HOLTEK MCU Series HT32 Arm Cortex M Instruction Manual
- June 12, 2024
- HOLTEK
Table of Contents
- HOLTEK MCU Series HT32 Arm Cortex M
- Product Information
- Product Usage Instructions
- HT32 M0+ Series
- Major Advantages
- HT32 M3 Series
- Major Advantages
- HT32 MCU Selection Guide
- Package Size
- Naming Rules
- HT32 MCU Programming Methods
- Application Products
- HT32 BLDC Motor Control Applications
- References
- Read User Manual Online (PDF format)
- Download This Manual (PDF format)
HOLTEK MCU Series HT32 Arm Cortex M
Product Information
Holtek 32-bit MCUs are high-quality solutions that help customers quickly enter the market. They provide customers with advantages of high integration and practicability, achieving an excellent combination of power, price, and performance. The MCUs have features that assist customers in shortening the product development process and seizing market opportunities. The HT32 M0+ Series offers the following major advantages:
- Core: M0+ core
- Power Supply: POR/PDR
- Serial Wire Debug
- Backup Domain Power Management
- Internal Oscillators
- BOD/LVD
- External Oscillators
- Real-Time Clock
- Watchdog Timer
- System Clock PLL
- NVIC
- Best Choice for Price, Power, Performance Interfaces:
- SPI Master/Slave
- I2C Master/Slave
- USART Interface
- UART Interface
- USB Interface
- Smart Card Interface Memory: – 16 ~ 256 KB
- Flash Memory
- 4 ~ 32 KB SRAM
- Multiple Booting Modes
- Flash Memory Protection
- IAP and ISP Programming Methods
- Peripherals:
- General Purpose Timer
- PWM Generator
- General Purpose Input/Output Ports
- Reset Control Unit
- Motor Control Timer
- Cyclic Redundancy Check Peripheral Direct Memory Access Analog
Features:
- A/D Converter
- Comparator The HT32 M3 Series offers the following major advantages:
- Core: M3 core
- Power Supply: POR/PDR Backup Domain Power Management
- BOD/LVD –
- High Efficiency, Abundant Peripherals and Interfaces Interfaces:
- SPI Master/Slave
- I2C Master/Slave
- USART Interface
- UART Interface
- USB Interface
- Smart Card Interface
CMOS Sensor Interface Memory:
- 16 ~ 256 KB Flash Memory
- 16 ~ 128 KB SRAM
- Multiple Booting Modes
- Flash Memory Protection
- IAP and ISP Programming Methods Peripherals:
- General Purpose Timer
- PWM Generator
- General Purpose Input/Output Ports
- Reset Control Unit
- Motor Control Timer
- Cyclic Redundancy Check Peripheral Direct Memory Access Analog
Features:
- A/D Converter
- Comparator
- Operational Amplifier Holtek offers a wide range of flexible 32-bit MCU choices to meet various application needs. The MCU lineup includes different models with varying flash memory sizes, SRAM sizes, power supply voltages, and maximum frequencies.
Product Usage Instructions
- Choose a proper 32-bit MCU for your product application considering factors like performance, power consumption, package type, tooling, and cost.
- Familiarize yourself with the specific features and advantages of the HT32 M0+ Series and HT32 M3 Series MCUs.
- Determine the required interfaces for your application and select the appropriate MCU that supports those interfaces. Consider the memory requirements of your application and choose an MCU with sufficient flash memory and SRAM.
- Understand the available peripherals and select an MCU that provides the necessary peripherals for your application.
- Take into account any analog features required for your application, such as A/D converters or comparators.
- Refer to the HT32 MCU Selection Guide to find the specific part number that matches your desired specifications. Ensure that you have the necessary power supply voltage for the chosen MCU.
- Follow the recommended operating frequency range for the MCU.
- If programming is required, refer to the IAP and ISP Programming Methods provided by Holtek.
- Consult the Holtek website (www.holtek.com) for additional resources, documentation, and support for using their 32-bit MCUs.
Innovative and All-round General Purpose HT32
Provide customers with advantages of high integration and practicability, so
as to achieve an excellent combination of power, price and performance, with
features that can assist customers to shorten the product development process
and to quickly seize the market opportunities.
HT32 M0+ Series
The HT32 M0+ MCUs feature an excellent energy-efficient Arm® Cortex®-M0+ processor core, with an optimal balance between price, power and performance. This makes the MCUs suitable for use in the Internet of Things (IoT), wearable device products, and other similar applications. With the advantages in terms of code density, power consumption and price, the M0+ core- based MCUs are not only the first choice for new product design and development, but also the best choice for upgrating traditional products based on an 8-bit MCU to 32-bit MCU-based products with higher performance.
Major Advantages
- 32-bit Arm® Cortex®-M0+ processor core
- Up to 60 MHz operating frequency
- Up to 256 KB on-chip Flash memory and 32 KB on-chip SRAM
- Flash memory protection
- Multiple booting modes
- 24-bit SysTick timer
- ISP and IAP programming methods
- 3 power domains
- 12-bit SAR A/D converter with a conversion rate of up to 1 Msps
- Real time clock
- I2C, SPI, USART and USB interfaces
- Smart card interface
- Serial wire debug port
HT32 Arm® Cortex®-M0+ Best Choice for Price, Power, Performance
-
Core
Arm® Cortex® -M0+ Processor- Serial Wire Debug
- Internal Oscillators
- External Oscillators
- Real Time Clock
- Watchdog Timer
- System Clock PLL
- NVIC
-
Memory
- 16 ~ 256 KB Flash Memory
- 4 ~ 32 KB SRAM
- Multiple Booting Modes
- Flash Memory Protection
- IAP and ISP Programming Methods
-
Power Supply
- POR/PDR
- Backup Domain
- Power Management
- BOD/LVD
-
Interfaces
- SPI Master/Slave
- I2C Master/Slave USART Interface UART Interface
- USB Interface
- Smart Card Interface
-
Analog Features
- A/D Converter
- A/D Converter
-
Peripherals
- General Purpose Timer
- PWM Generator
- General Purpose
- Input/Output Ports
- Reset Control Unit
- Motor Control Timer
- Cyclic Redundancy
- Check Perpherial
- Direct Memory Access
HT32 M3 Series
The Holtek HT32 M3 core series of MCUs, based on the Arm® Cortex®-M3 processor, are specially designed for high performance and low power consumption applications, such as automotive systems, industrial control systems, wireless networks and sensors, etc., which require a 32-bit MCU solution of high performance, low-dynamic and static power consumption specifications. Features such as configurable interrupts and memory protection provide even more outstanding performance and flexibility for this series of MCUs.
Major Advantages
- 32-bit Arm® Cortex®-M3+ processor core
- Up to 96 MHz operating frequency
- Up to 256 KB on-chip Flash memory and 128 KB on-chip SRAM
- Flash memory protection
- Multiple booting modes
- 24-bit SysTick timer
- ISP and IAP programming methods
- 3 power domains
- 12-bit SAR A/D converter with a conversion rate of up to 1 Msps
- Real time clock
- I2C, SPI, USART and USB interfaces
- Smart card interface
- Serial wire debug port
- External Bus Interface
HT32 Arm® Cortex®-M3 High Effeciency, Abundant Peripherals and
Interfaces
- Core
- Arm® Cortex® -M3 Processor Serial Wire Debug
- Internal Oscillators
- External Oscillators
- Real Time Clock
- Watchdog Timer
- System Clock PLL
- NVIC
- Power Supply
- POR/PDR
- Backup Domain Power Management
- BOD/LVD
- Interfaces
- SPI Master/Slave
- I2C Master/Slave
- USART Interface
- UART Interface
- USB Interface
- Smart Card Interface
- CMOS Sensor Interface
- Memory
- 16 ~ 256 KB Flash Memory
- 16 ~ 128 KB SRAM
- Multiple Booting Modes
- Flash Memory Protection
- IAP and ISP Programming Methods
- Peripherals
- General Purpose Timer
- PWM Generator
- General Purpose
- Input/Output Ports
- Reset Control Unit
- Motor Control Timer
- Cyclic Redundancy
- Check Perpherial
- Direct Memory Access
- Analog Features
- A/D Converter Comparator
- Operational Amplifier
HT32 MCU Lineup for Wide Application Ranges
Choosing a proper 32-bit MCU for your product application should focus not
only on performance, but also on power consumption, package type, tooling, and
cost. From the energy-efficient M0+ core series to the higher performing M3
core series, Holtek offers a wide range of flexible 32-bit MCU choices to meet
your 32-bit application needs.
HT32 MCU Selection Guide
HT32 MCU Selection Guide
Arm® Cortex®-M0+ General Purpose Series
Cortex-M0+ 32-Bit| MCU| | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | |
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| Timers1| Cap.2 or PWM|
Cpm. PWM*3| RTC| Interface| Others| I/O| Package
HT32F52220|
40MHz
| 2.0V
~ 3.6V
| 16KB| 4KB|
—
| 1Msps 12-bit
×8
| BFTM×1 SCTM×2 GPTM×1|
6
|
—
|
—
| USART×1 UART×1 SPI×1, I2C×1|
—
| 19
23
23
| 24SSOP
28SSOP
33QFN
HT32F52230| 32KB| 4KB
HT32F52231|
40MHz
| 2.0V
~ 3.6V
| 32KB| 4KB|
—
| 1Msps 12-bit
×12
| BFTM×2 SCTM×4 GPTM×1 MCTM×1|
12
|
3
|
√
| USART×1 UART×2 SPI×2 I2C×2|
CRC
| 19
23
26
40
| 24SSOP
28SSOP
33QFN
48LQFP
HT32F52241| 64KB| 8KB
HT32F52243|
40MHz
| 2.0V
~ 3.6V
| 64KB| 8KB|
6CH
| 1Msps 12-bit
×12
| BFTM×2 SCTM×4 GPTM×1 MCTM×1|
12
|
3
|
√
| USART×2 UART×4 SPI×2 I2C×3|
CRC DIV
| 26
38
40
52
| 33QFN
46QFN
48LQFP
64LQFP
HT32F52253| 128KB| 16KB
Arm® Cortex®-M0+ 5V General Purpose Series
Cortex-M0+ 32-Bit| 5V MCU| | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | |
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| Timers1| Cap.2 /
PWM| Cpm. PWM3| RTC| EBI6| Interface| Others| I/O| Package
HT32F50020
|
16MHz
|
2.5V
~ 5.5V
|
16KB
|
2KB
|
—
|
1Msps 12-bit×12
|
—
|
BFTM×1 SCTM×3
|
3 / 6
|
—
|
√
|
—
|
UART×2 SPI×1 I2C×1
|
LEDC
| 18
19
23
26
40
42
| 24QFN
24SSOP
28SSOP
32QFN
46QFN
48LQFP
HT32F50030
|
32KB
|
2KB
HT32F50220|
20MHz
|
2.5V
~ 5.5V
| 16KB| 4KB|
—
|
1Msps 12-bit×12
|
—
| BFTM×1 PWM×2 GPTM×1|
12 / 12
|
—
|
√
|
—
| UART×2 SPI×2 I2C×1|
DIV
| 18
19
23
22
26
36
38
40
| 24QFN
24SSOP
28SSOP
28SOP
33QFN
44LQFP
46QFN
48LQFP
HT32F50230| 32KB| 4KB
HT32F50231| 32KB| 4KB| BFTM×2 PWM×2 GPTM×1 MCTM×1|
16 / 16
|
3
| USART×1 UART×2 SPI×2 I2C×2|
CRC DIV
HT32F50241| 64KB| 8KB
HT32F50442*
|
60MHz
|
2.5V
~ 5.5V
|
64KB
|
8KB
|
6CH
|
1Msps 12-bit×12
|
2
|
BFTM x2 PWM x2 GPTM x1 MCTM x1
|
16 / 16
|
3
|
√
|
√
|
USART x2 UARTx2 SPI x2 I2C x2
|
CRC DIV LEDC
|
26
38
40
54
| 32QFN
46QFN
48LQFP
64LQFP
HT32F50452*
|
128KB
|
16KB
Arm® Cortex®-M0+ USB Series
Cortex-M0+ 32-Bit| USB MCU| | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | |
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| DAC| Timers1| Cap.2
or PWM| Cpm. PWM3| RTC| SCI4| USB5| EBI6| I2S| Inter- face| Others| I/O|
Package
HT32F52331|
48MHz
| 2.0V
~ 3.6V
| 32KB| 4KB|
—
| 1Msps 12-bit
×12
|
—
|
—
| BFTM×2 SCTM×4 GPTM×1 MCTM×1|
12
|
3
|
√
|
1
|
√
|
—
|
—
| USART×1 UART×2 SPI×2 I2C×2|
CRC
|
24
38
|
33QFN
48LQFP
HT32F52341| 64KB| 8KB
HT32F52342|
48MHz
| 2.0V
~ 3.6V
| 64KB| 8KB|
6CH
| 1Msps 12-bit
×12
|
2
|
—
| BFTM×2 SCTM×2 GPTM×2 MCTM×1|
14
|
3
|
√
|
2
|
√
|
√
|
√
| USART×2 UART×2 SPI×2 I2C×2|
CRC
| 26
39
51
| 33QFN
48LQFP
64LQFP
HT32F52352| 128KB| 16KB
HT32F52344|
60MHz
| 1.65V
~ 3.6V
| 64KB| 8KB|
6CH
| 1Msps 12-bit
×12
|
2
|
—
| BFTM×2 SCTM×2 GPTM×1 MCTM×1|
10
|
3
|
√
|
—
|
√
|
√
|
—
| UART×2 SPI×2 I2C×1|
CRC DIV
| 26
38
40
54
| 33QFN
46QFN
48LQFP
64LQFP
HT32F52354| 128KB| 8KB
HT32F52357
|
60MHz
|
1.65V
~ 3.6V
|
128KB
|
16KB
|
6CH
|
1Msps 12-bit
×12
|
2
|
500Ksps 12-bit×2
| BFTM×2 SCTM×2 PWM×2 GPTM×1 MCTM×1|
18
|
3
|
√
|
2
|
√
|
√
|
√
| USART×2 UART×4 SPI×2 QSPI×1*8
I2C×2
|
AES CRC DIV
|
37
39
53
67
|
46QFN
48LQFP
64LQFP
80LQFP
HT32F52367
|
256KB
|
32KB
Arm® Cortex®-M0+ USB 5V Series
Cortex-M0+ 32-Bit| 5V USB MCU| | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | |
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| Timers1| Cap.2 or PWM3|
RTC| USB5| Interface| Others| I/O| Package
HT32F50343
|
60MHz
| 2.5V
~ 5.5V
|
64KB
|
12KB
|
6CH
|
1Msps 12-bit×12
| BFTM×2 SCTM×2 8-PWM×3 GPTM×1|
30
|
√
|
√
| UART×2 SPI×2 I2C×2 SLED×8*7|
CRC DIV
| 23
35
37
51
| 32QFN
46QFN
48LQFP
64LQFP
- Under development, available in 1Q, 2023
Note: 1. BFTM: Basic Function Timer, SCTM: Single-Channel Timer, 8-PWM: 8 Output channel PWM Timer, GPTM: General-Purpose Timer, MCTM: Motor Control Timer.
2. Cap.: Input Capture.
3. Cpm. PWM: Complementary PWM for 3-phase motor control or inverter application.
4. SCI: ISO7816-3 Smart Card Interface.
5. USB 2.0 Full Speed Device.
6. EBI: External Bus Interface for NOR Flash / SRAM / LCD.
7. SLED: Strip LED Controller.
8. QSPI Flash ROM.
Arm® Cortex®-M0+ LCD Series
Cortex-M0+ 32-Bit LCD MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| DAC| Timers1| Cap.2
or PWM| RTC| SCI4| USB5| I2S| LCD| Inter- face| Others| I/O| Package
HT32F57331|
60MHz
| 1.65V
~ 3.6V
| 32KB| 4KB|
—
| 1Msps 12-bit
×10
|
—
|
—
| BFTM×2 PWM×2 GPTM×1|
12
|
√
|
1
|
√
|
—
| 29×4
~ 25×8
| USART×1 UART×2 SPI×2 I2C×2|
CRC DIV
| 37
39
53
| 46QFN
48LQFP
64LQFP
HT32F57341| 64KB| 8KB
HT32F57342|
60MHz
| 1.65V
~ 3.6V
| 64KB| 8KB|
6CH
| 1Msps 12-bit
×10
|
2
|
500Ksps 12-bit×2
| BFTM×2 SCTM×2 PWM×2 GPTM×1|
14
|
√
|
2
|
√
|
√
| 37×4
~ 33×8
| USART×1 UART×2 SPI×2 I2C×2| AES CRC DIV| 37
39
53
67
| 46QFN
48LQFP
64LQFP
80LQFP
HT32F57352| 128KB| 16KB
Arm® Cortex®-M0+ Touch Series
Cortex-M0+ 32-Bit 5V Touch MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| Timers1| Cap.2 or
PWM3| Cpm. PWM3| RTC| Touch Key| LED
Controller
| Interface| Others| I/O| Package
HT32F54231|
60MHz
|
2.5V~
5.5V
| 32KB| 4KB|
—
|
1Msps 12-bit
×10
|
—
| BFTM×2 SCTM×2 GPTM×1 MCTM×1|
10
|
3
|
√
|
24
|
8×8
| USART×1 UART×2 SPI×2 I2C×2|
CRC DIV LEDC
| 23
26
38
40
| 28SSOP
32QFN
46QFN
48LQFP
HT32F54241| 64KB| 8KB
HT32F54243|
60MHz
|
2.5V~
5.5V
| 64KB| 8KB|
6CH
|
1Msps 12-bit
×10
|
2
| BFTM×2 SCTM×4 GPTM×1 MCTM×1|
12
|
3
|
√
|
28
|
12×8
| USART×2 UART×4 SPI×2 I2C×3|
CRC DIV LEDC
| 26
38
40
54
| 32QFN
46QFN
48LQFP
64LQFP
HT32F54253| 128KB| 16KB
Arm® Cortex®-M0+ CAN Series
Cortex-M0+ 32-Bit CAN MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| Timers1| Cap.2 /
PWM| Cpm. PWM3| RTC| EBI6| CAN| Interface| Others| I/O| Package
HT32F53242*
|
60MHz
|
2.5V
~ 5.5V
|
64KB
|
8KB
|
6CH
|
1Msps 12-bit×12
|
2
| BFTM x2 PWM x2 GPTM x1 MCTM x1|
16 / 16
|
3
|
√
|
√
|
1
| USART x2 UARTx2 SPI x2 I2C x2|
CRC DIV LEDC
|
26
38
40
54
| 32QFN
46QFN
48LQFP
64LQFP
HT32F53252*
|
128KB
|
16KB
Arm® Cortex®-M3 General Purpose Series
Cortex-M3 32-Bit MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| Timers1| Cap.2 or
PWM| Cpm. PWM3| RTC| SCI4| USB5| EBI6| I2S| Inter- face| Others| I/O|
Package
HT32F12345
|
96MHz
| 2.0V
~ 3.6V
|
64KB
|
16KB
|
12CH
| 1Msps 12-bit
×12
|
2
| BFTM×2 GPTM×2 MCTM×2|
16
|
6
|
√
|
—
|
√
|
√
|
√
| SDIO×1 USART×2 UART×2 SPI×2, I2C×2|
CRC
| 37
37
51
| 46QFN
48LQFP
64LQFP
HT32F12365|
96MHz
| 2.0V
~ 3.6V
| 256KB| 64KB|
12CH
| 1Msps 12-bit
×16
|
2
| BFTM×2 GPTM×2 MCTM×2|
16
|
6
|
√
|
2
|
√
|
√
|
√
| SDIO×1 USART×2 UART×2 SPI×2, I2C×2|
AES CRC
| 37
37
51
80
| 46QFN
48LQFP
64LQFP
100LQFP
HT32F12366| 256KB| 128KB
HT32F12364
|
72MHz
| 1.65V
~ 3.6V
|
256KB
|
128KB
|
6CH
| 1Msps 12-bit
×8
|
—
| BFTM×2 SCTM×2 PWM×1 GPTM×1|
10
|
—
|
√
|
1
|
√
|
√
|
—
| USART×1 UART×2 SPI×2, I2C×2|
AES CRC
| 32
38
52
| 40QFN
48LQFP
64LQFP
Arm® Cortex®-M3 Fingerprint Recognition Purpose
Cortex-M3 32-Bit Fingerprint MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| Timers1| Cap.2 or
PWM| Cpm. PWM3| RTC| SCI4| USB5| EBI6| CSIF
*7
| Inter- face| Others| I/O| Package
HT32F22366
|
96MHz
|
2.0V
~ 3.6V
|
256KB
|
128KB
|
12CH
|
1Msps 12-bit
×16
|
2
|
BFTM×2 GPTM×2 MCTM×2
|
16
|
6
|
√
|
2
|
√
|
√
|
√
| SDIO×1 USART×2 UART×2 SPI×2 I2C×2 I2S×1|
AES CRC CSIF
|
37
37
51
80
|
46QFN
48LQFP
64LQFP
100LQFP
- Under development, available in 1Q, 2023
Note: 1. BFTM: Basic Function Timer, SCTM: Single-Channel Timer, GPTM: General-Purpose Timer, MCTM: Motor Control Timer.
2. Cap.: Input Capture.
3. Cpm. PWM: Complementary PWM for 3-phase motor control or inverter application.
4. SCI: ISO7816-3 Smart Card Interface.
5. USB 2.0 Full Speed Device.
6. EBI: External Bus Interface for NOR Flash / SRAM / LCD.
7. CSIF: CMOS Sensor Interface.
Package Size
Naming Rules
HT32 MCU Development Tools
Good MCU development tools are a necessary requirement for any design process.
In order to support the Holtek 32-bit M0+ and M3 core series of MCUs, Holtek
and external vendors offer a complete set of software and hardware tools to
assist users with easy prototyping and debugging. Holtek’s starter kit
contains all the basic hardware, including an embedded e-Link32 Pro that
provides a simple connection to a PC, allowing users to develop products
quickly.
Holtek’s expansion boards contain a variety of common electronic components
such as switches, LEDs, potentionmeter, buzzers, IR components, etc.,
providing a flexible and complete system to ensure that users can quickly and
easily learn how to use Holtek’s 32-bit MCUs. A complete software library and
comprehensive graphic documents ensure that customers can quickly develop
32-bit MCU-based products.
https://www.bestmodulescorp.com/
Development Resources
USB Debug Adapter
Starter Kit
Expansion Boards
HT32 MCU Programming Methods
-
e-Writer32
- 1 Site Programming
- Online/Offline Modes
-
Gang-Writer32-8
- 8 Sites Parallel Programming
- Offline Mode
-
IAP Reference Examples
- USB HID, Mass Storage, DFU UART
- I2C Slave
- SPI Slave
-
e-Link32 Pro
- IDE/Offline/CMD Modes
HT32 MCU Development Resources and Download Website
The development resources include datasheet, reference documents, schematics,
HT32 firmware library, PC driver, tools, etc.
https://mcu.holtek.com/ht32/resource/
Application Products
-
Smart Home
More and more household appliances such as smart and connection type of products require 32-bit processing. -
IoT/Wearable Devices
The demand for a low power consumption 32-bit MCU in wearable devices is growing. -
USB Peripherals
USB is still the most versatile interface and an essential feature of PC- related products. -
Intelligent Leisure Products
Higher-level leisure products require a 32-bit MCU in terms of computing power and cost efficiency. -
Data Processors/Recoders
32-bit processing capabilities are required for enhanced data processing.
HT32 BLDC Motor Control Applications
BLDC MCUs with integrated intellengent gate-driver and driver
Under the global energy saving and carbon reduction requirements, the use of BLDC motor design for motor products has become a market trend. Its advantages are small size, high efficiency, low noise, long service life, high power density, etc., but the disadvantages lie in higher cost and high complexity of design techniques. Holtek has released a series of Arm® Cortex®-M0+ core BLDC microcontrollers, which support Hall sensor or sensorless FOC controls. For BLDC motor loads with different voltages and power, BLDC SoC MCUs with integrated intellegent gate-driver and driver are also introduced, which effectively reduces the hardware volume and the complexity of the PCB design. In addition, Holtek also provides a Workshop for motor parameter adjustment and software secondary development, assisting customers to rotate motor smoothly in a short period of time, and to mass-produce the finished BLDC prducts and introduce them into the market in time. With the IEC/UL 60730-1 software certification, the HT32F65xxx series can be widely used in applications such as the fast-growing industrial controls, household applicances, ceiling fans, range hoods, gargen tools, robots, electric scooters, quadcopters, etc.
BLDC Motor Control Application Block Diagram
Arm® Cortex®-M0+ BLDC Motor Control Purpose Selection Guide
Arm® Cortex®-M0+ BLDC Motor Control Purpose Selection Guide
Cortex-M0+ 32-Bit BLDC Flash MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| PDMA| ADC| CMP| OPA| Timer1| Cap.2
or PWM| Cpm. PWM*3| RTC| Interface| Others| I/O| Package
HT32F65232
|
60MHz
|
2.5V~
5.5V
|
32KB
|
4KB
|
6CH
|
2Msps×1 12-bit×12
|
2
|
1
| BFTM×2 SCTM×4 GPTM×1 MCTM×1 LSTM×1|
12
|
3
|
—
|
USART×1 UART×1 SPI×1 I²C×1
|
CRC DIV
|
20
28
44
|
24SSOP
32QFN
48LQFP
HT32F65230
|
64KB
|
8KB
|
1Msps×2 12-bit×8
|
3
|
2
| BFTM×2 SCTM×4 GPTM×1 MCTM×1|
√
|
40
|
48LQFP
HT32F65240
Note: 1. BFTM: Basic Function Timer, SCTM: Single-Channel Timer, GPTM:
General-Purpose Timer, MCTM: Motor Control Timer, LSTM: Low Speed Timer.
2. Cap.: Input Capture.
3. Cpm. PWM: Complementary PWM for 3-phase motor control or inverter application.
4. Operating Temperature: -40 °C ~ 105 °C.
Cortex-M0+ 32-Bit BLDC Flash MCU with Gate-Driver
Part No.| Max. Freq.| VCC (HV)| LDO| Gate- Driver| Flash| SRAM| PDMA| ADC|
CMP| OPA| Timer1| Cap.2 or PWM| Cpm. PWM*3| RTC| Interface| Others| I/O|
Package
HT32F65432A|
60MHz
| 6V~
36V
|
5V
| 3P3N|
32KB
|
4KB
|
6CH
|
2Msps×1 12-bit×12
|
2
|
1
|
BFTM×2 SCTM×4 GPTM×1 MCTM×1 LSTM×1
|
8
|
3
|
√
|
USART×1 UART×1 SPI×1 I²C×1
|
CRC DIV
| 16
29
|
32QFN
48LQFP-EP
HT32F65532G| 6V~
48V
| 6N| 12
28
HT32F65732G*| 6V~
20V
| 6N| 2Msps×1 12-bit×11| 22
26
| 46QFN
48LQFP-EP
HT32F65440A| 6V~
36V
| 3P3N|
64KB
|
8KB
|
1Msps×2 12-bit×7
|
3
|
2
| 28|
48LQFP-EP
HT32F65540G| 6V~
48V
| 6N| 26
HT32F65740G*
| 6V~
20V
|
6N
|
26
Cortex-M0+ 32-Bit BLDC Flash MCU with Driver
Part No.| Max. Freq.| VCC (HV)| LDO| Peak Current| Flash| SRAM| PDMA| ADC|
CMP| OPA| Timer1| Cap.2 or PWM| Cpm. PWM*3| RTC| Interface| Others| I/O|
Package
HT32F65C32F
|
60MHz
|
6V~
32V
|
5V
|
3.5A
|
32KB
|
4KB
|
6CH
| 2Msps×1 12-bit×12|
2
|
1
| BFTM×2 SCTM×4 GPTM×1 MCTM×1 LSTM×1|
8
|
3
|
√
| USART×1 UART×1 SPI×1 I²C×1|
CRC DIV
| 28
14
| 32QFN
48LQFP-EP
HT32F65C40F
|
64KB
|
8KB
| 1Msps×2 12-bit×7|
3
|
2
|
26
|
48LQFP-EP
- Under development, available in 2Q, 2023.
Note: 1. BFTM: Basic Function Timer, SCTM: Single-Channel Timer, GPTM: General-Purpose Timer, MCTM: Motor Control Timer.
2. Cap.: Input Capture.
3. Cpm. PWM: Complementary PWM for 3-phase motor control or inverter application.
4. Operating Temperature: -40 °C ~ 105 °C.
BLDC Motor Control Development Boards
https://www.bestmodulescorp.com/
HT32 High Accuracy Measurement Applications
24-bit Delta Sigma ADC for high accuracy measurements
Holtek has released its new Arm® Cortex®-M0+ MCUs, the HT32F59xxx series, which are specially designed for high accuracy measurement applications. The integrated A/D converter has an Effective Number of Bits (ENOB) of up to 20.7 and has a conversion rate of up to 1.6 kHz, which combined with the 12-bit SAR A/D converter that has a conversion rate of 1 MHz, allows users to implement fast and accurate measurements. Other resources include an LCD display driver, USB, UART and other commonly used serial transmission interfaces. These make the devices suitable for a diversified range of applications including electronic scales, blood pressure meters, temperature meters, high accuracy industrial controls or instrumentation etc.
High Accuracy Measurement Application Block Diagram
Arm® Cortex®-M0+ High Accuracy Measurement Purpose Selection Guide
Enhanced 24-Bit A/D Cortex-M0+ 32-Bit MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| ADC| Timers1| Cap.2 or PWM| Cpm.
PWM*3| RTC| Interface| Others| I/O| Package
HT32F59041
|
20MHz
|
2.5V~
5.5V
|
64KB
|
8KB
| SAR ADC
1Msps 12-bit×12
| Delta Sigma ADC
24-bit×4
| BFTM×2 PWM×2 GPTM×1 MCTM×1|
16
|
3
|
√
| USART×1 UART×2 SPI×1 I2C×1|
CRC DIV
|
30
|
48LQFP
Enhanced 24-Bit A/D Cortex-M0+ 32-Bit LCD MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| ADC| Timers1| Cap.2 or PWM| RTC|
SCI4| USB5| LCD| Inter- face| Others| I/O| Package
HT32F59741
|
60MHz
| 1.65V~
3.6V
|
64KB
|
8KB
| SAR ADC
1Msps 12-bit×10
| Delta Sigma ADC
24-bit×4
| BFTM×2 PWM×2 GPTM×1|
12
|
√
|
1
|
√
| 29×4
~ 25×8
| USART×1 UART×2 SPI×2, I2C×2| CRC DIV|
43
53
|
64LQFP
80LQFP
Note: 1. BFTM: Basic Function Timer, SCTM: Single-Channel Timer, GPTM: General-Purpose Timer, MCTM: Motor Control Timer.
2. Cap.: Input Capture.
3. Cpm. PWM: Complementary PWM for 3-phase motor control or inverter application.
4. SCI: ISO7816-3 Smart Card Interface.
5. USB 2.0 Full Speed Device.
HT32 BT5.2 Low Power Bluetooth Applications
BThluinegtoso(tIohTL)oawppElniceartgiyonwsireless data transmission technology that meets the needs of Internet of
Smart phones have led to the widespread popularity of Bluetooth devices. Audio transmission is a larger application of Bluetooth peripherals, following are data transmission (e.g., wearable devices or healthcare) and location services (e.g., indoor guidance or dissemination of point-of-interest information). For the latter two applications, Holtek has released a Bluetooth low energy Arm® Cortex®-M0+ dual-core SoC MCU, the HT32F67741, which has passed the BLE5.2 BQB (Bluetooth Qualification Body) certification. The device is suitable for use in health care products, home appliances, beacons, intelligent leisure products, data loggers, human interface devices (HID) service, etc.
BT5.2 BLE Low Power Bluetooth Application Block Diagram
Arm® Cortex®-M0+ BLE Bluetooth Purpose Selection Guide
Cortex-M0+ 32-Bit BLE MCU
Part No.| Max. Freq.| VDD| Flash| SRAM| ADC| Timers #| Ver.| Data Rate| Output
Power| Sensitivity| Interface| Others| I/O| Package
HT32F67741
|
40MHz
|
2.0V~
3.6V
|
64KB
|
8KB
|
1Msps 12-bit×6
| RTC×1 WDT×1 BFTM×2 SCTM×4 GPTM×1 MCTM×1|
5.2
|
1/2Mbps
|
+3.5dBm
|
-94/-91dBm
|
USART×1 UART×2 SPI×2 I2C×2
|
CRC×1 TRNG×1
|
25
|
46QFN
Note: # BFTM: Basic Function Timer, SCTM: Single-Channel Timer, GPTM: General- Purpose Timer, MCTM: Motor Control Timer.
Holtek Semiconductor Inc.
- Holtek Semiconductor Inc. (Headquarters)
- No.3, Creation Rd. II, Science park, Hsinchu 300, Taiwan Tel: 886-3-5631999
- Fax: 886-3-5631189
- Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
- Tel: 886-2-2655-7070
- Fax: 886-2-2655-7373
- Fax: 886-2-2655-7383 (International sales hotline)
- Holtek Semiconductor (India) Pvt.Ltd.
- Suit no 1004, 29/30 MG road, Prestige Meridian 1, Bengaluru, Karnataka, India 560001
- Tel: 91-80-4372-9269
- Holtek Semiconductor (USA), Inc. (North America Sales Office)
- 19 Hammond,Suite 513,Irvine,CA 92618 Tel:1-949-273-8988
- Holtek Semiconductor (China) Inc.
- Building No. 10, Xinzhu Court, (No. 1 Headquarters),
- 4 Xinzhu Road, Songshan Lake, Dongguan, China 523808 Tel: 86-769-2626-1300
- Fax: 86-769-2626-1311
- Fax: 86-769-2626-1322 (Sales Office)
References
Read User Manual Online (PDF format)
Read User Manual Online (PDF format) >>