63

J64 J65 J66 J67

J68 J69 J70 J71

J72 J73 J74 J75

Circuit Board Hardware – PCB RECPT. GOLD/ Mill-Max NICKEL .106 IN. PRESSFIT

6061-0-00-15-00-00-03-0

UM3198 – Rev 1

page 65/83

UM3198
Bill of materials

Item 22 23 24 25 26 27 28 29 30 31 32 33 34
35
36 37

Q.ty 8 2 2 3 1 1 1 1 7 7 2 1 3
14
3 4

Ref.

Part/value

Description Manufacturer

Order code

J37 J38 J39 J40 J41 J42 J45 J46

74651195

Power to the Board 10MM 40A SOLDER SCREW M4

WURTH

74651195

J47 J76

Con2

CONN TERM BLOCK 2POS 5.08MM PCB

Wurth

691213510002

JP1 JP2

Con2

CONN TERM BLOCK 2POS 5.08MM PCB

Wurth

691213510002

L30 L31 L32

22Ohm@100M Hz

Würth Elektronik

742792021

LEM1

CASR 15-NP

SENSOR CURRENT HALL 15A AC/DC

LEM USA Inc. CASR 15-NP

LEM2

CASR 50-NP

SENSOR CURRENT HALL 15A AC/DC

LEM USA Inc. CASR 50-NP

Connector Erni

P1

CON64AB

284166 32X2 ERNI

284166

female

Q1

STS6NF20V, SO-8

MOSFET N-CH 20V 6A 8SOIC

ST

STS6NF20V

R1 R2 R3 R4 R5 R6 R7

5.6k

CHIP RESISTOR SMD 1% 1/4W 1206

ANY

ANY

R8 R23 R28 R38 R55 R56 R58

N.M.

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

R9 R15

10K-0.1%

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP

R10

4.12K-0.1%

RESISTOR SMD 1% 1/10W

ANY

ANY

0603

R11 R13 R16 3.9M

CHIP RESISTOR SMD 1% 1/4W 1206

ANY

ANY

R12 R18 R20 R22 R25 R31 R35 R41 R43 0 R45 R48 R50 R53 R54

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

R14 R32 R49 100

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

R17 R27 R40 R47

3K

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

UM3198 – Rev 1

page 66/83

UM3198
Bill of materials

Item 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Q.ty 1 4 1 1 1 1 3 1 2 3 1 1 1 1

Ref. R19 R21 R26 R42 R46 R24 R29 R30 R33 R34 R37 R39 R36 R44 R64 R51 R52 R57 R59 R60 R61 R62

Part/value 1.65K-0.1% 1.8K 22K 20K-0.1% 4.22K-0.1% 13.7K-0.1% 3.6M 13K-0.1% 33K 0 470 5.6k 5.1k 22

Description Manufacturer

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/4W 1206

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

ANY

Order code

UM3198 – Rev 1

page 67/83

UM3198
Bill of materials

Item 52 53 54 55 56 57 58 59 60 61 62
63
64 65

Q.ty 1 1 3 3 3 3 3 3 6 1 1
22
4 8

Ref.
R63
R66
R108 R119 R125
R110 R120 R126
R111 R121 R127
R114 R122 R128
R117 R123 R129
R118 R124 R130
R131 R132 R133 R134 R135 R136
T1
T2
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15 TP16 TP17 TP18 TP19 TP20 TP21 TP22 TP23 TP24 TP25 TP26 TP27 TP28 TP29 TP30 TP31 TP32 TP33 TP34

Part/value

Description Manufacturer

Order code

CHIP

10k

RESISTOR SMD 1% 1/10W

ANY

ANY

0603

CHIP

1

RESISTOR

ANY

ANY

SMD 2512

CHIP

1k

RESISTOR SMD 1% 1/10W

0603

1.07k-0.1%

CHIP RESISTOR SMD 1% 1/10W 0603

910R-0.1%

CHIP RESISTOR SMD 0.1% 1/10W 0603

5.76k-0.1%

CHIP RESISTOR SMD 1% 1/10W 0603

1.5k-0.1%

CHIP RESISTOR SMD 0.1% 1/10W 0603

680-0.1%

CHIP RESISTOR SMD 0.1% 1/10W 0603

CHIP

0

RESISTOR SMD 0.1%

1/10W 0603

Coilcraft-

Tranf,Radio

CST3015-100E 1:100,80A

Coilcraft

CST3015-100E

Frenetic_3201104

TestPoint_Ring TestPoint RIng ANY

ANY

TestPoint_Ring TestPoint RIng ANY
TESTPOINT_1 MM

ANY

UM3198 – Rev 1

page 68/83

UM3198
Bill of materials

Item 66
67
68
69 70 71 72 73 74 75 76 77 78

Q.ty 9
25
19
1 2 2 2 2 3 2 1 2 1

Ref.

Part/value

Description Manufacturer

Order code

TP42 TP43 TP44 TP45 TP46 TP47 TP63 TP64 TP65

TestPoint_Ring

Polo terminale RS Pro, diam. foro 1mm, Bronzo fosforoso

ANY

ANY

TP48 TP49 TP50 TP51 TP52 TP53 TP54 TP55 TP56 TP57 TP58 TP59 TP60 TP61 TP62 TP66 TP67 TP68 TP69 TP70 TP71 TP72 TP73 TP74 TP75

TEST POINT

PC TEST POINT NATURAL

Harwin Inc.

S1751-46R

TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW9 TW10 TW11 TW12 TW13 TW14 TW15 TW16 TW17 TW18 TW19

M3 HOLE NOT PLATED

Mounting Hole M3 not plated Pan Head

U1

LD29080DT50R , DPAK

IC REG LINEAR 5V 800MA DPAK

ST

LD29080DT50R

U10 U13

TL431ACL3T, SOT23

IC VREF SHUNT ADJ SOT23-3

ST

TL431ACL3T

U11 U20

1779205141

DC DC CONVERTER 5V 1W

WURTH

1779205141

U12 U7

TSV911ILT, SOT23-5L

IC OPAMP GP

8MHZ RRO

ST

SOT23-5

TSV911ILT

U14 U8

AMC1311QDW IC ISOLATION Texas

VRQ1

8SOIC

Instruments

AMC1311QDWVRQ1

U15 U17 U9

TSV912IDT, SO-8

IC OPAMP GP

8MHZ RRO

ST

8SO

TSV912IDT

U2 U3

LDL1117S33R, SOT-223

IC REG LINEAR 3.3V ST 800MA SOT223

LDL1117S33R

ACEPACKTM 2

U4

A2F12M12W2- ­ Full-bridge F1, ACEPACK 2 1200V, 12mO

ST

A2F12M12W2-F1

SiC

U5 U6

A2H6M12W3

ACEPACKTM 2 –

Half-bridge –

1200V, 6mO

ST

SiC MOSFET

Gen2 and NTC

A2H6M12W3

U18

TLVH431AIL3T, SOT23

IC VREF SHUNT ADJ SOT23-3

ST

TLVH431AIL3T

UM3198 – Rev 1

page 69/83

UM3198
Bill of materials

Item 79 80 81 82 83 84

Q.ty 1 3 3 8 8 8

Ref.
U19
U27 U30 U32
U29 U31 U33
W35 W36 W37 W38 W39 W40 W41 W42 W43 W56 W57 W58 W59 W60 W61 W62 W45 W46 W47 W48 W50 W53 W54 W55

Part/value

Description

STLM20W87F, SOT323-5L

SENS TEMP ANLG VOLT SOT-323-5

TSV911IYLT, SOT23-5L

IC OPAMP GP 8MHZ RRO SOT23-5

TLVH431AIL3T, SOT23

IC VREF SHUNT ADJ SOT23-3

HEX NUT M3 HEX NUT M3

HEX STANDOFF M3

HEX STANDOFF M3X0.5 STEEL 50MM

HEX NUT M5 HEX NUT M5

Manufacturer ST ST ST ANY WURTH ANY

Order code STLM20W87F TSV911IYLT TLVH431AIL3T
971500321

Item 1 2 3
4
5 6 7 8 9

Q.ty 4 12 4
20
8 4 4 4 4

Table 30. Driver board for full bridge bill of materials

Ref.

Part/value

C1 C19 C32 C46

0603 (1608 Metric)

C2 C6 C12 C17 C18 C22 C31 C33 C38 C45 C47 C53

0603 (1608 Metric)

C3 C20 C34 C48

0603 (1608 Metric)

C4 C5 C9 C10 C11 C15 C16 C23 C24 C25 C29 C30 C36 C37 C39 C43 C44 C50 C51 C52

0805 (2012 Metric)

C7 C8 C21 C27 C35 C41 C49 C55

0603 (1608 Metric)

C13 C26 C40 C54

0805 (2012 Metric)

C14 C28 C42 C56 D1 D3 D5 D7
D2 D4 D6 D8

DO-213AC, MINI-MELF, SOD-80
DO-213AC, MINI-MELF, SOD-80

Description Manufacturer

Order code

CAPACITOR CERAMIC SMD 0603

Wurth Electronics Inc.

885012206076

CAPACITOR CERAMIC SMD 0603

Wurth Electronics Inc.

885012206095

CAPACITOR CERAMIC SMD 0603

Wurth Electronics Inc.

885012006063

CAPACITOR CERAMIC SMD 0805

Wurth Electronics Inc.

885012207079

CAPACITOR CERAMIC SMD 0603

Wurth Electronics Inc.

CAPACITOR CERAMIC SMD 0805

Wurth Electronics Inc.

885012006059 885012207102

N.M.

ANY

DIODE ZENER Vishay

20V 500MW

Semiconductor TZMB20-GS08

SOD80

Diodes Division

DIODE ZENER Vishay

3.3V 500MW Semiconductor TZMB3V3-GS08

SOD80

Diodes Division

UM3198 – Rev 1

page 70/83

UM3198
Bill of materials

Item 10 11
12
13 14 15 16 17 18 19 20 21 22 23

Q.ty 4 8
20
4 4 4 3 8 8 4 4 8 4 1

Ref.
DC1 DC2 DC3 DC4
FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8
JP1 JP2 JP3 JP4 JP5 JP6 JP7 JP8 JP9 JP10 JP11 JP12 JP13 JP14 JP15 JP16 JP17 JP18 JP19 JP20

Part/value
0.77″ L x 0.39″ W x 0.49″ H (19.5mm x 9.8mm x 12.5mm)
0805 (2012 Metric)

L1 L2 L3 L4

0805 (2012 Metric)

Q1 Q3 Q5 Q7 Q2 Q4 Q6 Q8

TO-243AA, SOT-89
TO-243AA, SOT-89

R1 R21 R31

1210 (3225 Metric)

R2 R6 R12 R18 R22 R27 R32 R40

0603 (1608 Metric)

R3 R5 R13 R15 R23 R25 R33 R35

1210 (3225 Metric)

R4 R14 R24 R34

2512 (6332 metric)

R7 R16 R26 R36

2512 (6332 metric)

R8 R9 R17 R19 R28 R29 R37 R38

0603 (1608 Metric)

R10 R20 R30 R39

0603 (1608 Metric)

R11

1206 (3216 Metric)

Description Manufacturer

Order code

CONV DC/DC 2W 12VIN +20/-5VOUT T

Recom Power

R12P22005D

FERRITE BEAD 30 OHM 0805 1LN

Wurth Electronics Inc.

74279206

IC & Component Sockets .060″ Dia St Pins

Mill-Max

3560-1-00-15-00-00-03-0

FIXED IND 22UH 130MA 3.7 OHM SMD

Taiyo Yuden

TRANS NPN 60V 3A SOT-89

ST

TRANS PNP 50V 5A SOT 89

ST

CHIP RESISTOR SMD

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

CHIP RESISTOR SMD

ANY

CHIP RESISTOR SMD

ANY

CHIP RESISTOR SMD

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

CHIP RESISTOR SMD 1% 1/10W 0603

ANY

CHIP RESISTOR SMD 5% 1/4W 1206

ANY

LBC2012T220M 2STF1360 2STF2550 ANY ANY ANY ANY ANY ANY
ANY
ANY

UM3198 – Rev 1

page 71/83

UM3198
Bill of materials

Item 24 25

Q.ty 28 4

Ref.
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15 TP16 TP17 TP18 TP19 TP20 TP21 TP22 TP23 TP24 TP25 TP26 TP27 TP28
U1 U2 U3 U4

Part/value

Description Manufacturer

Order code

0.100″ Dia x 0.180″ L (2.54mm x 4.57mm)

TEST POINT PC MINI .040″D ANY RED

ANY

Galvanically

8-SOIC (0.295″, isolated 4 A

7.50mm Width), single gate

ST

SO 8 WIDE 300 driver for SiC

MOSFETs

STGAP2SICSC

Item 1
2
3 4 5 6 7 8 9

Q.ty 2
2
1 4 6 4 4 2 4

Table 31. Driver board for half bridge bill of materials

Ref.

Part/value

C1 C19

0603 (1608 Metric)

C2 C20

0603 (1608 Metric)

C3

0603 (1608 Metric)

C4 C10 C18 C25

0603 (1608 Metric)

C5 C9 C12 C16 0805 (2012

C24 C26

Metric)

C6 C11 C17 C23

1210 (3225 Metric)

C7 C8 C22 C28

0603 (1608 Metric)

C13 C27
C14 C15 C29 C30

0805 (2012 Metric)

Description Manufacturer

Order code

CAPACITOR CERAMIC SMD 0603 (MLCC) GRM 1µF, ±10%, 25V cc, SMD

Wurth Electronics Inc.

885012206076

CAPACITOR CERAMIC SMD 0603 (MLCC) GRM 100nF, ±10%, 25V cc, SMD

Wurth Electronics Inc.

885012206071

CAPACITOR CERAMIC SMD 0603 (MLCC) C 1nF, ±10%, 25V cc, SMD

Wurth Electronics Inc.

885012006044

CAP CER 0.1UF 50V X7R 0603

Wurth Electronics Inc.

885012206095

CAP CER 2.2UF 50V X7R 0805

Wurth Electronics Inc.

885012207079

CAP CER 22UF Würth 25V X5R 1210 Elektronik

885012109014

CAPACITOR CERAMIC SMD 0603 (MLCC) C 220pF, ±5%, 1kV cc, SMD

Wurth Electronics Inc.

885012006059

CAPACITOR CERAMIC SMD 0805

Wurth Electronics Inc.

885012207102

N.M.

ANY

UM3198 – Rev 1

page 72/83

UM3198
Bill of materials

Item 10
12 13 14
15
16 17 18 19 20 21 22 23 24 25

Q.ty 1 4 4 2 4
16
2 2 2 2 4 4 2 2 8 4

Ref.

Part/value

C21

0603 (1608 Metric)

D1 D3 D5 D7
D2 D4 D6 D8
DC1 DC2
F1 F2 F3 F4 JP1 JP2 JP3 JP4 JP5 JP6 JP7 JP8 JP9 JP10 JP11 JP12 JP13 JP14 JP15 JP16 L1 L2
Q1 Q3 Q2 Q4
R1 R14

DO-213AC, MINI-MELF, SOD-80 DO-213AC, MINI-MELF, SOD-80 0.77″ L x 0.39″ W x 0.49″ H (19.5mm x 9.8mm x 12.5mm)
0805 (2012 Metric)
0805 (2012 Metric)
TO-243AA, SOT-89 TO-243AA, SOT-89
1210 (3225 Metric)

R2 R6 R15 R19

R3 R5 R16 R18

1210 (3225 Metric)

R4 R17

2512 (6332 metric)

R7 R20

2512 (6332 metric)

R8 R9 R11 R12 R21 R22 R24 R25

R10 R13 R23 R26

0603 (1608 Metric)

Description Manufacturer

Order code

CAPACITOR CERAMIC SMD 0603 (MLCC) C 1nF, ±10%, 25V cc, SMD

Wurth Electronics Inc.

885012006044

DIODE ZENER Vishay

20V 500MW

Semiconductor TZMB20-GS08

SOD80

Diodes Division

DIODE ZENER Vishay

3.3V 500MW Semiconductor TZMB3V3-GS08

SOD80

Diodes Division

CONV DC/DC 2W 12VIN +20/-5VOUT T

RECOM

R12P22005D

FERRITE BEAD 30 OHM 0805 1LN

Wurth Electronics Inc.

742792030

IC & Component Sockets .060″ Dia St Pins

Mill-Max

3560-1-00-15-00-00-03-0

FIXED IND 22UH 130MA 3.7 OHM SMD

Taiyo Yuden

TRANS NPN 60V 3A SOT-89

ST

TRANS PNP 50V 5A SOT 89

ST

CHIP RESISTOR SMD

Resistore SMD Bourns 100O ±1%, 0,1W, 0603, serie CR0603

ANY

CHIP RESISTOR SMD

CHIP RESISTOR SMD

CHIP RESISTOR SMD

N.M.

N.M.

CHIP RESISTOR SMD 1% 1/10W 0603

LBC2012T220M 2STF1360 2STF2550 ANY
N.M.

UM3198 – Rev 1

page 73/83

UM3198
Bill of materials

Item 26 27

Q.ty 14 2

Ref.
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14
U1 U2

Part/value

Description Manufacturer

Order code

0.100″ Dia x 0.180″ L (2.54mm x 4.57mm)

TEST POINT PC MINI .040″D ANY RED

ANY

Galvanically

8-SOIC (0.295″, isolated 4 A

7.50mm Width), single gate

ST

SO 8 WIDE 300 driver for SiC

MOSFETs

STGAP2SICSC

Item 1
2
3
4
5 6 7 8 9 10 11 12

Q.ty 1
20
7
17
1 1 3 1 7 2 1 5

Table 32. STDES-DABBIDIR control board

Ref.

Value

Description Manufacturer

Order code

CN56

Jtag_SWD_Ada pter

10 Way, 2 Row, Vertical Pin Header

Wurth

62201021121

C3,C6,C7,C28, C34,C36,C37,C 45,C48,C49,C5 1,C52,C53,C55, C59,C61,C62,C 65,C66,C134

100nF

Multilayer Ceramic Capacitor MLCC

Wurth

885012206046

C2,C27,C35,C4 7,C50,C58,C64

1uF

Multilayer Ceramic Capacitor MLCC

Wurth

885012206076

C11,C12,C13,C 14,C20,C21,C2 2,C24,C30,C31, C32,C33,C38,C 40,C42,C43,C1 40

100pF

Multilayer Ceramic Capacitor MLCC

Wurth

885012006057

C135

220nF

Multilayer Ceramic Capacitor MLCC

ANY

ANY

Multilayer

C18

470nF

Ceramic Capacitor

Wurth

885012207102

MLCC

C15,C23,C29 2.2nF

Multilayer Ceramic Capacitor MLCC

KEMET

C0603C222J5GACTU

C133

10uF

Multilayer Ceramic Capacitor MLCC

ANY

ANY

D2,D4,D5,D9,D 12,D13,D15

GREEN

Green LED

Wurth

150080GS75000

D3,D10

SMAJ5.0A-TR, SMA

Uni-Directional TVS Diode,

ST

SMAJ5.0A-TR

D7

RED

Red LED

Wurth

150080RS75000

F1,F2,F3,F4,F5

22Ohm@100M Hz

Ferrite Beads

Wurth

742792021

UM3198 – Rev 1

page 74/83

UM3198
Bill of materials

Item 13 14 15 16 17 18 19 20
21
22 23 24
25
26 27

Q.ty 2 1 1 2 1 1 1 13
36
10 7 2
26
1 5

Ref. JP1,JP7 JP2
J1

Value 3JP_pcb STRIP_2X3
i2C

J2,J3

CON4

LED1

SMTL4-SBC

L1

WE-CBF

P1

CON 64 male

R2,R4,R5,R8,R

10,R13,R16,R1 9,R44,R125,R1

10k

28,R129,R130

R6,R7,R9,R12, R14,R15,R20,R 21,R22,R24,R2 5,R26,R27,R28, R29,R31,R33,R 34,R36,R38,R4 0,R41,R42,R43, R47,R48,R49,R 52,R54,R55,R5 7,R58,R59,R60, R61,R62

N.M.

R17,R39,R45,R

46,R50,R51,R5 3,R56,R131,R1

1k

33

R23,R30,R35,R 126,R127,R134, 0 R135

S1,S2

te_fsm4jsma

TP1,TP2,TP3,T P4,TP5,TP6,TP 7,TP8,TP9,TP1 0,TP11,TP12,T P13,TP14,TP15 ,TP16,TP17,TP 18,TP19,TP20, TP21,TP22,TP2 4,TP25,TP26,T P27

TestPoint

USB2

microUSB

U2,U5,U6,U9,U TSV912IDT,

10

SO-8

Description
Solder Jumper Selector
Solder Jumper Selector
4 Way, 1 Row, Straight Pin Header
4 Way, 1 Row, Straight Pin Header
LED Bivar, Verde, rosso, SMD, 2,4 V, 2 Led, PLCC 4
Ferrite Bead
Multipole plug

Manufacturer

Order code

Solder Jumper Selector

Solder Jumper Selector

Solder Jumper Selector

Solder Jumper Selector

Wurth

61300411121

Wurth

61300411121

BIVAR
WE ERNI

SMTL4-SBC
74279262 533406

Thick Film SMD Resistor

ANY

ANY

RESISTOR

ANY

ANY

Thick Film SMD ANY

ANY

Thick Film SMD Resistor

ANY

ANY

Button Tactile Switch, Single Pole Single Throw (SPST)

TE Connectivity FSM4JSMATR

Test Terminal ANY

ANY

Micro USB Connector Receptacle
Op Amp

MOLEX ST

47346-0001 TSV912IDT

UM3198 – Rev 1

page 75/83

UM3198
Bill of materials

Item 28

Q.ty 1

Ref. U3

29

1

U23

30

1

31

1

U22 PCB

Value

Description Manufacturer

Order code

LD29080S33R, LDO Voltage

PPACK 5

Regulators

ST

LD29080S33R

STM32G474RE

Tx_3TTC_EVAL , LQFP 64

STM32G474RE T3

ST

10x10x1.4 mm

STM32G474RE

ESDAL, SOT23-3L

Dual-Element Uni-Directional ST TVS Diode

ESDA6V1L

FR4 4 LAYER

PCB FR4- 4 Layer size 98x48x1.6mm

UM3198 – Rev 1

page 76/83

Revision history
Date 04-Dec-2023

Table 33. Document revision history

Version 1

Changes Initial release.

UM3198

UM3198 – Rev 1

page 77/83

UM3198

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

STMicroelectronics User Manuals

Related Manuals