CAT PUMPS 2530 25 PFR Plunger Pump Owner’s Manual

June 8, 2024
CAT PUMPS

CAT PUMPS 2530 25 PFR Plunger Pump

INSTALLATION AND START-UP INFORMATION

Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories.

SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not implied that all maximums can be performed simultaneously. If more than one maximum is considered, check with your CAT PUMPS supplier to confirm the proper performance and pump selection. Refer to individual pump Data Sheets for complete specifications, parts list and exploded view.

LUBRICATION: Fill crankcase with CAT PUMPS custom-blend, ISO-68 hydraulic oil per pump specifications [84 oz., 2.5 L]. DO NOT RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours running period. Thereafter, change oil every 3 months or 500 hour intervals. Oiler adjustment is vertical to start feed, horizontal to stop feed, dial to adjust flow rate. Additional lubrication may be re-quired with increased hours of operation and temperature.

PUMP ROTATION: Pump was designed for forward rotation to allow optimum lubrication of the crosshead area. Reverse rotation is acceptable if the crankcase oil level is increased slightly above center dot to assure adequate lubrication.

PULLEY SELECTION: Select size of motor pulley required to deliver the desired flow from Horsepower Requirement and Pulley Selection Chart (refer to Tech Bulletin 003 or individual Data Sheet).

MOTOR SELECTION: The motor or engine driving the pump must be of adequate horsepower to maintain full RPM when the pump is under load. Select the electric motor from the Horsepower Requirement Chart according to required pump discharge flow, maximum pressure at the pump and drive losses of approximately 3-5%. Consult the manufacturer of gas or diesel engine for selection of the proper engine size.

MOUNTING: Mount the pump on a rigid, horizontal surface in a manner to permit drainage of crankcase oil. An uneven mounting surface will cause extensive damage to the pump base. To minimize piping stress, use appropriate flexible hose to inlet and discharge ports. Use the correct belt; make sure pulleys are aligned. Excessive belt tension may be harmful to the bearings. Hand rotate pump before starting to be certain shaft and bearings are free moving.

LOCATION : If the pump is used in extremely dirty or humid conditions, it is recommended pump be enclosed. Do not store or operate in excessively high temperature areas or without proper ventilation.

INLET CONDITIONS : Refer to complete Inlet Condition Check-List in this manual before starting system. DO NOT STARVE THE PUMP OR RUN DRY. Temperatures above 130°F are permissible. Add 1/2 PSI inlet pressure per each degree F over 130°F. Elastomer or RPM changes may be required. See Tech Bulletin 002 or call CAT PUMPS for recommendations.
C.A.T.: Installation of a C.A.T. (Captive Acceleration Tube) is recommended in applications with stressful inlet conditions such as high temperatures, booster pump feed, long inlet lines or quick closing valves.

DISCHARGE CONDITIONS: OPEN ALL VALVES BEFORE STARTING SYSTEM to avoid deadhead overpressure condition and severe damage to the pump or system.
Install a Pulsation Dampening device on the discharge head or in the discharge line as close to the head as possible. Be certain the pulsation dampener (Prrrrr-o-lator) is properly precharged for the system pressure (see individual Data Sheet.)

A reliable Pressure Gauge should be installed near the discharge outlet of the high pressure manifold. This is extremely important for adjusting pressure regulating devices and also for proper sizing of the nozzle or restricting orifice. The pump is rated for a maximum pressure; this is the pressure which would be read at the discharge manifold of the pump, NOT AT THE GUN OR NOZZLE.

Use PTFE thread tape or pipe thread sealant (sparingly) to connect accessories or plumbing. Exercise caution not to wrap tape beyond the last thread to avoid tape from becoming lodged in the pump or accessories. This condition will cause a malfunction of the pump or system.

PRESSURE REGULATION: All systems require both a primary pressure regulating device (i.e., regulator, unloader) and a secondary pressure safety relief device (i.e., pop-off valve, safety valve). The primary pressure device must be installed on the discharge side of the pump. The function of the primary pressure regulating device is to protect the pump from over pressurization, which can be caused by a plugged or closed off discharge line. Over pressurization can severely damage the pump, other system components and can cause bodily harm. The secondary safety relief device must be installed in-line between the primary device and pump or on the opposite side of the manifold. This will ensure pressure relief of the system if the primary regulating device fails. Failure to install such a safely device will void the warranty on the pump.

If a large portion of the pumped liquid is by-passed (not used) when the high pressure system is running, this by-pass liquid should be routed to an adequately sized, baffled supply tank or to drain. If routed to the pump inlet, the by-pass liquid can quickly develop excessive heat and result in damage to the pump. A temperature control device to shut the system down within the pump limits or multiple THERMO VALVES must be installed in the by- pass line to protect the pump.

NOZZLES: A worn nozzle will result in loss of pressure. Do not adjust pressure regulating device to compensate. Replace nozzle and reset regulating device to system pressure.

PUMPED LIQUIDS: Some liquids may require a flush between operations or before storing. For pumping liquids other than water, contact your CAT PUMPS supplier.

STORING: For extended storing or between use in cold climates, drain all pumped liquids from pump and flush with antifreeze solution to prevent freezing and damage to the pump. DO NOT RUN PUMP WITH FROZEN LIQUID (refer to Tech Bulletin 083).

WARNING
All systems require both a primary pressure regulating device (i.e., regulator, unloader) and a secondary pressure safety relief device (i.e., pop- off valve, safety valve). Failure to install such relief devices could result in personal injury or damage to the pump or to system components. CAT PUMPS does not assume any liability or responsibility for the operation of a customer’s high pressure system.

CAUTION: Before commencing with service, shut off drive (electric motor, gas or diesel engine) and turn off water supply to pump. Relieve all discharge line pressure by triggering gun or opening valve in discharge line.

After servicing is completed, turn on water supply to pump, start drive, reset pressure regulating device and secondary valve, read system pressure on the gauge at the pump head. Check for any leaks, vibration or pressure fluctuations and resume operation.

SERVICING THE VALVES

Disassembly

  1. To service the Valves, the Discharge Manifold must be re-moved. Using a M10 allen wrench remove the eight Socket Head Screws.

  2. Support the underside of the Discharge Manifold and lightly tap the top back of the manifold with a soft mallet. Two screwdrivers may be needed to further separate the Discharge Manifold from the Inlet Manifold.

  3. Remove the Discharge Manifold and place it crankcase side up.
    NOTE: The Discharge Valve Assembly is secured in the upper chambers by the Discharge Valve Spacer, while the Inlet Valve Assembly is secured in the lower chambers by the Inlet Valve Adapter.

  4. The Discharge Valve Spacers will remain in either the Inlet Manifold or the Discharge Manifold. To remove the Spacer from the manifold, insert two screwdrivers on opposite sides under the machined lip on the outside of the Spacer and pry out.

  5. Use a reverse pliers to remove the Inlet Valve Adapters from the Discharge Manifold or insert two screwdrivers into the secondary groove on opposite sides of the adapter and pry from valve chamber.

  6. Both the Inlet and Discharge use the same Valve Assembly. With a flat head screwdriver, carefully pry the Seat, O-Ring, Valve, Spring and Retainer from the manifold chamber.

CAUTION: Exercise caution to avoid scoring the manifold chamber wall.
NOTE: This Valve Assembly does not snap together.

Reassembly

NOTE: For certain applications apply liquid gasket to the O-Ring crevices and seal surfaces. See Tech Bulletin 053 for model identification.
NOTE: EPDM elastomers require a silicone-base lubricant.

  1. Inspect the Spring Retainer for any scale buildup or wear and replace as needed. Place the Spring Retainer into the valve chamber.
  2. Examine the Spring for fatigue or breaks and replace as needed. Place the Spring into the Retainer.
  3. Examine the Valve for pitting or grooves and replace as needed. Set the Valve onto the Spring with the concave side down.
  4. Place the Seat into the valve chamber with the concave side down. Then apply liquid gasket to the O-Ring and press squarely into the lip on the Spring Retainer. NOTE: Effective with 6-95 mfg date, the O-Ring was moved to the back side of the Seat with the O-Ring installed first, onto the lip in the manifold chamber, then the Seat with the machined O-Ring groove down. NOTE: Effective with 11-95 mfg date, the Seat was modified to a new thicker style, still with the O-Ring installed first, onto the lip in the manifold chamber, then the Seat with the machined O-Ring groove down.
  5. Examine the Seat for any grooves, pitting or wear and replace. Place the new Seat onto the the O-Ring with the concave side down.
  6. Look for wear or damage to both the inner and outer O- Rings on the Inlet Adapter and replace.
  7. Fit the O-Rings into both the outer groove and face groove of the Inlet Adapter and apply liquid gasket into the O- Ring crevice.
  8. Press the Inlet Adapter into the lower manifold chamber.
  9. Remove and examine both O-Rings on the Discharge Valve Spacer for wear or cuts and replace as needed.
  10. Fit the new O-Rings into the groove on the outside of the Discharge Valve Spacer. Apply liquid gasket into the O- Ring crevice and carefully press the Spacer completely into the Discharge Manifold chamber with the smaller diameter side down.
  11. Replace Discharge Manifold over the Plunger Rods with Discharge Valve Spacers to the top and Inlet Adapters to the bottom. Tap with a soft mallet until completely seated in chambers.
  12. Reinstall the eight Socket Head Screws and torque in sequence to specifications in torque chart.

NOTE: It is highly recommended that antiseize lubricant (PN6119) be applied to the threads on all stainless steel components to prevent galling.
IMPORTANT: Follow the torque sequence to assure the proper alignment.

SERVICING THE SEALS

Disassembly

  1. Remove the Discharge Manifold as described in SERVICING THE VALVES section.
  2. To service the seals the Inlet Manifold must be removed, use a M10 allen wrench to remove the 4 Socket Head Screws.
  3. Support the Inlet Manifold and lightly tap the top back side with a soft mallet. Remove the Inlet Manifold and place it crankcase side down.
  4. Use a reverse pliers to remove the Hi-Pressure Seals.
  5. The Lo-Pressure Seals may stay on the Plungers or in the Inlet Manifold.
  6. Invert the Inlet Manifold with the crankcase side up.
  7. Remove the Lo-Pressure Seal using a reverse pliers or slide it off the Plunger by hand.

Reassembly

NOTE:

  • If your pump has been built with special seals and O-Rings, service with same type of special parts. Refer to pump Data Sheet for correct parts or kits.
  • For certain applications apply liquid gasket to the O-Ring crevices and seal surfaces. See Tech Bulletin 053 for model identification.
  • EPDM elastomers require a silicone-base lubricant.
  1. Examine the Lo-Pressure Seal for wear or spring fatigue and replace. Apply liquid gasket to the outside of the new Lo-Pressure Seal and carefully press it into the Inlet Manifold chamber with the spring down.
    NOTE: When using alternate materials, the fit of the special materials may be snug and require gently driving the LPS into position with a cylinder of the same diameter to assure a square seating and no damage to the LPS.

  2. Invert the Inlet Manifold and place the crankcase side down. Examine the Hi-Pressure Seal for deformity or wear and replace. Apply liquid gasket to the outside of the new Hi-Pressure Seal and carefully press it into the Inlet Manifold chamber with the metal side down.

SERVICING THE PLUNGERS

Disassembly
NOTE: The Ceramic Plungers and the Plunger Retainers should be examined on the same schedule as servicing the seals.

  1. To service the Ceramic Plungers, first remove the Seal Retainers.
  2. Loosen the Plunger Retainer about three or four turns using a M14 hex tool.
  3. Grasp the Ceramic Plunger and push toward the Crankcase until it separates from the Plunger Retainer.
  4. Unthread the Plunger Retainer with Gasket, O-Ring, Back-up-Ring and Ceramic Plunger. Remove the Keyhole Washer and Barrier Slinger from the Plunger Rod.

Reassembly

  1. Examine the Barrier Slinger for any wear or damage and place on the Plunger Rod with the concave side facing out.

  2. Examine the Keyhole Washer and place on the Plunger Rod with the slot down.

  3. Examine the O-Ring and Back-up-Ring on the Plunger Retainer and replace if worn or damaged. First install the Gasket, then the O-Ring and Back-up-Ring. Lubricate the Plunger Retainer O-Ring to avoid cutting during installation.

  4. If the Plunger Retainer unthreads from the stud during re-moval, thread the stud into the retainer.

  5. Examine the Ceramic Plunger for scoring, cracks or scale and replace if needed. The Ceramic Plunger can be cleaned with a scotchbrite pad. Slide the Ceramic Plunger onto the retainer and stud assembly with the shallower counterbore away from the retainer.
    NOTE: Plunger can only be installed one direction. Do not force into Plunger Rod.
    NOTE: Do not lubricate wicks at initial start-up. Operate for 10 to 15 minutes to allow grease from LPS to penetrate the plunger surface, then lubricate as needed.

  6. Apply Loctite® 242® to the threads of the Plunger Retainer Stud and thread onto the Plunger Rod. Then torque to specifications in chart.

  7. Install new wicks in front half of seal retainer. Press rear half of seal retainer into front half until ends are flush. Holes should be to the top and bottom to line up with front retainer holes. Slide Seal Retainers over plungers and press into crankcase chamber until flush with oil seal.

  8. Rotate the Crankshaft to line up the outside Plungers. Then lightly lubricate the Plungers with oil.

  9. Carefully slide the Inlet Manifold over the Ceramic Plungers and press until flush with the Crankcase.

  10. Reinstall the four Inlet Socket Head Screws and torque to specifications in chart.

  11. The Hi-Pressure Seals may shift while installing the Inlet Manifold. Use one of the Discharge Valve Spacers to press the Seals back into position.

  12. Carefully press the Discharge Manifold into the Inlet Manifold. Use a soft mallet to tap into place and reinstall the eight Socket Head Screws. Torque in sequence to specifications in torque chart.

TORQUE SEQUENCE

SERVICING THE CRANKCASE SECTION

  1. While Inlet Manifold, Plungers and Seal Retainers are removed, examine Crankcase Oil Seals for leaking and wear.
  2. Check for any signs of leaking at Rear Cover or Dipstick.
  3. Check oil level and for evidence of water in oil. Change oil on a regular schedule. See Preventative Maintenance Check-List.
  4. Rotate Crankshaft by hand to feel for smooth bearing movement.
  5. Examine Crankshaft Oil Seals externally for drying, cracking or leaking.
  6. Consult CAT PUMPS or your local distributor if Crankcase service is required. See also Tech Bulletin 035.

See Section II of the Plunger Pump Service DVD fo additional information.

PREVENTATIVE MAINTENANCE CHECK-LIST

Check| Daily| Weekly| 50 hrs.| **500 hrs.*| 1500 hrs.**| 3000 hrs.****
Clean Filters| x|  |  |  |  |
Oil Level/Quality| x|  |  |  |  |
Oil Leaks| x|  |  |  |  |
Water Leaks| x|  |  |  |  |
Belts, Pulley|  | x|  |  |  |
Plumbing|  | x|  |  |  |
Initial Oil Change|  |  | x|  |  |
Oil Change|  |  |  | x|  |
Seal Change|  |  |  |  | x|
Valve Change|  |  |  |  |  | x
Accessories|  |  |  |  | x|

  • If other than CAT PUMPS custom-blend, multi-viscosity, ISO-68 hydraulic oil is used, change cycle should be every 300 hours.

** Each system’s maintenance cycle will be exclusive. If system per- formance decreases, check immediately. If no wear at 1500 hours, check again at 2000 hours and each 500 hours until wear is ob- served. Valves typically require changing every other seal change.

Duty cycle, temperature, quality of pumped liquid and inlet feed conditions all effect the life of pump wear parts and service cycle.

** Remember to service the regulator/unloader at each seal servicing and check all system accessories and connections before resuming operation.

Refer to service DVD for additional assistance.

TORQUE CHART

TORQUE CHART

Pump Item

|

Thread

| Tool Size [Part No.]| Torque

in. lbs. ft. lbs. Nm

Plunger Retainer| M7| M14 Hex [25053]| 108     9.0 12.2
Inlet Manifold Screws| M12| M10 Allen [33047]| 355 30.0 40
Discharge Manifold Screws| M12| M10 Allen [33047]| 355 30.0 40
Rear Cover/

Bearing Cover Screws

| M8| M13 Hex [25324]| 115 9.58 13
Connecting Rod Screws| M8| M13 Hex [25324]| 216 18.0 24
Bubble Oil Gauge| M28| Oil Gauge Tool [44050]| 45      3.8     5

INLET CONDITION CHECK-LIST

Review Before Start-Up
Inadequate inlet conditions can cause serious malfunctions in the best designed pump. Surprisingly, the simplest of things can cause the most severe problems or go unnoticed to the unfamiliar or untrained eye. REVIEW THIS CHECK-LIST BEFORE OPERATION OF ANY SYSTEM. Remember, no two systems are alike, so there can be no ONE best way to set-up a system. All factors must be carefully considered.

INLET SUPPLY should exceed the maximum flow being delivered by the pump to assure proper performance.

  • Open inlet shut-off valve and turn on water supply to avoid starving pump. DO NOT RUN PUMP DRY.
  • Temperatures above 130°F are permissible. Add 1/2 PSI inlet pressure per each degree F over 130°F. Elastomer or RPM changes may be required. See Tech Bulletin 002 or call CAT PUMPS for recommendations.
  • Avoid closed loop systems especially with high temperature, ultra-high pressure or large volumes. Conditions vary with regulating/unloader valve.
  • Low vapor pressure liquids, such as solvents, require a booster pump and C.A.T. to maintain adequate inlet supply (where compatible).
  • Higher viscosity liquids require a positive head and a C.A.T. to assure adequate inlet supply.
  • Higher temperature liquids tend to vaporize and require positive heads and C. A.T. to assure adequate inlet supply.
  • When using an inlet supply reservoir, size it to provide adequate liquid to accommodate the maximum output of the pump, generally a minimum of 6-10 times the GPM (however, a combination of system factors can change this requirement); provide adequate baffling in the tank to eliminate air bubbles and turbulence; install diffusers on all return lines to the tank.

INLET LINE SIZE should be adequate to avoid starving the pump.

  • Line size must be a minimum of one size larger than the pump inlet fitting. Avoid tees, 90 degree elbows or valves in the inlet line of the pump to reduce the risk of flow restriction and cavitation.
  • The line MUST be a FLEXIBLE hose, NOT a rigid pipe, and reinforced on SUCTION systems to avoid collapsing.
  • The simpler the inlet plumbing the less the potential for problems. Keep the length to a minimum, the number of elbows and joints to a minimum (ideally no elbows) and the inlet accessories to a minimum.
  • Use pipe sealant to assure air-tight, positive sealing pipe joints.

INLET PRESSURE should fall within the specifications of the pump.

  • Acceleration loss of liquids may be increased by high RPM, high temperatures, low vapor pressures or high viscosity and may require pressurized inlet and C. A.T. to maintain adequate inlet supply. DO NOT USE C.A.T. WITH SUCTION INLET.
  • Optimum pump performance is obtained with +20 PSI (1.4 BAR) inlet pressure and a C.A.T. for certain applications. With adequate inlet plumbing, most pumps will perform with flooded suction. Maximum inlet pressure is 70 PSI (4.9 BAR).
  • After prolonged storage, pump should be rotated by hand and purged of air to facilitate priming. Disconnect the discharge port and allow liquid to pass through pump and measure flow.

INLET ACCESSORIES are offered to protect against over pressurization, contamination or temperature and control flow.

  • A shut-off valve is recommended to facilitate maintenance.
  • Installation of a C.A.T. is essential in applications with stressful conditions such as high temperatures, booster pump feed or long inlet lines. Do not use C.A.T. with negative inlet pressure.
  • A stand pipe can be used in some applications to help maintain a positive head at the pump inlet line.
  • Inspect and clean inlet filters on a regular schedule to avoid flow restriction.
  • A pressure transducer is necessary to accurately read inlet pressure. Short term, intermittent cavitation will not register on a standard gauge.
  • All accessories should be sized to avoid restricting the inlet flow.
  • All accessories should be compatible with the solution being pumped to prevent premature failure or malfunction.
  • Optional inlet protection can be achieved by installing a pressure cut off switch between the inlet filter and the pump to shut off pump when there is no positive inlet pressure.

BY-PASS TO INLET Care should be exercised when deciding the method of by- pass from control valves.

  • It is recommended the by-pass be directed to a baffled reservoir tank, with at least one baffle between the by-pass line and the inlet line to the pump.
  • Although not recommended, by-pass liquid may be returned to the inlet line of the pump if the system is properly designed to protect your pump. When a pulsation dampener is used, a PRESSURE REDUCING VALVE must be installed on the inlet line (BETWEEN THE BY-PASS CONNECTION AND THE INLET TO THE PUMP) to avoid excessive pressure to the inlet of the pump. It is also recommended that a THERMO VALVE be used in the by-pass line to moni-tor the temperature build-up in the by-pass loop to avoid premature seal failure.
  • A reinforced, flexible, low pressure hose rated up to 300 PSI should be used for routing by-pass back to the pump inlet.
  • Caution should be exercised not to undersize the by-pass hose diameter and length. Refer to Technical Bulletin 064 for additional information on the size and length of the by-pass line.
  • Check the pressure in the by-pass line to avoid over pressurizing the inlet.
  • The by-pass line should be connected to the pump inlet line at a gentle angle of 45° or less and no closer than 10 times the pump inlet port diameter e.g. 1-1/2″ port size = 15″ distance from pump inlet port.

HOSE FRICTION LOSS

*Water Flow Gal/Min**

| PRESSURE DROP IN PSI PER 100 FT OF HOSE WITH TYPICAL WATER FLOW RATES

Hose Inside Diameters, Inches

---|---
1/4| 5/16| 3/8| 1/2| 5/8| 3/4| 1″
0.5| 16| 5| 2|  |  |  |
1| 54| 20| 7| 2|  |  |
2| 180| 60| 25| 6| 2|  |
3| 380| 120| 50| 13| 4| 2|
4|  | 220| 90| 24| 7| 3|
5|  | 320| 130| 34| 10| 4|
6|  |  | 220| 52| 16| 7| 1
8|  |  | 300| 80| 25| 10| 2
10|  |  | 450| 120| 38| 14| 3
15|  |  | 900| 250| 80| 30| 7
20|  |  | 1600| 400| 121| 50| 12
25|  |  |  | 650| 200| 76| 19
30|  |  |  |  | 250| 96| 24
40|  |  |  |  | 410| 162| 42
50|  |  |  |  | 600| 235| 62
 |  |  |  |  |  |  |

At a fixed flow rate with a given size hose, the pressure drop across a given hose length will be directly proportional. A 50 ft. hose will exhibit one-half the pressure drop of a 100 ft. hose. Above values shown are valid at all pressure levels.

WATER LINE PRESSURE LOSS
PRESSURE DROP IN PSI PER 100 FEET

WATER LINE PRESSURE LOSS

PRESSURE DROP IN PSI PER 100 FEET


Water GPM| Steel Pipe—Nominal Dia.

1/4 3/8 1/2 3/4 1 1 1 / 4 1 1 / 2

| Brass Pipe—Nominal Dia.

1/4 3/8 1/2 3/4 1 1 1 / 4 1 1 / 2

| Copper Tubing O.D. Type L

1/4 3/8 1/2 5/8 3/4 7/8

1| 8.5 1.9| 6.0 1.6| 120| 13 2.9 1.0|
2| 30 7.0 2.1| 20 5.6 1.8| 400| 45 10 3.4 1.3|
3| 60| 14| 4.5| 1.1|  |  |  | 40 11 3.6| 94 20 6.7 2.6
5| 150| 36| 12| 2.8|  |  |  | 100 28 9.0 2.2|  | 230| 50| 17| 6.1| 3.0
8| 330| 86| 28| 6.7| 1.9|  |  | 220 62 21 5.2 1.6|  | 500| 120| 40| 15| 6.5
10| 520| 130| 43| 10| 3.0|  |  | 320 90 30 7.8 2.4|  |  | 180| 56| 22| 10
15|  | 270| 90| 21| 6.2| 1.6|  | 190 62 16 5.0 1.5|  |  |  | 120| 44| 20
25|  | 670| 240| 56| 16| 4.2| 2.0| 470 150 40 12 3.8 1.7|  |  |  | 330| 110| 50
40|  |  |  |  | 66| 17| 8.0| 39 11 5.0|  |  |  | 550| 200| 88
60|  |  |  |  |  | 37| 17| 23 11|
80|  |  |  |  |  | 52| 29| 40 19
100|  |  |  |  | 210| 107| 48| 61 28

RESISTANCE OF VALVES AND FITTINGS

Nominal Pipe Size Inches

|

Inside Diameter Inches

| Equivalent Length of Standard Pipe in Feet
---|---|---
Gate Valve| Globe Valve| Angle Valve| 45˚ Elbow| 90˚ Elbow| 180˚

Close Ret

| Tee

Thru Run

| Tee

Thru Branch

1/2| 0.622| 0.41| 18.5| 9.3| 0.78| 1.67| 3.71| 0.93| 3.33
3/4| 0.824| 0.54| 24.5| 12.3| 1.03| 2.21| 4.90| 1.23| 4.41
1| 1.049| 0.69| 31.2| 15.6| 1.31| 2.81| 6.25| 1.56| 5.62
1 1 / 4| 1.380| 0.90| 41.0| 20.5| 1.73| 3.70| 8.22| 2.06| 7.40
1 1 / 2| 1.610| 1.05| 48.0| 24.0| 2.15| 4.31| 9.59| 2.40| 8.63
2| 2.067| 1.35| 61.5| 30.8| 2.59| 5.55| 12.30| 3.08| 11.60
2 1 / 2| 2.469| 1.62| 73.5| 36.8| 3.09| 6.61| 14.70| 3.68| 13.20
3| 3.068| 2.01| 91.5| 45.8| 3.84| 8.23| 18.20| 4.57| 16.40
4| 4.026| 2.64| 120.0| 60.0| 5.03| 10.80| 23.90| 6.00| 21.60

Arriving at a total line pressure loss, consideration should then be given to pressure loss created by valves, fittings and elevation of lines.

If a sufficient number of valves and fittings are incorporated in the system to materially affect the total line loss, add to the total line length, the equivalent length of line of each valve or fitting.

TYPICAL RESERVOIR TANK
RECOMMENDED 6 TO 10 TIMES SYSTEM CAPACITY

Handy Formulas to Help You

Avoid Cavitation Damage

One or several of the conditions shown in the chart below may contribute to cavitation in a system resulting in premature wear, system downtime and unnecessary operating costs.

DIAGNOSIS AND MAINTENANCE

One of the most important steps in a high pressure system is to establish a regular maintenance program. This will vary slightly with each system and is determined by various elements such as the duty cycle, the liquid being pumped, the actual specifications vs rated specifications of the pump, the ambient conditions, the inlet conditions and the accessories in the system. A careful review of the necessary inlet conditions and protection devices required before the system is installed will eliminate many potential problems.

CAT PUMPS are very easy pumps to service and require far less frequent service than most pumps. Typically, only common tools are required, making in-field service convenient, however, there are a few custom tools, special to certain models, that do simplify the process. This service manual is designed to assist you with the disassembly and reassembly of your pump. The following guide will assist in determining the cause and remedy to various operating conditions. You can also review our FAQ or SERVICE sections on our WEB SITE for more facts or contact CAT PUMPS directly.

References

Read User Manual Online (PDF format)

Read User Manual Online (PDF format)  >>

Download This Manual (PDF format)

Download this manual  >>

Related Manuals